organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1826-o1827

5-[(tert-Butyl­di­phenyl­sil­yl­oxy)meth­yl]pyridazin-3(2H)-one

aDepartment of Organic Chemistry, University of Vigo, E-36310 Vigo, Spain
*Correspondence e-mail: mcteran@uvigo.es

(Received 5 November 2013; accepted 20 November 2013; online 27 November 2013)

In the title compound, C21H24N2O2Si, a new pyridazin-3(2H)-one derivative, the carbonyl group of the heterocyclic ring and the O atom of the silyl ether are located on the same side of the pyridazinone ring and the C—C—O—Si torsion angle is −140.69 (17)°. In the crystal, mol­ecules are linked by pairs of strong N—H⋯O hydrogen bonds into centrosymmetric dimers with graph-set notation R22(8). Weak C—H⋯π inter­actions are also observed.

Related literature

For background to related compounds displaying biological activity, see: Siddiqui et al. (2010[Siddiqui, A. A., Mishra, R. & Shaharyar, M. (2010). Eur. J. Med. Chem. 45, 2283-2290.]); Moos et al. (1987[Moos, W. H., Humblet, C. C., Sircar, I., Rithner, C., Weishaar, R. E., Bristol, J. A. & McPhail, A. T. (1987). J. Med. Chem. 30, 1963-1972.]); Coelho et al. (2007[Coelho, A., Raviña, E., Fraiz, N., Yañez, M., Laguna, R., Cano, E. & Sotelo, E. (2007). J. Med. Chem. 50, 6476-6484.]); Abouzid & Bekhit (2008[Abouzid, K. & Bekhit, S. A. (2008). Bioorg. Med. Chem. 16, 5547-5556.]); Cesari et al. (2006[Cesari, N., Biancanali, C., Vergelli, C., Dal Piaz, V., Graziano, A., Biagini, P., Chelardini, C., Galeotti, N. & Giovannoni, P. (2006). J. Med. Chem. 49, 7826-7835.]); Rathish et al. (2009[Rathish, I. G., Javed, K., Bano, S., Ahmad, S., Alam, M. S. & Pillai, K. K. (2009). Eur. J. Med. Chem. 44, 2673-2678.]); Sivakumar et al. (2003[Sivakumar, R., Anabalagan, N., Gunasekaran, V. & Leonard, J. T. (2003). Biol. Pharm. Bull. 26, 1407-1411.]); Al-Tel (2010[Al-Tel, T. H. (2010). Eur. J. Med. Chem. 45, 5724-5731.]); Suree et al. (2009[Suree, N., Yi, S. W., Thieu, W., Marohn, M., Damoiseaux, R., Chan, A., Jung, M. E. & Club, R. T. (2009). Bioorg. Med. Chem. 17, 7174-7185.]); Tao et al. (2011[Tao, M., Raddatz, R., Aimone, L. D. & Hudkins, R. L. (2011). Bioorg. Med. Chem. Lett. 21, 6126-6130.]); Weishaar et al. (1985[Weishaar, R. W., Cain, M. H. & Bristol, J. A. (1985). J. Med. Chem. 28, 537-545.]). For related structures, see: Costas et al. (2010[Costas, T., Besada, P., Piras, A., Acevedo, L., Yañez, M., Orallo, F., Laguna, R. & Terán, C. (2010). Bioorg. Med. Chem. Lett. 20, 6624-6627.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24N2O2Si

  • Mr = 364.51

  • Monoclinic, P 21 /c

  • a = 7.9844 (10) Å

  • b = 14.1416 (17) Å

  • c = 18.553 (2) Å

  • β = 98.158 (2)°

  • V = 2073.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.49 × 0.47 × 0.35 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.704, Tmax = 0.746

