organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(Quinolin-8-yl­­oxy)meth­yl]-1H-benzimid­a­zole monohydrate

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: yonghwen@163.com

(Received 31 October 2013; accepted 15 November 2013; online 30 November 2013)

In the title hydrate, C17H13N3O·H2O, the dihedral angle between the quinoline and benzimidazole ring systems is 6.22 (7)°. The water mol­ecule is linked to the main mol­ecule by N—H⋯O and O—H⋯N hydrogen bonds. Further O—H⋯N hydrogen bonds link the organic molecules into C(6) chains running parallel to the b axis.

Related literature

For background to the properties and applications of benz­imidazole and 8-hy­droxy­quinoline and their derivatives, see: Hanna & Moawad (2002[Hanna, W. G. & Moawad, M. M. (2002). J. Coord. Chem. 55, 43-60.]); Patel & Patel (1999[Patel, A. K. & Patel, V. M. (1999). Synth. React. Inorg. Met.-Org. Chem. 29, 193-197.]); Pierre et al. (2003[Pierre, J.-L., Baret, P. & Serratrice, G. (2003). Curr. Med. Chem. 10, 1077-1084.]); Liu et al. (2005[Liu, Q.-D., Jia, W.-L. & Wang, S. (2005). Inorg. Chem. 44, 1332-1343.]); Wang et al. (2006[Wang, Y., Xu, H.-B., Su, Z.-M., Shao, K.-Z., Zhao, Y.-H., Cui, H.-P., Lan, Y.-Q. & Hao, X.-R. (2006). Inorg. Chem. Commun. 9, 1207-1211.]); Wen et al. (2011[Wen, Y.-H., Xie, X.-L. & Wang, L. (2011). J. Coord. Chem. 64, 459-472.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13N3O·H2O

  • Mr = 293.32

  • Orthorhombic, P 21 21 21

  • a = 6.1679 (12) Å

  • b = 11.094 (2) Å

  • c = 20.502 (4) Å

  • V = 1402.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.989, Tmax = 0.994

  • 10881 measured reflections

  • 1947 independent reflections

  • 1808 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.087

  • S = 1.06

  • 1947 reflections

  • 207 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2WB⋯N1 0.87 (1) 2.03 (1) 2.8892 (10) 170 (1)
N2—H2A⋯O2 0.86 1.95 2.7880 (9) 163
O2—H2WA⋯N3i 0.86 (1) 2.05 (1) 2.9046 (9) 174 (1)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzimidazole and 8-hydroxyquinoline and their derivatives find wide application in coordination chemistry (Hanna et al., 2002), pharmaceutical chemistry (Patel et al., 1999; Pierre et al., 2003), and materials chemistry (Liu et al., 2005; Wang et al., 2006). 2-((Quinolin-8-yloxy)methyl)benzimidazole is a tridentate ligand with N2O donor set, and its copper complex exhibited a predominantly ferromagnetic interaction, while its cadmium complex has good fluorescence property (Wen et al., 2011). Here, we report the crystal structure of the title compound.

The title compound consists of a 2-((quinolin-8-yloxy)methyl)benzimidazole molecule and a crystal water molecule (Fig. 1). The whole molecule is essentially planar, with a dihedral angle of 6.22 (7)° between quinoline and benzimidazole ring. The water molecule as donor is hydrogen bonded to N1 atom in quinoline ring and also as acceptor is hydrogen bonded to H2A atom in benzimidazole ring. These two hydrogen bonds (Table 2) viz. O2—H2WB···N1 and N2—H2A···O2 are helpful to the planar structure of the whole molecule. Meanwhile, the water molecule as donor is hydrogen bonded to N3 atom in benzimidazole ring of the neighbouring molecule to form intermolecular hydrogen bond O2—H2WA···N3 [symmetry-code: -x + 1, y + 1/2, -z + 1/2]. So, the crystal structure is stabilized by two intra and and one intermolecular N—H···O ; O—H···N and O—H···N hydrogen bonds respectively, which link the molecules into C(6) chains running parallel to the b axis (Bernstein et al., 1995) (Fig. 2), Table 2.

Related literature top

For background to the analysis and applications of benzimidazole and 8-hydroxyquinoline and their derivatives, see: Hanna & Moawad (2002); Patel & Patel (1999); Pierre et al. (2003); Liu et al. (2005); Wang et al. (2006); Wen et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2-((Quinolin-8-yloxy)methyl)benzimidazole was prepared according to the literature method (Wen et al., 2011). Colourless single crystals of the title compound suitable for X-ray diffraction study were obtained by slow evaporation of an ethanol solution over a period of 15 d.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 or 1.5 times Ueq of the carrier atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids. The dashed lines represent hydrogen bonds.
[Figure 2] Fig. 2. The packing diagram of the title compound, showing C(6) chains running parallel to the b axis.
2-[(Quinolin-8-yloxy)methyl]-1H-benzimidazole monohydrate top
Crystal data top
C17H13N3O·H2OF(000) = 616
Mr = 293.32Dx = 1.389 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3957 reflections
a = 6.1679 (12) Åθ = 3.0–27.9°
b = 11.094 (2) ŵ = 0.09 mm1
c = 20.502 (4) ÅT = 293 K
V = 1402.9 (5) Å3Plate, colourless
Z = 40.12 × 0.10 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1947 independent reflections
Radiation source: fine-focus sealed tube1808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
phi and ω scansθmax = 27.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 87
Tmin = 0.989, Tmax = 0.994k = 1413
10881 measured reflectionsl = 2026
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.4303P]
where P = (Fo2 + 2Fc2)/3
1947 reflections(Δ/σ)max = 0.013
207 parametersΔρmax = 0.20 e Å3
18 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H13N3O·H2OV = 1402.9 (5) Å3
Mr = 293.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1679 (12) ŵ = 0.09 mm1
b = 11.094 (2) ÅT = 293 K
c = 20.502 (4) Å0.12 × 0.10 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1947 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1808 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.994Rint = 0.048
10881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03918 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.20 e Å3
1947 reflectionsΔρmin = 0.22 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70538 (9)0.86768 (5)0.14109 (3)0.01892 (14)
N10.82709 (12)1.03042 (6)0.05135 (3)0.01977 (14)
N20.34077 (11)0.92882 (6)0.20550 (3)0.01772 (16)
H2A0.37460.97640.17400.021*
N30.36377 (12)0.77363 (6)0.27537 (3)0.01932 (14)
C10.88756 (16)1.10840 (7)0.00577 (4)0.0235 (2)
H1B0.79801.17430.00210.028*
C21.07849 (16)1.09794 (8)0.03150 (4)0.0242 (2)
H2B1.11221.15490.06320.029*
C31.21293 (15)1.00257 (8)0.02022 (4)0.0235 (2)
H3B1.34150.99490.04360.028*
C41.15598 (14)0.91521 (7)0.02721 (4)0.01900 (19)
C51.28526 (14)0.81205 (8)0.03975 (4)0.0201 (2)
H5A1.41660.80170.01820.024*
C61.21598 (14)0.72833 (7)0.08357 (4)0.0197 (2)
H6A1.29900.65960.09070.024*
C71.01976 (13)0.74376 (7)0.11856 (4)0.01837 (19)
H7A0.97550.68550.14840.022*
C80.89491 (13)0.84444 (7)0.10856 (4)0.01745 (19)
C90.95816 (14)0.93301 (7)0.06158 (4)0.01845 (15)
C100.65019 (14)0.78507 (7)0.19152 (4)0.01846 (19)
H10A0.76840.77890.22250.022*
H10B0.62400.70580.17320.022*
C110.45163 (14)0.82967 (7)0.22478 (4)0.01850 (15)
C120.16288 (13)0.93884 (7)0.24609 (4)0.01765 (19)
C130.01106 (15)1.01856 (7)0.24679 (4)0.0214 (2)
H13A0.02091.08200.21730.026*
C140.16961 (15)0.99854 (7)0.29382 (4)0.0239 (2)
H14A0.28921.04950.29560.029*
C150.15352 (15)0.90322 (8)0.33867 (4)0.0249 (2)
H15A0.26160.89310.36980.030*
C160.02011 (15)0.82397 (8)0.33743 (4)0.0223 (2)
H16A0.03010.76110.36730.027*
C170.17982 (14)0.84134 (7)0.28990 (4)0.01820 (19)
O20.45798 (10)1.11879 (5)0.12375 (3)0.02338 (15)
H2WA0.5052 (13)1.1686 (4)0.1525 (2)0.053 (3)*
H2WB0.5604 (8)1.0836 (5)0.1021 (3)0.047 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0167 (3)0.0218 (3)0.0183 (2)0.0025 (2)0.0034 (2)0.0034 (2)
N10.0224 (3)0.0198 (2)0.0171 (2)0.0001 (2)0.0005 (2)0.0011 (2)
N20.0172 (3)0.0179 (3)0.0180 (3)0.0017 (3)0.0009 (3)0.0006 (3)
N30.0177 (3)0.0228 (2)0.0175 (2)0.0019 (2)0.0002 (2)0.0011 (2)
C10.0309 (5)0.0189 (3)0.0207 (4)0.0007 (4)0.0001 (4)0.0000 (3)
C20.0298 (5)0.0236 (4)0.0192 (4)0.0066 (4)0.0023 (3)0.0007 (3)
C30.0238 (4)0.0275 (4)0.0191 (4)0.0059 (4)0.0020 (4)0.0018 (3)
C40.0182 (4)0.0230 (4)0.0159 (3)0.0042 (4)0.0020 (3)0.0037 (3)
C50.0140 (4)0.0289 (4)0.0175 (3)0.0006 (4)0.0003 (3)0.0048 (3)
C60.0179 (4)0.0228 (4)0.0184 (4)0.0035 (4)0.0024 (3)0.0025 (3)
C70.0173 (4)0.0208 (3)0.0169 (3)0.0005 (3)0.0018 (3)0.0001 (3)
C80.0159 (4)0.0210 (3)0.0154 (3)0.0013 (3)0.0006 (3)0.0028 (3)
C90.0202 (3)0.0185 (2)0.0167 (3)0.0009 (2)0.0010 (3)0.0021 (2)
C100.0180 (4)0.0189 (3)0.0184 (3)0.0028 (4)0.0023 (3)0.0019 (3)
C110.0174 (3)0.0211 (3)0.0170 (3)0.0024 (3)0.0014 (2)0.0000 (2)
C120.0164 (4)0.0198 (3)0.0168 (3)0.0039 (3)0.0003 (3)0.0042 (3)
C130.0221 (4)0.0188 (3)0.0234 (4)0.0007 (4)0.0013 (3)0.0046 (3)
C140.0202 (4)0.0244 (4)0.0272 (4)0.0010 (4)0.0003 (4)0.0096 (3)
C150.0204 (4)0.0338 (4)0.0206 (4)0.0048 (4)0.0046 (3)0.0091 (3)
C160.0209 (4)0.0269 (4)0.0190 (4)0.0046 (4)0.0007 (3)0.0009 (3)
C170.0155 (4)0.0215 (4)0.0176 (3)0.0036 (3)0.0012 (3)0.0027 (3)
O20.0240 (3)0.0216 (3)0.0246 (3)0.0012 (3)0.0020 (3)0.0029 (2)
Geometric parameters (Å, º) top
O1—C81.3703 (10)C6—H6A0.9300
O1—C101.4230 (9)C7—C81.3721 (11)
N1—C11.3268 (11)C7—H7A0.9300
N1—C91.3658 (11)C8—C91.4303 (11)
N2—C111.3541 (11)C10—C111.4864 (12)
N2—C121.3816 (11)C10—H10A0.9700
N2—H2A0.8600C10—H10B0.9700
N3—C111.3253 (10)C12—C131.3905 (12)
N3—C171.3930 (11)C12—C171.4099 (11)
C1—C21.4087 (13)C13—C141.3911 (13)
C1—H1B0.9300C13—H13A0.9300
C2—C31.3640 (13)C14—C151.4049 (12)
C2—H2B0.9300C14—H14A0.9300
C3—C41.4172 (11)C15—C161.3858 (13)
C3—H3B0.9300C15—H15A0.9300
C4—C51.4183 (12)C16—C171.3988 (12)
C4—C91.4227 (12)C16—H16A0.9300
C5—C61.3609 (11)O2—H2WA0.860 (5)
C5—H5A0.9300O2—H2WB0.866 (5)
C6—C71.4173 (12)
C8—O1—C10115.89 (6)N1—C9—C8119.05 (7)
C1—N1—C9117.23 (8)C4—C9—C8118.17 (7)
C11—N2—C12106.89 (6)O1—C10—C11108.42 (6)
C11—N2—H2A126.6O1—C10—H10A110.0
C12—N2—H2A126.6C11—C10—H10A110.0
C11—N3—C17104.33 (7)O1—C10—H10B110.0
N1—C1—C2124.28 (8)C11—C10—H10B110.0
N1—C1—H1B117.9H10A—C10—H10B108.4
C2—C1—H1B117.9N3—C11—N2113.77 (7)
C3—C2—C1118.69 (8)N3—C11—C10122.66 (7)
C3—C2—H2B120.7N2—C11—C10123.54 (7)
C1—C2—H2B120.7N2—C12—C13132.08 (7)
C2—C3—C4119.75 (8)N2—C12—C17105.26 (7)
C2—C3—H3B120.1C13—C12—C17122.58 (8)
C4—C3—H3B120.1C12—C13—C14116.62 (8)
C3—C4—C5122.47 (8)C12—C13—H13A121.7
C3—C4—C9117.22 (7)C14—C13—H13A121.7
C5—C4—C9120.29 (7)C13—C14—C15121.61 (8)
C6—C5—C4119.59 (8)C13—C14—H14A119.2
C6—C5—H5A120.2C15—C14—H14A119.2
C4—C5—H5A120.2C16—C15—C14121.34 (8)
C5—C6—C7121.32 (8)C16—C15—H15A119.3
C5—C6—H6A119.3C14—C15—H15A119.3
C7—C6—H6A119.3C15—C16—C17118.01 (8)
C8—C7—C6120.13 (7)C15—C16—H16A121.0
C8—C7—H7A119.9C17—C16—H16A121.0
C6—C7—H7A119.9N3—C17—C16130.41 (7)
O1—C8—C7124.00 (7)N3—C17—C12109.74 (7)
O1—C8—C9115.55 (7)C16—C17—C12119.82 (8)
C7—C8—C9120.45 (7)H2WA—O2—H2WB113.3 (6)
N1—C9—C4122.78 (7)
C9—N1—C1—C21.10 (12)C8—O1—C10—C11175.34 (6)
N1—C1—C2—C30.66 (13)C17—N3—C11—N20.46 (9)
C1—C2—C3—C41.48 (12)C17—N3—C11—C10177.96 (7)
C2—C3—C4—C5177.95 (8)C12—N2—C11—N30.79 (9)
C2—C3—C4—C90.58 (12)C12—N2—C11—C10177.61 (7)
C3—C4—C5—C6176.63 (8)O1—C10—C11—N3177.95 (7)
C9—C4—C5—C61.85 (12)O1—C10—C11—N23.80 (10)
C4—C5—C6—C71.94 (12)C11—N2—C12—C13176.09 (9)
C5—C6—C7—C80.15 (12)C11—N2—C12—C170.74 (8)
C10—O1—C8—C75.26 (11)N2—C12—C13—C14177.02 (8)
C10—O1—C8—C9175.18 (7)C17—C12—C13—C140.64 (12)
C6—C7—C8—O1178.74 (7)C12—C13—C14—C150.56 (12)
C6—C7—C8—C91.72 (12)C13—C14—C15—C160.82 (13)
C1—N1—C9—C42.06 (11)C14—C15—C16—C170.15 (13)
C1—N1—C9—C8177.72 (7)C11—N3—C17—C16178.14 (9)
C3—C4—C9—N11.25 (12)C11—N3—C17—C120.05 (9)
C5—C4—C9—N1179.81 (7)C15—C16—C17—N3176.62 (8)
C3—C4—C9—C8178.52 (7)C15—C16—C17—C121.31 (12)
C5—C4—C9—C80.03 (11)N2—C12—C17—N30.50 (9)
O1—C8—C9—N11.54 (11)C13—C12—C17—N3176.71 (7)
C7—C8—C9—N1178.04 (7)N2—C12—C17—C16178.82 (7)
O1—C8—C9—C4178.67 (7)C13—C12—C17—C161.61 (12)
C7—C8—C9—C41.75 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2WB···N10.87 (1)2.03 (1)2.8892 (10)170 (1)
N2—H2A···O20.861.952.7880 (9)163
O2—H2WA···N3i0.86 (1)2.05 (1)2.9046 (9)174 (1)
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2WB···N10.866 (5)2.033 (5)2.8892 (10)169.7 (5)
N2—H2A···O20.861.952.7880 (9)163.0
O2—H2WA···N3i0.860 (5)2.048 (5)2.9046 (9)174.3 (6)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the Science and Technology Project of Shandong Province, China (No. 2012 G0020221).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHanna, W. G. & Moawad, M. M. (2002). J. Coord. Chem. 55, 43–60.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Q.-D., Jia, W.-L. & Wang, S. (2005). Inorg. Chem. 44, 1332–1343.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPatel, A. K. & Patel, V. M. (1999). Synth. React. Inorg. Met.-Org. Chem. 29, 193–197.  CrossRef CAS Google Scholar
First citationPierre, J.-L., Baret, P. & Serratrice, G. (2003). Curr. Med. Chem. 10, 1077–1084.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Xu, H.-B., Su, Z.-M., Shao, K.-Z., Zhao, Y.-H., Cui, H.-P., Lan, Y.-Q. & Hao, X.-R. (2006). Inorg. Chem. Commun. 9, 1207–1211.  Web of Science CSD CrossRef CAS Google Scholar
First citationWen, Y.-H., Xie, X.-L. & Wang, L. (2011). J. Coord. Chem. 64, 459–472.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds