organic compounds
4-(3-Fluoro-4-methylanilino)-2-methylidene-4-oxobutanoic acid
aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu
The title compound, C12H12FNO3, crystallizes with two independent molecules (A and B) in the The dihedral angle between the mean planes of the 3-fluoro-4-methylphenyl ring and the oxoamine group is 25.7 (7)° in molecule A and 71.3 (7)° in molecule B, while the mean plane of the 2-methylidene-4-oxobutanoic acid group is twisted by 76.2 (1)° from that of the oxoamine group in molecule A and by 76.2 (4)° in molecule B. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds [the latter forming an R22(8) graph-set motif] link the molecules into a two-dimensional network parallel to the ac plane.
CCDC reference: 969912
Related literature
For properties of itaconic anhydride polymers, see: Oishi (1980); Urzua et al. (1998). For derivatives of itaconic anhydride, see: Katla et al. (2011); Shetgiri & Nayak (2005); Hanoon (2011); Nayak et al. (2013). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 969912
10.1107/S160053681302998X/bv2227sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681302998X/bv2227Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681302998X/bv2227Isup3.cml
Itaconic anhydride (0.112 g, 1 mmol) dissolved in a 30 ml acetone and it was stirred at ambient temperature and 3-fluoro-4-methyl aniline (0.125 g, 1 mmol) was added portion wise over 30 mins (Fig. 3) The mixture turned into yellow slurry. After stirring 1.5hrs, the slurry was filtered. The solid was washed with acetone and dried to give title compound (I). Single crystals were grown from methanol by the slow evaporation method and used as such for x-ray studies.(M.P.: 414-416 K).
All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.97Å (CH2), 0.96Å (CH3), 0.82Å (OH) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Idealised Me and tetrahedral OH refined as rotating groups.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. ORTEP drawing of (I), C12H12FNO3, showing the labeling scheme with two molecules (A & B) in the asymmetric unit and 30% probability displacement ellipsoids. | |
Fig. 2. Molecular packing for (I) viewed along the b axis. Dashed lines indicate N—H···O hydrogen bonds and O—H···O R22(8) graph set motif hydrogen bonds which link the molecules into a 2-D network along the ac plane. H atoms not involved in hydrogen bonding have been removed for clarity. | |
Fig. 3. Synthesis scheme of (I). |
C12H12FNO3 | Z = 4 |
Mr = 237.23 | F(000) = 496 |
Triclinic, P1 | Dx = 1.442 Mg m−3 |
a = 6.3368 (3) Å | Mo Kα radiation, λ = 0.7107 Å |
b = 8.2642 (4) Å | Cell parameters from 3167 reflections |
c = 21.0277 (11) Å | θ = 3.3–32.7° |
α = 84.057 (4)° | µ = 0.12 mm−1 |
β = 89.798 (4)° | T = 173 K |
γ = 86.062 (4)° | Irregular, colourless |
V = 1092.69 (9) Å3 | 0.38 × 0.32 × 0.16 mm |
Agilent Xcalibur (Eos, Gemini) diffractometer | 7221 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4872 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 32.8°, θmin = 3.3° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | k = −11→12 |
Tmin = 0.673, Tmax = 1.000 | l = −30→31 |
13094 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.081 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.221 | w = 1/[σ2(Fo2) + (0.0895P)2 + 0.6971P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
7221 reflections | Δρmax = 0.68 e Å−3 |
327 parameters | Δρmin = −0.28 e Å−3 |
0 restraints |
C12H12FNO3 | γ = 86.062 (4)° |
Mr = 237.23 | V = 1092.69 (9) Å3 |
Triclinic, P1 | Z = 4 |
a = 6.3368 (3) Å | Mo Kα radiation |
b = 8.2642 (4) Å | µ = 0.12 mm−1 |
c = 21.0277 (11) Å | T = 173 K |
α = 84.057 (4)° | 0.38 × 0.32 × 0.16 mm |
β = 89.798 (4)° |
Agilent Xcalibur (Eos, Gemini) diffractometer | 7221 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | 4872 reflections with I > 2σ(I) |
Tmin = 0.673, Tmax = 1.000 | Rint = 0.032 |
13094 measured reflections |
R[F2 > 2σ(F2)] = 0.081 | 0 restraints |
wR(F2) = 0.221 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.68 e Å−3 |
7221 reflections | Δρmin = −0.28 e Å−3 |
327 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
F1A | 0.2264 (3) | 0.7138 (2) | 0.08603 (8) | 0.0598 (5) | |
O1A | −0.0578 (3) | 0.49102 (19) | 0.28774 (8) | 0.0317 (4) | |
O2A | −0.2598 (3) | 0.4663 (2) | 0.46934 (8) | 0.0326 (4) | |
H2A | −0.1978 | 0.5069 | 0.4973 | 0.049* | |
O3A | 0.0704 (2) | 0.3813 (2) | 0.44375 (8) | 0.0301 (3) | |
N1A | 0.1954 (3) | 0.3003 (2) | 0.26309 (9) | 0.0267 (4) | |
H1A | 0.2466 | 0.2026 | 0.2745 | 0.032* | |
C1A | 0.0240 (3) | 0.3514 (2) | 0.29537 (9) | 0.0223 (4) | |
C2A | −0.0635 (3) | 0.2194 (2) | 0.34215 (10) | 0.0253 (4) | |
H2AA | −0.1345 | 0.1443 | 0.3184 | 0.030* | |
H2AB | 0.0528 | 0.1584 | 0.3656 | 0.030* | |
C3A | −0.2160 (3) | 0.2886 (2) | 0.38861 (10) | 0.0239 (4) | |
C4A | −0.1221 (3) | 0.3827 (2) | 0.43641 (10) | 0.0236 (4) | |
C5A | −0.4195 (4) | 0.2636 (3) | 0.38952 (12) | 0.0324 (5) | |
H5AA | −0.518 (5) | 0.312 (4) | 0.4188 (14) | 0.038 (8)* | |
H5AB | −0.483 (5) | 0.204 (4) | 0.3585 (15) | 0.049 (9)* | |
C6A | 0.3022 (4) | 0.3877 (3) | 0.21259 (10) | 0.0266 (4) | |
C7A | 0.2073 (4) | 0.5190 (3) | 0.17415 (11) | 0.0310 (5) | |
H7A | 0.0701 | 0.5593 | 0.1820 | 0.037* | |
C8A | 0.3231 (4) | 0.5879 (3) | 0.12384 (11) | 0.0349 (5) | |
C9A | 0.5269 (4) | 0.5377 (3) | 0.10906 (12) | 0.0351 (5) | |
C10A | 0.6179 (4) | 0.4087 (3) | 0.14927 (13) | 0.0388 (6) | |
H10A | 0.7570 | 0.3716 | 0.1421 | 0.047* | |
C11A | 0.5091 (4) | 0.3328 (3) | 0.19983 (12) | 0.0337 (5) | |
H11A | 0.5743 | 0.2450 | 0.2253 | 0.040* | |
C12A | 0.6457 (5) | 0.6181 (4) | 0.05352 (13) | 0.0477 (7) | |
H12D | 0.5574 | 0.7058 | 0.0320 | 0.072* | |
H12E | 0.6843 | 0.5394 | 0.0242 | 0.072* | |
H12F | 0.7712 | 0.6602 | 0.0689 | 0.072* | |
F1B | 0.6414 (3) | 1.0662 (3) | 0.05324 (7) | 0.0555 (5) | |
O1B | 0.4220 (3) | 0.97672 (18) | 0.28923 (8) | 0.0288 (3) | |
O2B | 0.2374 (3) | 0.9727 (2) | 0.47086 (8) | 0.0350 (4) | |
H2B | 0.3050 | 1.0169 | 0.4965 | 0.053* | |
O3B | 0.5598 (2) | 0.8739 (2) | 0.44475 (8) | 0.0318 (4) | |
N1B | 0.6529 (3) | 0.7751 (2) | 0.26178 (9) | 0.0278 (4) | |
H1B | 0.6969 | 0.6743 | 0.2696 | 0.033* | |
C1B | 0.4934 (3) | 0.8347 (2) | 0.29677 (9) | 0.0214 (4) | |
C2B | 0.4038 (3) | 0.7091 (2) | 0.34588 (10) | 0.0248 (4) | |
H2BA | 0.3250 | 0.6348 | 0.3240 | 0.030* | |
H2BB | 0.5194 | 0.6460 | 0.3689 | 0.030* | |
C3B | 0.2614 (3) | 0.7880 (2) | 0.39254 (9) | 0.0234 (4) | |
C4B | 0.3671 (3) | 0.8823 (2) | 0.43834 (9) | 0.0233 (4) | |
C5B | 0.0546 (4) | 0.7733 (3) | 0.39513 (12) | 0.0321 (5) | |
H5BA | −0.030 (4) | 0.831 (3) | 0.4239 (12) | 0.029 (7)* | |
H5BB | −0.013 (5) | 0.715 (4) | 0.3643 (14) | 0.040 (8)* | |
C6B | 0.7520 (3) | 0.8736 (3) | 0.21197 (10) | 0.0260 (4) | |
C7B | 0.6465 (4) | 0.9236 (3) | 0.15526 (11) | 0.0304 (5) | |
H7B | 0.5093 | 0.8950 | 0.1489 | 0.036* | |
C8B | 0.7488 (4) | 1.0169 (3) | 0.10828 (11) | 0.0334 (5) | |
C9B | 0.9529 (4) | 1.0626 (3) | 0.11392 (11) | 0.0324 (5) | |
C10B | 1.0547 (4) | 1.0105 (3) | 0.17149 (11) | 0.0340 (5) | |
H10B | 1.1919 | 1.0394 | 0.1776 | 0.041* | |
C11B | 0.9578 (4) | 0.9164 (3) | 0.22030 (11) | 0.0308 (5) | |
H11B | 1.0301 | 0.8823 | 0.2583 | 0.037* | |
C12B | 1.0594 (5) | 1.1636 (4) | 0.06094 (13) | 0.0466 (7) | |
H12A | 1.1739 | 1.2156 | 0.0783 | 0.070* | |
H12B | 0.9588 | 1.2452 | 0.0410 | 0.070* | |
H12C | 1.1134 | 1.0945 | 0.0298 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1A | 0.0641 (12) | 0.0530 (11) | 0.0554 (10) | 0.0053 (9) | 0.0081 (9) | 0.0204 (8) |
O1A | 0.0349 (9) | 0.0197 (7) | 0.0393 (9) | 0.0029 (6) | 0.0068 (7) | −0.0007 (6) |
O2A | 0.0261 (8) | 0.0356 (9) | 0.0384 (9) | −0.0011 (7) | 0.0009 (6) | −0.0149 (7) |
O3A | 0.0242 (7) | 0.0300 (8) | 0.0383 (8) | −0.0041 (6) | 0.0013 (6) | −0.0117 (6) |
N1A | 0.0288 (9) | 0.0183 (8) | 0.0324 (9) | −0.0005 (7) | 0.0039 (7) | −0.0003 (6) |
C1A | 0.0234 (9) | 0.0184 (8) | 0.0256 (9) | −0.0015 (7) | −0.0016 (7) | −0.0034 (7) |
C2A | 0.0303 (10) | 0.0161 (8) | 0.0302 (10) | −0.0043 (8) | 0.0005 (8) | −0.0038 (7) |
C3A | 0.0266 (10) | 0.0186 (9) | 0.0265 (9) | −0.0041 (8) | 0.0001 (7) | −0.0007 (7) |
C4A | 0.0237 (9) | 0.0189 (9) | 0.0283 (9) | −0.0047 (7) | 0.0022 (7) | −0.0013 (7) |
C5A | 0.0280 (11) | 0.0319 (12) | 0.0382 (12) | −0.0088 (9) | −0.0004 (9) | −0.0038 (9) |
C6A | 0.0293 (10) | 0.0216 (9) | 0.0297 (10) | −0.0051 (8) | 0.0033 (8) | −0.0043 (7) |
C7A | 0.0321 (11) | 0.0267 (10) | 0.0339 (11) | −0.0020 (9) | 0.0025 (9) | −0.0014 (8) |
C8A | 0.0440 (13) | 0.0257 (11) | 0.0343 (11) | −0.0052 (10) | 0.0028 (10) | 0.0013 (8) |
C9A | 0.0435 (13) | 0.0271 (11) | 0.0371 (12) | −0.0141 (10) | 0.0096 (10) | −0.0065 (9) |
C10A | 0.0326 (12) | 0.0346 (13) | 0.0500 (14) | −0.0060 (10) | 0.0117 (10) | −0.0057 (10) |
C11A | 0.0297 (11) | 0.0284 (11) | 0.0419 (12) | 0.0001 (9) | 0.0045 (9) | −0.0008 (9) |
C12A | 0.0585 (18) | 0.0435 (15) | 0.0430 (14) | −0.0181 (14) | 0.0184 (12) | −0.0042 (11) |
F1B | 0.0517 (10) | 0.0758 (13) | 0.0364 (8) | −0.0110 (9) | −0.0070 (7) | 0.0112 (8) |
O1B | 0.0296 (8) | 0.0180 (7) | 0.0375 (8) | 0.0016 (6) | 0.0067 (6) | 0.0003 (6) |
O2B | 0.0248 (8) | 0.0406 (10) | 0.0422 (9) | −0.0002 (7) | 0.0010 (6) | −0.0179 (7) |
O3B | 0.0226 (7) | 0.0340 (9) | 0.0409 (9) | −0.0035 (7) | 0.0012 (6) | −0.0128 (7) |
N1B | 0.0279 (9) | 0.0180 (8) | 0.0365 (9) | 0.0020 (7) | 0.0068 (7) | −0.0007 (7) |
C1B | 0.0204 (9) | 0.0186 (8) | 0.0257 (9) | −0.0022 (7) | −0.0005 (7) | −0.0030 (7) |
C2B | 0.0285 (10) | 0.0147 (8) | 0.0315 (10) | −0.0045 (7) | 0.0014 (8) | −0.0022 (7) |
C3B | 0.0253 (9) | 0.0186 (9) | 0.0261 (9) | −0.0044 (7) | 0.0011 (7) | 0.0009 (7) |
C4B | 0.0225 (9) | 0.0205 (9) | 0.0266 (9) | −0.0030 (7) | 0.0024 (7) | −0.0009 (7) |
C5B | 0.0267 (11) | 0.0346 (12) | 0.0347 (11) | −0.0075 (9) | 0.0008 (9) | 0.0011 (9) |
C6B | 0.0254 (10) | 0.0198 (9) | 0.0330 (10) | −0.0007 (8) | 0.0066 (8) | −0.0039 (7) |
C7B | 0.0242 (10) | 0.0325 (11) | 0.0355 (11) | −0.0059 (9) | 0.0028 (8) | −0.0062 (9) |
C8B | 0.0347 (12) | 0.0347 (12) | 0.0304 (11) | −0.0019 (10) | 0.0005 (9) | −0.0022 (9) |
C9B | 0.0342 (12) | 0.0278 (11) | 0.0362 (11) | −0.0049 (9) | 0.0100 (9) | −0.0066 (9) |
C10B | 0.0282 (11) | 0.0374 (13) | 0.0384 (12) | −0.0102 (10) | 0.0048 (9) | −0.0085 (9) |
C11B | 0.0263 (10) | 0.0321 (11) | 0.0345 (11) | −0.0037 (9) | 0.0001 (8) | −0.0041 (9) |
C12B | 0.0529 (16) | 0.0426 (15) | 0.0451 (14) | −0.0156 (13) | 0.0182 (12) | −0.0012 (11) |
F1A—C8A | 1.355 (3) | F1B—C8B | 1.356 (3) |
O1A—C1A | 1.228 (2) | O1B—C1B | 1.223 (2) |
O2A—H2A | 0.8200 | O2B—H2B | 0.8200 |
O2A—C4A | 1.315 (2) | O2B—C4B | 1.311 (2) |
O3A—C4A | 1.229 (3) | O3B—C4B | 1.225 (2) |
N1A—H1A | 0.8600 | N1B—H1B | 0.8600 |
N1A—C1A | 1.345 (3) | N1B—C1B | 1.344 (2) |
N1A—C6A | 1.418 (3) | N1B—C6B | 1.429 (3) |
C1A—C2A | 1.524 (3) | C1B—C2B | 1.523 (3) |
C2A—H2AA | 0.9700 | C2B—H2BA | 0.9700 |
C2A—H2AB | 0.9700 | C2B—H2BB | 0.9700 |
C2A—C3A | 1.500 (3) | C2B—C3B | 1.499 (3) |
C3A—C4A | 1.483 (3) | C3B—C4B | 1.488 (3) |
C3A—C5A | 1.320 (3) | C3B—C5B | 1.325 (3) |
C5A—H5AA | 0.97 (3) | C5B—H5BA | 0.95 (3) |
C5A—H5AB | 0.97 (3) | C5B—H5BB | 0.96 (3) |
C6A—C7A | 1.387 (3) | C6B—C7B | 1.380 (3) |
C6A—C11A | 1.392 (3) | C6B—C11B | 1.391 (3) |
C7A—H7A | 0.9300 | C7B—H7B | 0.9300 |
C7A—C8A | 1.382 (3) | C7B—C8B | 1.377 (3) |
C8A—C9A | 1.373 (4) | C8B—C9B | 1.381 (3) |
C9A—C10A | 1.385 (4) | C9B—C10B | 1.388 (3) |
C9A—C12A | 1.508 (3) | C9B—C12B | 1.508 (3) |
C10A—H10A | 0.9300 | C10B—H10B | 0.9300 |
C10A—C11A | 1.384 (3) | C10B—C11B | 1.389 (3) |
C11A—H11A | 0.9300 | C11B—H11B | 0.9300 |
C12A—H12D | 0.9600 | C12B—H12A | 0.9600 |
C12A—H12E | 0.9600 | C12B—H12B | 0.9600 |
C12A—H12F | 0.9600 | C12B—H12C | 0.9600 |
C4A—O2A—H2A | 109.5 | C4B—O2B—H2B | 109.5 |
C1A—N1A—H1A | 116.0 | C1B—N1B—H1B | 118.9 |
C1A—N1A—C6A | 128.04 (17) | C1B—N1B—C6B | 122.27 (17) |
C6A—N1A—H1A | 116.0 | C6B—N1B—H1B | 118.9 |
O1A—C1A—N1A | 123.59 (19) | O1B—C1B—N1B | 123.28 (18) |
O1A—C1A—C2A | 122.32 (18) | O1B—C1B—C2B | 122.36 (17) |
N1A—C1A—C2A | 114.09 (17) | N1B—C1B—C2B | 114.34 (17) |
C1A—C2A—H2AA | 109.1 | C1B—C2B—H2BA | 109.3 |
C1A—C2A—H2AB | 109.1 | C1B—C2B—H2BB | 109.3 |
H2AA—C2A—H2AB | 107.9 | H2BA—C2B—H2BB | 107.9 |
C3A—C2A—C1A | 112.28 (16) | C3B—C2B—C1B | 111.76 (16) |
C3A—C2A—H2AA | 109.1 | C3B—C2B—H2BA | 109.3 |
C3A—C2A—H2AB | 109.1 | C3B—C2B—H2BB | 109.3 |
C4A—C3A—C2A | 115.60 (18) | C4B—C3B—C2B | 115.88 (18) |
C5A—C3A—C2A | 123.3 (2) | C5B—C3B—C2B | 123.4 (2) |
C5A—C3A—C4A | 121.1 (2) | C5B—C3B—C4B | 120.7 (2) |
O2A—C4A—C3A | 114.93 (18) | O2B—C4B—C3B | 114.48 (18) |
O3A—C4A—O2A | 123.6 (2) | O3B—C4B—O2B | 123.6 (2) |
O3A—C4A—C3A | 121.48 (19) | O3B—C4B—C3B | 121.93 (18) |
C3A—C5A—H5AA | 122.7 (18) | C3B—C5B—H5BA | 119.9 (17) |
C3A—C5A—H5AB | 122.1 (19) | C3B—C5B—H5BB | 120.1 (18) |
H5AA—C5A—H5AB | 115 (3) | H5BA—C5B—H5BB | 120 (2) |
C7A—C6A—N1A | 123.2 (2) | C7B—C6B—N1B | 120.5 (2) |
C7A—C6A—C11A | 119.2 (2) | C7B—C6B—C11B | 119.9 (2) |
C11A—C6A—N1A | 117.53 (19) | C11B—C6B—N1B | 119.6 (2) |
C6A—C7A—H7A | 121.1 | C6B—C7B—H7B | 120.7 |
C8A—C7A—C6A | 117.9 (2) | C8B—C7B—C6B | 118.5 (2) |
C8A—C7A—H7A | 121.1 | C8B—C7B—H7B | 120.7 |
F1A—C8A—C7A | 117.0 (2) | F1B—C8B—C7B | 117.6 (2) |
F1A—C8A—C9A | 117.8 (2) | F1B—C8B—C9B | 118.4 (2) |
C9A—C8A—C7A | 125.1 (2) | C7B—C8B—C9B | 124.0 (2) |
C8A—C9A—C10A | 115.3 (2) | C8B—C9B—C10B | 116.0 (2) |
C8A—C9A—C12A | 122.7 (2) | C8B—C9B—C12B | 122.2 (2) |
C10A—C9A—C12A | 121.9 (2) | C10B—C9B—C12B | 121.8 (2) |
C9A—C10A—H10A | 118.9 | C9B—C10B—H10B | 119.0 |
C11A—C10A—C9A | 122.3 (2) | C9B—C10B—C11B | 122.0 (2) |
C11A—C10A—H10A | 118.9 | C11B—C10B—H10B | 119.0 |
C6A—C11A—H11A | 119.9 | C6B—C11B—H11B | 120.2 |
C10A—C11A—C6A | 120.1 (2) | C10B—C11B—C6B | 119.5 (2) |
C10A—C11A—H11A | 119.9 | C10B—C11B—H11B | 120.2 |
C9A—C12A—H12D | 109.5 | C9B—C12B—H12A | 109.5 |
C9A—C12A—H12E | 109.5 | C9B—C12B—H12B | 109.5 |
C9A—C12A—H12F | 109.5 | C9B—C12B—H12C | 109.5 |
H12D—C12A—H12E | 109.5 | H12A—C12B—H12B | 109.5 |
H12D—C12A—H12F | 109.5 | H12A—C12B—H12C | 109.5 |
H12E—C12A—H12F | 109.5 | H12B—C12B—H12C | 109.5 |
F1A—C8A—C9A—C10A | −180.0 (2) | F1B—C8B—C9B—C10B | 179.3 (2) |
F1A—C8A—C9A—C12A | 0.7 (4) | F1B—C8B—C9B—C12B | −0.5 (4) |
O1A—C1A—C2A—C3A | −15.6 (3) | O1B—C1B—C2B—C3B | −13.9 (3) |
N1A—C1A—C2A—C3A | 165.26 (18) | N1B—C1B—C2B—C3B | 167.55 (19) |
N1A—C6A—C7A—C8A | −175.9 (2) | N1B—C6B—C7B—C8B | −179.3 (2) |
N1A—C6A—C11A—C10A | 177.1 (2) | N1B—C6B—C11B—C10B | 179.2 (2) |
C1A—N1A—C6A—C7A | −22.6 (4) | C1B—N1B—C6B—C7B | −71.6 (3) |
C1A—N1A—C6A—C11A | 160.4 (2) | C1B—N1B—C6B—C11B | 109.7 (2) |
C1A—C2A—C3A—C4A | −69.2 (2) | C1B—C2B—C3B—C4B | −69.6 (2) |
C1A—C2A—C3A—C5A | 113.4 (2) | C1B—C2B—C3B—C5B | 112.1 (2) |
C2A—C3A—C4A—O2A | 168.57 (17) | C2B—C3B—C4B—O2B | 168.70 (17) |
C2A—C3A—C4A—O3A | −11.3 (3) | C2B—C3B—C4B—O3B | −11.7 (3) |
C5A—C3A—C4A—O2A | −14.0 (3) | C5B—C3B—C4B—O2B | −13.0 (3) |
C5A—C3A—C4A—O3A | 166.2 (2) | C5B—C3B—C4B—O3B | 166.6 (2) |
C6A—N1A—C1A—O1A | −5.3 (4) | C6B—N1B—C1B—O1B | −0.6 (3) |
C6A—N1A—C1A—C2A | 173.9 (2) | C6B—N1B—C1B—C2B | 177.90 (19) |
C6A—C7A—C8A—F1A | 178.7 (2) | C6B—C7B—C8B—F1B | −179.3 (2) |
C6A—C7A—C8A—C9A | −0.7 (4) | C6B—C7B—C8B—C9B | 0.8 (4) |
C7A—C6A—C11A—C10A | −0.1 (4) | C7B—C6B—C11B—C10B | 0.5 (3) |
C7A—C8A—C9A—C10A | −0.6 (4) | C7B—C8B—C9B—C10B | −0.7 (4) |
C7A—C8A—C9A—C12A | −179.9 (3) | C7B—C8B—C9B—C12B | 179.4 (2) |
C8A—C9A—C10A—C11A | 1.6 (4) | C8B—C9B—C10B—C11B | 0.6 (4) |
C9A—C10A—C11A—C6A | −1.3 (4) | C9B—C10B—C11B—C6B | −0.6 (4) |
C11A—C6A—C7A—C8A | 1.0 (4) | C11B—C6B—C7B—C8B | −0.6 (3) |
C12A—C9A—C10A—C11A | −179.1 (3) | C12B—C9B—C10B—C11B | −179.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2A—H2A···O3Ai | 0.82 | 1.84 | 2.658 (2) | 174 |
O2B—H2B···O3Bii | 0.82 | 1.85 | 2.667 (2) | 176 |
N1A—H1A···O1Biii | 0.86 | 2.10 | 2.948 (2) | 168 |
N1B—H1B···O1Aiv | 0.86 | 2.10 | 2.884 (2) | 151 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x, y−1, z; (iv) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2A—H2A···O3Ai | 0.82 | 1.84 | 2.658 (2) | 174.0 |