  • 25441 measured reflections

  • 5012 independent reflections

  • 3090 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.172

  • S = 1.01

  • 5012 reflections

  • 242 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C8′–C13′ ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.89 (3) 1.93 (3) 2.812 (2) 173 (2)
C6—H6⋯Cg3ii 0.93 3.00 3.869 (3) 157
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madinson, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madinson, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Pyridazin-3(2H)-ones constitute an attractive building block for the designing and synthesis of new drugs. In many cases, the incorporation of a pyridazinone fragment in established biologically active molecules provides useful ligands for different targets. Thus, pyridazinone derivatives possess a wide variety of pharmacological properties, such as antihypertensive (Siddiqui et al., 2010), cardiotonic (Moos et al., 1987) and antiplatelet activities (Coelho et al., 2007) and many of them have also been reported as anti-inflammatory (Abouzid & Bekhit, 2008), antinociceptive (Cesari et al., 2006), antidiabetic (Rathish et al., 2009), anticonvulsant (Sivakumar et al., 2003), anticancer (Al-Tel, 2010), antimicrobial (Suree et al., 2009) or anti-histamine H3 agents (Tao et al., 2011). Most of pyridazinone derivatives previously described are 6-arylpyridazin-3(2H)-ones, a structure which was considered essential for cardiotonic and antiplatelet activities resulting from phosphodiesterase III inhibition (Weishaar et al., 1985). However, the replacement of aryl by an alkyl chain functionalized with alcohol or ether groups gave rise to potent antiplatelet agents with a different mechanism of action (Costas et al., 2010). In order to discover new pyridazinone analogues with this kind of activity, the titled compound I was synthesized and its crystal structure was determined.

The molecular structure of compound I, a new pyridazin-3(2H)-one derivative C5 substituted, is shows in figure 1. In the title compound the carbonyl group of the heterocyclic ring and the oxygen atom of the silyl ether are placed on the same side same side of the pyridazinone ring and the C5–C1'–O1'–Si torsion angle is -140.69 (17)°. The pyridazinone ring, a planar moiety, forms dihedral angles of 71.59 (10)° and 47.50 (10)°, respectively, with the C2'–C7' and C8'–C13' benzene rings, while the dihedral angle between both benzene rings is 73.07 (14)°. In the crystal structure the molecules are linked by N—H···O hydrogen bond interaction forming centrosymmetric ring with set-graph motif R22(8), (Bernstein et al., 1995),(Figure 2), Table 1. Weak C—H···π interactions are also observed

Related literature top

For background to related compounds displaying biological activity, see: Siddiqui et al. (2010); Moos et al. (1987); Coelho et al. (2007); Abouzid & Bekhit (2008); Cesari et al. (2006); Rathish et al. (2009); Sivakumar et al. (2003); Al-Tel (2010); Suree et al. (2009); Tao et al. (2011); Weishaar et al. (1985). For related structures, see: Costas et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of 4-(tert-butyldiphenylsilyloxymethyl)-5-hydroxy-5H-furan-2-ona (50 mg, 0.136 mmol) and hydrazine monohydrate (14 ml, 0.284 mmol) in ethanol (2 ml) was stirred at reflux for 4 h. The solvent was evaporated under reduced pressure and residue was purified by column chromatography on silica gel (hexane/ethyl acetate 4:1) to afford a white solid (31 mg, 62%). Colourless block-like crystals suitable for X-ray analysis were obtained from a chloroform solution at room temperature.

Refinement top

All H-atoms were positioned and refined using a riding model with d(C—H)= 0.93 Å, Uiso = 1.2Ueq(C) for aromatic C—H groups,d(C—H)= 0.97 Å, Uiso = 1.2Ueq(C) for CH2 group and d(C—H)= 0.96 Å, Uiso = 1.5Ueq(C) for CH3 group; except for the hydrogen atoms of the NH group which were located from a Fourier-difference map and refined isotropically. The poor quality of the crystal, detected by its high mosaicity, explains the high value of the anisotropic displacement parameters corresponding to certain atoms, such as C4', C10', C11', C12', C17'. However, both data and model are good enough for a correct study.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are shown at the 20% probability level.
[Figure 2] Fig. 2. View of supramolecular dimer generated by NH···O hydrogen bonds.
5-[(tert-Butyldiphenylsilyloxy)methyl]pyridazin-3(2H)-one top
Crystal data top
C21H24N2O2SiF(000) = 776
Mr = 364.51Dx = 1.168 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.9844 (10) ÅCell parameters from 6082 reflections
b = 14.1416 (17) Åθ = 2.2–25.6°
c = 18.553 (2) ŵ = 0.13 mm1
β = 98.158 (2)°T = 293 K
V = 2073.6 (4) Å3Prism, colourless
Z = 40.49 × 0.47 × 0.35 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
5012 independent reflections
Radiation source: fine-focus sealed tube3090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 28.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.704, Tmax = 0.746k = 1818
25441 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0697P)2 + 1.0269P]
where P = (Fo2 + 2Fc2)/3
5012 reflections(Δ/σ)max < 0.001
242 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H24N2O2SiV = 2073.6 (4) Å3
Mr = 364.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9844 (10) ŵ = 0.13 mm1
b = 14.1416 (17) ÅT = 293 K
c = 18.553 (2) Å0.49 × 0.47 × 0.35 mm
β = 98.158 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5012 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3090 reflections with I > 2σ(I)
Tmin = 0.704, Tmax = 0.746Rint = 0.029
25441 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.39 e Å3
5012 reflectionsΔρmin = 0.21 e Å3
242 parameters
Special details top

Experimental. 1H-RMN (400 MHz, CDCl3) δ p.p.m.: 12.91 (s, 1H), 7.72 (d, 1H, J=1.9 Hz), 7.67 (m, 4H), 7.44 (m, 6H), 7.08 (m, 1H), 4.61 (d, 2H, J=1.3 Hz), 1.12 (s, 9H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si0.01100 (7)0.06816 (5)0.31744 (3)0.0514 (2)
N10.1582 (3)0.09069 (15)0.02092 (11)0.0662 (5)
N20.2996 (3)0.03706 (14)0.02689 (11)0.0575 (5)
H20.358 (3)0.0458 (19)0.0097 (15)0.073 (8)*
C40.2380 (3)0.04087 (17)0.13229 (11)0.0544 (5)
H40.26320.08520.16930.065*
C30.3532 (3)0.02690 (17)0.08010 (11)0.0545 (5)
O30.4903 (2)0.06809 (14)0.08028 (9)0.0743 (5)
C50.0949 (3)0.00962 (16)0.12787 (11)0.0523 (5)
C60.0614 (3)0.07715 (17)0.07036 (13)0.0616 (6)
H60.03610.11370.06830.074*
C1'0.0338 (3)0.0012 (2)0.17870 (12)0.0650 (6)
H1'10.14250.01690.15100.078*
H1'20.04580.05840.20340.078*
O1'0.0132 (2)0.07213 (11)0.23069 (8)0.0597 (4)
C2'0.0633 (4)0.05142 (19)0.35288 (13)0.0709 (7)
C3'0.0335 (6)0.1239 (3)0.37389 (18)0.1092 (12)
H3'0.14940.11510.37240.131*
C4'0.0403 (9)0.2126 (3)0.3980 (2)0.1304 (18)
H4'0.02540.26120.41290.156*
C5'0.2058 (10)0.2236 (3)0.3983 (2)0.145 (2)
H5'0.25480.28110.41380.174*
C6'0.3032 (8)0.1568 (4)0.3776 (3)0.165 (2)
H6'0.41800.16760.37750.198*
C7'0.2323 (5)0.0705 (3)0.3562 (3)0.1212 (14)
H7'0.30280.02290.34340.145*
C8'0.1407 (3)0.15851 (17)0.35988 (14)0.0613 (6)
C9'0.2043 (4)0.22855 (19)0.3190 (2)0.0853 (9)
H9'0.17070.23050.26890.102*
C10'0.3164 (5)0.2953 (3)0.3512 (4)0.1315 (19)
H10'0.35860.34120.32270.158*
C11'0.3645 (5)0.2945 (4)0.4228 (4)0.156 (3)
H11'0.43990.34010.44390.187*
C12'0.3054 (5)0.2284 (4)0.4651 (3)0.1347 (18)
H12'0.33930.22890.51510.162*
C13'0.1941 (4)0.1597 (3)0.43397 (17)0.0907 (9)
H13'0.15480.11380.46340.109*
C14'0.2325 (3)0.1025 (3)0.32926 (15)0.0812 (9)
C15'0.2574 (5)0.2050 (4)0.3026 (2)0.1399 (18)
H15A0.37080.22490.30630.210*
H15B0.23820.20890.25270.210*
H15C0.17870.24540.33200.210*
C16'0.2605 (5)0.0971 (4)0.40913 (18)0.1222 (15)
H16A0.37180.11970.41370.183*
H16B0.17770.13550.43830.183*
H16C0.24940.03270.42550.183*
C17'0.3641 (4)0.0404 (4)0.2832 (2)0.1413 (19)
H17A0.34670.02450.29740.212*
H17B0.35240.04720.23270.212*
H17C0.47570.05970.29070.212*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si0.0496 (3)0.0634 (4)0.0439 (3)0.0037 (3)0.0161 (2)0.0005 (3)
N10.0711 (13)0.0649 (13)0.0656 (12)0.0004 (10)0.0206 (10)0.0141 (10)
N20.0594 (11)0.0651 (12)0.0513 (10)0.0080 (9)0.0197 (9)0.0085 (9)
C40.0579 (13)0.0641 (14)0.0436 (11)0.0038 (10)0.0150 (9)0.0058 (10)
C30.0551 (13)0.0638 (14)0.0470 (11)0.0066 (11)0.0154 (9)0.0025 (10)
O30.0665 (11)0.0986 (14)0.0636 (10)0.0144 (10)0.0295 (8)0.0208 (9)
C50.0554 (12)0.0599 (13)0.0437 (11)0.0069 (10)0.0138 (9)0.0040 (9)
C60.0643 (14)0.0616 (14)0.0613 (14)0.0034 (11)0.0173 (11)0.0043 (11)
C1'0.0585 (13)0.0889 (18)0.0508 (12)0.0025 (12)0.0192 (10)0.0059 (12)
