organic compounds
4-Chloro-3-methylphenyl quinoline-2-carboxylate
aDepartment of Chemistry, Yuvaraja's College, Mysore 570 005, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cP.P.S.F.T Department, Central Food Technology Research institute, Mysore 570 005, India, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C17H12ClNO2, the dihedral angle between the mean planes of the quinoline ring system and the benzene ring is 68.7 (7)°. The mean plane of the carboxylate group is twisted from the latter planes by 14.0 (1) and 80.2 (4)°, respectively. In the crystal, weak C—H⋯O interactions are observed, forming chains along [001]. In addition, π–π stacking interactions [centroid–centroid distances = 3.8343 (13) and 3.7372 (13)Å] occur. No classical hydrogen bonds were observed.
CCDC reference: 973383
Related literature
For heterocycles in natural products, see: Morimoto et al. (1991); Michael (1997). For heterocycles in fragrances and dyes, see: Padwa et al. (1999). For heterocycles in biologically active compounds, see: Markees et al. (1970); Campbell et al. (1988). For the use of quinoline as efficient drugs for the treatment of malaria, see: Robert & Meunier, (1998). For quinoline as a privileged scaffold in cancer drug discovery, see: Solomon & Lee (2011). For related structures, see: Fazal et al. (2012); Butcher et al. (2007); Jing & Qin (2008); Jasinski et al. (2010).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 973383
10.1107/S1600536813032017/bt6947sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813032017/bt6947Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813032017/bt6947Isup3.cml
The title compound was prepared by the following procedure: To a mixture of 1.73 g (10 mmole) of quinaldic acid and 1.42 g (10 mmole) of 4-chloro-3-methylphenol in a round-bottomed flask fitted with a reflex condenser with a drying tube is added 0.75 g (5 mmole) of phosphorous oxychloride. The mixture is heated with occasional swirling, and temperature is maintained at 353-363 K. At the end of eight hours the reaction mixture is poured in to a solution of 2 g of sodium bicarbonate in 25 mL of water. The precipitated ester is collected on a filter and washed with water. The yield of crude, air dried 4-chloro-3-methyl phenyl quinoline-2-carboxylate is 1.89 to 2.05 g (60-70%). X-ray quality crystal was obtained by recrystallization from absolute ethanol (M.P.: 383-385 K).
All H atoms were visible in a difference map, but placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH) or 0.96Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as rotating group.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C17H12ClNO2 | Dx = 1.430 Mg m−3 |
Mr = 297.73 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 4795 reflections |
a = 7.75379 (16) Å | θ = 4.7–72.2° |
b = 11.9658 (3) Å | µ = 2.48 mm−1 |
c = 14.9005 (3) Å | T = 173 K |
V = 1382.48 (5) Å3 | Irregular, colourless |
Z = 4 | 0.32 × 0.24 × 0.20 mm |
F(000) = 616 |
Agilent Xcalibur (Eos, Gemini) diffractometer | 2703 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2636 reflections with I > 2σ(I) |
Detector resolution: 16.0416 pixels mm-1 | Rint = 0.030 |
ω scans | θmax = 72.3°, θmin = 4.7° |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | h = −9→4 |
Tmin = 0.530, Tmax = 1.000 | k = −14→14 |
8419 measured reflections | l = −17→18 |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0574P)2 + 0.1134P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.032 | (Δ/σ)max < 0.001 |
wR(F2) = 0.085 | Δρmax = 0.20 e Å−3 |
S = 1.05 | Δρmin = −0.19 e Å−3 |
2703 reflections | Extinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
192 parameters | Extinction coefficient: 0.0036 (6) |
0 restraints | Absolute structure: Flack parameter determined using 1081 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.009 (10) |
Hydrogen site location: inferred from neighbouring sites |
C17H12ClNO2 | V = 1382.48 (5) Å3 |
Mr = 297.73 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 7.75379 (16) Å | µ = 2.48 mm−1 |
b = 11.9658 (3) Å | T = 173 K |
c = 14.9005 (3) Å | 0.32 × 0.24 × 0.20 mm |
Agilent Xcalibur (Eos, Gemini) diffractometer | 2703 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | 2636 reflections with I > 2σ(I) |
Tmin = 0.530, Tmax = 1.000 | Rint = 0.030 |
8419 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.085 | Δρmax = 0.20 e Å−3 |
S = 1.05 | Δρmin = −0.19 e Å−3 |
2703 reflections | Absolute structure: Flack parameter determined using 1081 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
192 parameters | Absolute structure parameter: −0.009 (10) |
0 restraints |
Experimental. 1HNMR(500 MHz,DMSO) δ 8.66 (1H,d, J= 8.51Hz), 8.27(1H,d, J= 8.5Hz),8.24(1H,d, J= 8.43 Hz), 8.15(1H,d, J= 8.2 Hz),7.93(1H,dt, J1= 8.07Hz, J2=6.73, J3=1.06Hz), 7.8(1H,t, J= 7.55Hz), 7.54(1H,d, J= 8.6Hz), 7.41(1H,d, J= 2.4Hz), 7.26(1H,dd, J1= 8.6Hz, J2=2.57 Hz), 3.3-3.4(1H,m),2.38(3H,s). |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.64546 (8) | −0.08068 (5) | 0.89548 (4) | 0.03791 (19) | |
O1 | 0.3575 (3) | 0.03286 (15) | 0.50511 (12) | 0.0448 (5) | |
O2 | 0.5593 (2) | 0.15377 (14) | 0.55202 (10) | 0.0319 (4) | |
N1 | 0.3627 (2) | 0.13829 (14) | 0.33957 (12) | 0.0241 (4) | |
C1 | 0.4441 (3) | 0.11335 (17) | 0.49220 (14) | 0.0262 (5) | |
C2 | 0.4431 (3) | 0.18389 (18) | 0.40823 (14) | 0.0244 (4) | |
C3 | 0.5281 (3) | 0.28841 (18) | 0.40610 (15) | 0.0271 (5) | |
H3 | 0.5787 | 0.3179 | 0.4575 | 0.032* | |
C4 | 0.5337 (3) | 0.34478 (19) | 0.32646 (16) | 0.0284 (5) | |
H4 | 0.5880 | 0.4140 | 0.3230 | 0.034* | |
C5 | 0.4568 (3) | 0.29779 (17) | 0.24938 (15) | 0.0244 (4) | |
C6 | 0.4651 (3) | 0.34833 (19) | 0.16312 (16) | 0.0305 (5) | |
H6 | 0.5219 | 0.4162 | 0.1557 | 0.037* | |
C7 | 0.3899 (3) | 0.2973 (2) | 0.09138 (16) | 0.0343 (5) | |
H7 | 0.3987 | 0.3296 | 0.0348 | 0.041* | |
C8 | 0.2985 (3) | 0.1955 (2) | 0.10181 (16) | 0.0324 (5) | |
H8 | 0.2467 | 0.1623 | 0.0523 | 0.039* | |
C9 | 0.2861 (3) | 0.14592 (19) | 0.18406 (15) | 0.0276 (5) | |
H9 | 0.2233 | 0.0802 | 0.1905 | 0.033* | |
C10 | 0.3685 (3) | 0.19422 (18) | 0.25977 (14) | 0.0231 (4) | |
C11 | 0.5754 (3) | 0.09412 (19) | 0.63323 (14) | 0.0270 (5) | |