O2B—H2B···O3Bii | 0.82 | 1.85 | 2.667 (2) | 175.9 |
N1A—H1A···O1Biii | 0.86 | 2.10 | 2.948 (2) | 168.2 |
N1B—H1B···O1Aiv | 0.86 | 2.10 | 2.884 (2) | 151.2 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x, y−1, z; (iv) x+1, y, z. |
Acknowledgements
BN thanks the UGC for a BSR one-time grant for the purchase of chemicals and the DST–PURSE for financial assistance. HSY thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hanoon, H. D. (2011). Nat. J. Chem. 41, 77–89. Google Scholar
Katla, S., Pothana, P., Gubba, B. & Manda, S. (2011). Chem. Sin. 2, 47–53. CAS Google Scholar
Nayak, P. S., Narayana, B., Yathirajan, H. S., Gerber, T., Brecht, B. van & Betz, R. (2013). Acta Cryst. E69, o83. CSD CrossRef IUCr Journals Google Scholar
Oishi, T. (1980). Polym. J. 12, 719–727. CrossRef CAS Web of Science Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shetgiri, N. P. & Nayak, B. K. (2005). Indian J. Chem. Sect. B, 44, 1933–1936. Google Scholar
Urzua, M., Opazo, A., Gargallo, L. & Radic, D. (1998). Polym. Bull. 40, 63–67. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Itaconic anhydride (ITA) is a monomer obtained from renewable resources. Copolymers containing both hydrophilic and hydrophobic segments are drawing considerable attention because of their possible use in biological systems. N-Substituted itaconamic acids are strongly amphiphilic molecules. Itaconic anhydride is more reactive than maleic anhydride and is an alternative monomer for introducing polar functionality into polymers (Oishi, 1980; Urzua et al., 1998). The basic skeleton of itaconic anhydride is useful for the synthesis of various biodynamic cyclic derivatives such as imides (Shetgiri & Nayak, 2005), pyridazine (Katla et al., 2011), oxazepine (Hanoon, 2011) and oxobutanoic acid (Nayak et al., 2013) derivatives. Hence in view of the importance of anhydride derivatives, the crystal structure of the title compound, C12H12NO3F, (I), is reported here.
The title compound, (I), crystallizes with two independent molecules (A & B) in the asymmetric unit (Fig. 1). The dihedral angle between the mean planes of the 3-fluoro-4-methylphenyl ring and the oxo-amine group is 25.7 (7)° (A) and 71.3 (7)Å (B), while the mean plane of the 2-methylidene-4-oxobutanoic acid group is twisted by 76.2 (1)Å (A) and 76.2 (4)Å (B) from that of the oxo-amine group. In the crystal, N—H···O hydrogen bonds and O—H···O R22(8) graph set motif hydrogen bonds link the molecules into a 2-D network along the ac plane (Fig. 2) and influence crystal packing.