O1'0.0700 (10)0.0678 (10)0.0463 (8)0.0021 (8)0.0256 (7)0.0008 (7)
C2'0.100 (2)0.0637 (15)0.0507 (13)0.0123 (14)0.0163 (13)0.0017 (11)
C3'0.158 (3)0.084 (2)0.089 (2)0.042 (2)0.026 (2)0.0057 (18)
C4'0.236 (6)0.075 (3)0.086 (2)0.041 (3)0.041 (3)0.0092 (19)
C5'0.257 (7)0.086 (3)0.098 (3)0.015 (4)0.048 (4)0.023 (2)
C6'0.170 (5)0.123 (4)0.210 (6)0.064 (4)0.057 (4)0.072 (4)
C7'0.110 (3)0.086 (2)0.173 (4)0.028 (2)0.037 (3)0.051 (2)
C8'0.0532 (12)0.0578 (14)0.0755 (16)0.0026 (11)0.0181 (11)0.0091 (12)
C9'0.0749 (18)0.0550 (15)0.135 (3)0.0015 (13)0.0461 (18)0.0044 (16)
C10'0.098 (3)0.062 (2)0.253 (6)0.0135 (19)0.087 (4)0.037 (3)
C11'0.074 (3)0.129 (4)0.273 (8)0.034 (2)0.056 (4)0.111 (5)
C12'0.085 (3)0.169 (4)0.144 (4)0.006 (3)0.006 (2)0.085 (3)
C13'0.0783 (19)0.108 (2)0.083 (2)0.0066 (17)0.0006 (15)0.0245 (18)
C14'0.0536 (14)0.131 (3)0.0633 (15)0.0030 (16)0.0236 (12)0.0113 (17)
C15'0.096 (3)0.180 (5)0.152 (4)0.074 (3)0.042 (2)0.021 (3)
C16'0.092 (2)0.209 (4)0.075 (2)0.002 (3)0.0472 (18)0.029 (2)
C17'0.0533 (17)0.266 (6)0.107 (3)0.023 (3)0.0197 (17)0.057 (3)
Geometric parameters (Å, º) top
Si—O1'1.6490 (15)C6'—C7'1.380 (5)
Si—C8'1.857 (3)C6'—H6'0.9300
Si—C14'1.877 (3)C7'—H7'0.9300
Si—C2'1.880 (3)C8'—C13'1.380 (4)
N1—C61.295 (3)C8'—C9'1.387 (4)
N1—N21.351 (3)C9'—C10'1.378 (5)
N2—C31.362 (3)C9'—H9'0.9300
N2—H20.89 (3)C10'—C11'1.329 (8)
C4—C51.340 (3)C10'—H10'0.9300
C4—C31.440 (3)C11'—C12'1.348 (8)
C4—H40.9300C11'—H11'0.9300
C3—O31.240 (3)C12'—C13'1.386 (5)
C5—C61.429 (3)C12'—H12'0.9300
C5—C1'1.498 (3)C13'—H13'0.9300
C6—H60.9300C14'—C16'1.531 (4)
C1'—O1'1.406 (3)C14'—C17'1.533 (5)
C1'—H1'10.9700C14'—C15'1.535 (5)
C1'—H1'20.9700C15'—H15A0.9600
C2'—C7'1.369 (5)C15'—H15B0.9600
C2'—C3'1.373 (4)C15'—H15C0.9600
C3'—C4'1.431 (6)C16'—H16A0.9600
C3'—H3'0.9300C16'—H16B0.9600
C4'—C5'1.329 (7)C16'—H16C0.9600
C4'—H4'0.9300C17'—H17A0.9600
C5'—C6'1.315 (7)C17'—H17B0.9600
C5'—H5'0.9300C17'—H17C0.9600
O1'—Si—C8'103.33 (10)C2'—C7'—H7'118.4
O1'—Si—C14'110.38 (11)C6'—C7'—H7'118.4
C8'—Si—C14'109.94 (13)C13'—C8'—C9'116.8 (3)
O1'—Si—C2'107.29 (10)C13'—C8'—Si121.4 (2)
C8'—Si—C2'108.43 (12)C9'—C8'—Si121.8 (2)
C14'—Si—C2'116.61 (15)C10'—C9'—C8'121.1 (4)
C6—N1—N2115.8 (2)C10'—C9'—H9'119.4
N1—N2—C3127.22 (19)C8'—C9'—H9'119.4
N1—N2—H2112.7 (17)C11'—C10'—C9'120.4 (5)
C3—N2—H2120.1 (17)C11'—C10'—H10'119.8
C5—C4—C3120.4 (2)C9'—C10'—H10'119.8
C5—C4—H4119.8C10'—C11'—C12'120.8 (4)
C3—C4—H4119.8C10'—C11'—H11'119.6
O3—C3—N2120.03 (19)C12'—C11'—H11'119.6
O3—C3—C4125.6 (2)C11'—C12'—C13'120.1 (5)
N2—C3—C4114.4 (2)C11'—C12'—H12'120.0
C4—C5—C6118.0 (2)C13'—C12'—H12'120.0
C4—C5—C1'124.2 (2)C8'—C13'—C12'120.8 (4)
C6—C5—C1'117.7 (2)C8'—C13'—H13'119.6
N1—C6—C5124.1 (2)C12'—C13'—H13'119.6
N1—C6—H6118.0C16'—C14'—C17'109.2 (3)
C5—C6—H6118.0C16'—C14'—C15'109.2 (3)