C12 | 0.4958 (3) | 0.13691 (19) | 0.70842 (15) | 0.0259 (4) | |
H12 | 0.4295 | 0.2014 | 0.7039 | 0.031* | |
C13 | 0.5141 (3) | 0.08374 (19) | 0.79167 (14) | 0.0255 (4) | |
C14 | 0.6158 (3) | −0.01188 (18) | 0.79341 (15) | 0.0265 (5) | |
C15 | 0.6979 (3) | −0.05421 (19) | 0.71832 (16) | 0.0305 (5) | |
H15 | 0.7661 | −0.1179 | 0.7226 | 0.037* | |
C16 | 0.6771 (3) | −0.00042 (19) | 0.63626 (15) | 0.0305 (5) | |
H16 | 0.7305 | −0.0275 | 0.5848 | 0.037* | |
C17 | 0.4262 (3) | 0.1281 (2) | 0.87402 (15) | 0.0340 (5) | |
H17A | 0.3664 | 0.1960 | 0.8594 | 0.051* | |
H17B | 0.5107 | 0.1430 | 0.9196 | 0.051* | |
H17C | 0.3452 | 0.0738 | 0.8957 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0486 (3) | 0.0340 (3) | 0.0312 (3) | −0.0002 (3) | −0.0084 (2) | 0.0109 (2) |
O1 | 0.0585 (11) | 0.0405 (10) | 0.0356 (9) | −0.0239 (9) | −0.0172 (9) | 0.0143 (8) |
O2 | 0.0431 (9) | 0.0316 (8) | 0.0209 (7) | −0.0097 (7) | −0.0046 (7) | 0.0033 (6) |
N1 | 0.0279 (8) | 0.0201 (8) | 0.0241 (8) | −0.0002 (8) | −0.0002 (7) | 0.0010 (7) |
C1 | 0.0301 (10) | 0.0250 (11) | 0.0235 (10) | −0.0002 (9) | −0.0018 (9) | −0.0006 (8) |
C2 | 0.0267 (10) | 0.0213 (9) | 0.0251 (10) | 0.0028 (8) | 0.0001 (8) | 0.0000 (8) |
C3 | 0.0298 (11) | 0.0229 (10) | 0.0285 (11) | −0.0003 (8) | −0.0029 (9) | −0.0029 (9) |
C4 | 0.0299 (11) | 0.0193 (10) | 0.0360 (11) | −0.0009 (8) | 0.0009 (9) | 0.0000 (9) |
C5 | 0.0256 (10) | 0.0194 (9) | 0.0282 (10) | 0.0040 (8) | 0.0043 (8) | 0.0017 (8) |
C6 | 0.0345 (12) | 0.0238 (11) | 0.0331 (11) | 0.0032 (9) | 0.0064 (9) | 0.0064 (9) |
C7 | 0.0447 (14) | 0.0325 (12) | 0.0256 (11) | 0.0071 (10) | 0.0060 (10) | 0.0066 (9) |
C8 | 0.0407 (12) | 0.0319 (12) | 0.0246 (10) | 0.0060 (9) | −0.0007 (9) | −0.0031 (9) |
C9 | 0.0325 (10) | 0.0221 (10) | 0.0282 (11) | 0.0023 (9) | −0.0002 (9) | −0.0011 (9) |
C10 | 0.0247 (10) | 0.0196 (9) | 0.0250 (10) | 0.0040 (8) | 0.0019 (8) | 0.0004 (8) |
C11 | 0.0320 (10) | 0.0274 (11) | 0.0216 (10) | −0.0082 (9) | −0.0049 (8) | 0.0025 (8) |
C12 | 0.0277 (10) | 0.0230 (10) | 0.0269 (10) | −0.0016 (9) | −0.0038 (8) | 0.0000 (9) |
C13 | 0.0264 (10) | 0.0254 (10) | 0.0247 (10) | −0.0047 (9) | −0.0021 (8) | −0.0009 (9) |
C14 | 0.0310 (11) | 0.0249 (10) | 0.0236 (9) | −0.0045 (9) | −0.0060 (8) | 0.0041 (8) |
C15 | 0.0338 (12) | 0.0222 (11) | 0.0354 (12) | 0.0004 (9) | −0.0032 (9) | −0.0025 (9) |
C16 | 0.0352 (12) | 0.0299 (11) | 0.0263 (10) | −0.0024 (9) | 0.0007 (9) | −0.0070 (9) |
C17 | 0.0378 (12) | 0.0375 (12) | 0.0268 (11) | 0.0003 (10) | 0.0050 (9) | −0.0004 (9) |
Cl1—C14 | 1.745 (2) | C8—H8 | 0.9300 |
O1—C1 | 1.190 (3) | C8—C9 | 1.365 (3) |
O2—C1 | 1.352 (3) | C9—H9 | 0.9300 |
O2—C11 | 1.410 (2) | C9—C10 | 1.420 (3) |
N1—C2 | 1.317 (3) | C11—C12 | 1.378 (3) |
N1—C10 | 1.365 (3) | C11—C16 | 1.380 (3) |
C1—C2 | 1.509 (3) | C12—H12 | 0.9300 |
C2—C3 | 1.414 (3) | C12—C13 | 1.401 (3) |
C3—H3 | 0.9300 | C13—C14 | 1.390 (3) |
C3—C4 | 1.366 (3) | C13—C17 | 1.501 (3) |
C4—H4 | 0.9300 | C14—C15 | 1.383 (3) |
C4—C5 | 1.411 (3) | C15—H15 | 0.9300 |
C5—C6 | 1.422 (3) | C15—C16 | 1.391 (3) |
C5—C10 | 1.424 (3) | C16—H16 | 0.9300 |
C6—H6 | 0.9300 | C17—H17A | 0.9600 |
C6—C7 | 1.362 (4) | C17—H17B | 0.9600 |
C7—H7 | 0.9300 | C17—H17C | 0.9600 |
C7—C8 | 1.418 (4) | ||
C1—O2—C11 | 116.31 (17) | C10—C9—H9 | 119.8 |
C2—N1—C10 | 117.25 (18) | N1—C10—C5 | 122.49 (19) |
O1—C1—O2 | 123.8 (2) | N1—C10—C9 | 118.53 (19) |
O1—C1—C2 | 125.7 (2) | C9—C10—C5 | 119.0 (2) |
O2—C1—C2 | 110.48 (18) | C12—C11—O2 | 118.0 (2) |
N1—C2—C1 | 114.51 (18) | C12—C11—C16 | 122.3 (2) |
N1—C2—C3 | 124.7 (2) | C16—C11—O2 | 119.6 (2) |
C3—C2—C1 | 120.73 (19) | C11—C12—H12 | 119.8 |
C2—C3—H3 | 120.9 | C11—C12—C13 | 120.4 (2) |
C4—C3—C2 | 118.1 (2) | C13—C12—H12 | 119.8 |
C4—C3—H3 | 120.9 | C12—C13—C17 | 121.1 (2) |
C3—C4—H4 | 120.1 | C14—C13—C12 | 116.6 (2) |
C3—C4—C5 | 119.8 (2) | C14—C13—C17 | 122.3 (2) |
C5—C4—H4 | 120.1 | C13—C14—Cl1 | 118.67 (17) |
C4—C5—C6 | 123.2 (2) | C15—C14—Cl1 | 118.13 (17) |
C4—C5—C10 | 117.5 (2) | C15—C14—C13 | 123.2 (2) |
C6—C5—C10 | 119.4 (2) | C14—C15—H15 | 120.4 |
C5—C6—H6 | 120.0 | C14—C15—C16 | 119.2 (2) |
C7—C6—C5 | 119.9 (2) | C16—C15—H15 | 120.4 |
C7—C6—H6 | 120.0 | C11—C16—C15 | 118.3 (2) |
C6—C7—H7 | 119.6 | C11—C16—H16 | 120.9 |
C6—C7—C8 | 120.9 (2) | C15—C16—H16 | 120.9 |
C8—C7—H7 | 119.6 | C13—C17—H17A | 109.5 |
C7—C8—H8 | 119.8 | C13—C17—H17B | 109.5 |
C9—C8—C7 | 120.5 (2) | C13—C17—H17C | 109.5 |
C9—C8—H8 | 119.8 | H17A—C17—H17B | 109.5 |
C8—C9—H9 | 119.8 | H17A—C17—H17C | 109.5 |
C8—C9—C10 | 120.3 (2) | H17B—C17—H17C | 109.5 |
Cl1—C14—C15—C16 | −179.57 (17) | C6—C5—C10—C9 | −2.0 (3) |
O1—C1—C2—N1 | −13.1 (3) | C6—C7—C8—C9 | −0.8 (4) |
O1—C1—C2—C3 | 168.7 (2) | C7—C8—C9—C10 | −1.7 (4) |
O2—C1—C2—N1 | 166.49 (19) | C8—C9—C10—N1 | −175.7 (2) |
O2—C1—C2—C3 | −11.7 (3) | C8—C9—C10—C5 | 3.1 (3) |
O2—C11—C12—C13 | −177.10 (18) | C10—N1—C2—C1 | −175.21 (17) |
O2—C11—C16—C15 | 176.69 (19) | C10—N1—C2—C3 | 2.9 (3) |
N1—C2—C3—C4 | −2.7 (3) | C10—C5—C6—C7 | −0.4 (3) |
C1—O2—C11—C12 | −102.0 (2) | C11—O2—C1—O1 | 0.7 (3) |
C1—O2—C11—C16 | 81.7 (3) | C11—O2—C1—C2 | −178.92 (17) |
C1—C2—C3—C4 | 175.29 (19) | C11—C12—C13—C14 | 0.3 (3) |
C2—N1—C10—C5 | −0.1 (3) | C11—C12—C13—C17 | −179.1 (2) |
C2—N1—C10—C9 | 178.66 (19) | C12—C11—C16—C15 | 0.6 (3) |
C2—C3—C4—C5 | −0.4 (3) | C12—C13—C14—Cl1 | 179.22 (16) |
C3—C4—C5—C6 | −176.53 (19) | C12—C13—C14—C15 | 0.6 (3) |
C3—C4—C5—C10 | 2.9 (3) | C13—C14—C15—C16 | −0.9 (3) |
C4—C5—C6—C7 | 179.0 (2) | C14—C15—C16—C11 | 0.3 (3) |
C4—C5—C10—N1 | −2.8 (3) | C16—C11—C12—C13 | −0.9 (3) |
C4—C5—C10—C9 | 178.5 (2) | C17—C13—C14—Cl1 | −1.4 (3) |
C5—C6—C7—C8 | 1.9 (4) | C17—C13—C14—C15 | 180.0 (2) |
C6—C5—C10—N1 | 176.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1i | 0.93 | 2.57 | 3.317 (3) | 138 |
Symmetry code: (i) −x+1/2, −y, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1i | 0.93 | 2.57 | 3.317 (3) | 137.9 |
Symmetry code: (i) −x+1/2, −y, z−1/2. |
Acknowledgements
EF thanks the CFTRI, Mysore, and Yuvaraja's College, UOM, for providing research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603. Web of Science CSD CrossRef IUCr Journals Google Scholar
Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035. CrossRef CAS PubMed Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fazal, E., Jasinski, J. P., Krauss, S. T., Sudha, B. S. & Yathirajan, H. S. (2012). Acta Cryst. E68, o3231–o3232. CSD CrossRef CAS IUCr Journals Google Scholar
Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172–181. Web of Science CSD CrossRef CAS Google Scholar
Jing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. 223, 35–36. CAS Google Scholar
Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326. CrossRef CAS PubMed Web of Science Google Scholar
Michael, J. P. (1997). Nat. Prod. Rep. 14, 605–608. CrossRef CAS Web of Science Google Scholar
Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203. CrossRef Google Scholar
Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595–3607. Web of Science CrossRef PubMed CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Robert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273–279. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Solomon, V. R. & Lee, H. (2011). Curr. Med. Chem. 18, 1488–1508. Web of Science CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinoline-2 carboxylic acid derivatives are a class of important materials as anti-tuberculosis agents, as fluorescent reagents, hydrophobic field-detection reagents, visualisation reagents, fluorescent labelled peptide probes and as antihyperglycemics. Quinoline derivatives represent a major class of heterocycles and are found in natural products (Morimoto et al., 1991; Michael, 1997), numerous commercial products, including fragrances, dyes (Padwa et al., 1999) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Quinoline alkaloids such as quinine, chloroquin, mefloquine and amodiaquine are used as efficient drugs for the treatment of malaria (Robert & Meunier, 1998). Quinoline as a privileged scaffold in cancer drug discovery is published (Solomon & Lee, 2011). The crystal structures of 4-methylphenyl quinoline-2-carboxylate (Fazal et al., 2012), 1-(quinolin-2-yl)ethanone (Butcher et al., 2007) and methyl quinoline-2-carboxylate (Jing & Qin, 2008) and the synthesis, crystal structures and theoretical studies of four Schiff bases derived from 4-hydrazinyl-8-(trifluoromethyl) quinoline (Jasinski et al., 2010) have been reported. In view of the importance of quinolines, this paper reports the crystal structure of the title compound, C17H12ClNO2.
In the title compound, the dihedral angle between the mean planes of the quinoline ring and the phenyl ring is 68.7 (7)° (Fig. 1). The mean plane of the carboxylate group is twisted from the mean planes of the quinoline ring and phenyl ring by 14.0 (1)° and 80.2 (4)°, respectively. In the crystal, weak C8—H8···O1 intermolecular interactions are observed making chains along [0 0 1] (Fig. 2). In addition, π–π stacking interactions further stabilize the crystal packing with centroid-centroid distances of 3.8343 (13)Å (Cg1–Cg3i) and 3.7372 (13)Å (Cg2–Cg3i) (where Cg1 = N1/C2/C3/C4/C5/C10; Cg2 = C5-C10; Cg3 = C11-C16; symmetry operator (i) -0.5+x, 0.5-y, 1-z). No classical hydrogen bonds were observed.