O1'—C1'—C5111.4 (2)C17'—C14'—C15'108.3 (3)
O1'—C1'—H1'1109.4C16'—C14'—Si111.7 (2)
C5—C1'—H1'1109.4C17'—C14'—Si111.7 (2)
O1'—C1'—H1'2109.4C15'—C14'—Si106.7 (2)
C5—C1'—H1'2109.4C14'—C15'—H15A109.5
H1'1—C1'—H1'2108.0C14'—C15'—H15B109.5
C1'—O1'—Si126.05 (15)H15A—C15'—H15B109.5
C7'—C2'—C3'115.6 (3)C14'—C15'—H15C109.5
C7'—C2'—Si116.9 (2)H15A—C15'—H15C109.5
C3'—C2'—Si127.5 (3)H15B—C15'—H15C109.5
C2'—C3'—C4'121.3 (4)C14'—C16'—H16A109.5
C2'—C3'—H3'119.3C14'—C16'—H16B109.5
C4'—C3'—H3'119.3H16A—C16'—H16B109.5
C5'—C4'—C3'118.0 (4)C14'—C16'—H16C109.5
C5'—C4'—H4'121.0H16A—C16'—H16C109.5
C3'—C4'—H4'121.0H16B—C16'—H16C109.5
C6'—C5'—C4'122.9 (5)C14'—C17'—H17A109.5
C6'—C5'—H5'118.6C14'—C17'—H17B109.5
C4'—C5'—H5'118.6H17A—C17'—H17B109.5
C5'—C6'—C7'119.0 (5)C14'—C17'—H17C109.5
C5'—C6'—H6'120.5H17A—C17'—H17C109.5
C7'—C6'—H6'120.5H17B—C17'—H17C109.5
C2'—C7'—C6'123.3 (4)
C6—N1—N2—C32.2 (4)C3'—C2'—C7'—C6'1.3 (6)
N1—N2—C3—O3176.7 (2)Si—C2'—C7'—C6'176.7 (4)
N1—N2—C3—C43.9 (3)C5'—C6'—C7'—C2'2.3 (9)
C5—C4—C3—O3178.2 (2)O1'—Si—C8'—C13'161.8 (2)
C5—C4—C3—N22.5 (3)C14'—Si—C8'—C13'80.3 (2)
C3—C4—C5—C60.2 (3)C2'—Si—C8'—C13'48.2 (2)
C3—C4—C5—C1'178.8 (2)O1'—Si—C8'—C9'18.9 (2)
N2—N1—C6—C51.0 (4)C14'—Si—C8'—C9'98.9 (2)
C4—C5—C6—N12.1 (4)C2'—Si—C8'—C9'132.6 (2)
C1'—C5—C6—N1177.0 (2)C13'—C8'—C9'—C10'0.5 (4)
C4—C5—C1'—O1'1.1 (3)Si—C8'—C9'—C10'179.8 (2)
C6—C5—C1'—O1'177.9 (2)C8'—C9'—C10'—C11'0.8 (5)
C5—C1'—O1'—Si140.69 (17)C9'—C10'—C11'—C12'0.2 (7)
C8'—Si—O1'—C1'160.37 (19)C10'—C11'—C12'—C13'0.5 (7)
C14'—Si—O1'—C1'82.1 (2)C9'—C8'—C13'—C12'0.3 (4)
C2'—Si—O1'—C1'45.9 (2)Si—C8'—C13'—C12'179.0 (3)
O1'—Si—C2'—C7'66.8 (3)C11'—C12'—C13'—C8'0.8 (6)
C8'—Si—C2'—C7'44.2 (3)O1'—Si—C14'—C16'178.5 (3)
C14'—Si—C2'—C7'168.9 (3)C8'—Si—C14'—C16'68.1 (3)
O1'—Si—C2'—C3'110.9 (3)C2'—Si—C14'—C16'55.8 (3)
C8'—Si—C2'—C3'138.1 (3)O1'—Si—C14'—C17'56.0 (3)
C14'—Si—C2'—C3'13.4 (3)C8'—Si—C14'—C17'169.4 (3)
C7'—C2'—C3'—C4'0.4 (5)C2'—Si—C14'—C17'66.7 (3)
Si—C2'—C3'—C4'178.2 (3)O1'—Si—C14'—C15'62.1 (3)
C2'—C3'—C4'—C5'1.1 (6)C8'—Si—C14'—C15'51.2 (3)
C3'—C4'—C5'—C6'0.1 (8)C2'—Si—C14'—C15'175.1 (2)
C4'—C5'—C6'—C7'1.6 (9)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C8'–C13' ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.89 (3)1.93 (3)2.812 (2)173 (2)
C6—H6···Cg3ii0.933.003.869 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C8'–C13' ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.89 (3)1.93 (3)2.812 (2)173 (2)
C6—H6···Cg3ii0.933.003.869 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the Xunta de Galicia (CN 2012/184). The authors gratefully acknowledge Dr Berta Covelo, X-ray Diffraction service of the University of Vigo, for her valuable assistance. MCC-L and NV thank the University of Vigo for their Master and PhD fellowships, respectively.

References

First citationAbouzid, K. & Bekhit, S. A. (2008). Bioorg. Med. Chem. 16, 5547–5556.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAl-Tel, T. H. (2010). Eur. J. Med. Chem. 45, 5724–5731.  Web of Science CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madinson, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCesari, N., Biancanali, C., Vergelli, C., Dal Piaz, V., Graziano, A., Biagini, P., Chelardini, C., Galeotti, N. & Giovannoni, P. (2006). J. Med. Chem. 49, 7826–7835.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCoelho, A., Raviña, E., Fraiz, N., Yañez, M., Laguna, R., Cano, E. & Sotelo, E. (2007). J. Med. Chem. 50, 6476–6484.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCostas, T., Besada, P., Piras, A., Acevedo, L., Yañez, M., Orallo, F., Laguna, R. & Terán, C. (2010). Bioorg. Med. Chem. Lett. 20, 6624–6627.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoos, W. H., Humblet, C. C., Sircar, I., Rithner, C., Weishaar, R. E., Bristol, J. A. & McPhail, A. T. (1987). J. Med. Chem. 30, 1963–1972.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationRathish, I. G., Javed, K., Bano, S., Ahmad, S., Alam, M. S. & Pillai, K. K. (2009). Eur. J. Med. Chem. 44, 2673–2678.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, A. A., Mishra, R. & Shaharyar, M. (2010). Eur. J. Med. Chem. 45, 2283–2290.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSivakumar, R., Anabalagan, N., Gunasekaran, V. & Leonard, J. T. (2003). Biol. Pharm. Bull. 26, 1407–1411.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuree, N., Yi, S. W., Thieu, W., Marohn, M., Damoiseaux, R., Chan, A., Jung, M. E. & Club, R. T. (2009). Bioorg. Med. Chem. 17, 7174–7185.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTao, M., Raddatz, R., Aimone, L. D. & Hudkins, R. L. (2011). Bioorg. Med. Chem. Lett. 21, 6126–6130.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWeishaar, R. W., Cain, M. H. & Bristol, J. A. (1985). J. Med. Chem. 28, 537–545.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1826-o1827
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds