metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m659-m660

Chlorido(η6-N2-di­phenylphosphanyl-N1,N1-diiso­propyl-4-methoxybenz­amidine-κP)(tri­phenylphosphane-κP)ruthenium(II) tri­fluoromethansulfonate acetone disolvate

aLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205, route de Narbonne, 31077 Toulouse cedex, France
*Correspondence e-mail: laure.vendier@lcc-toulouse.fr

(Received 16 September 2013; accepted 25 October 2013; online 13 November 2013)

In the title compound, [RuCl(C18H15P)(C26H31N2OP)](CF3O3S)·2C3H6O, the RuII ion is coordinated in a three-legged piano stool, half-sandwich-type geometry by a chlorido ligand, a tri­phenyl­phosphine and a tethered η6-(phenyl-p-O-meth­oxy) κ1-P N-di­phenyl­phosphino N′-diisopropyl amidine ligand charge-balanced by a trifluormethansulfonate counter-anion. The η6-coordination mode of the arene incorporated into the structure was generated in situ after addition of methyl tri­fluoro­methane­sulfonate to the neutral η5-arene tethered precursor complex [RuCl(PPh3)(η5:κ1-OC6H4C(NiPr2)=N-PPh2)] in di­chloro­methane solution.

Related literature

For related tethered η6-arene ruthenium(II) half-sandwich piano-stool complexes, see: Therrien & Ward (1999[Therrien, B. & Ward, T. R. (1999). Angew. Chem. Int. Ed. 38, 405-408.]); Faller & D'Alliessi (2003[Faller, J. W. & D'Alliessi, D. G. (2003). Organometallics, 22, 2749-2757.]); Cetinkaya et al. (2003[Cetinkaya, B., Demir, S., Ozdemir, I., Toupet, L., Sémeril, D., Bruneau, C. & Dixneuf, P. H. (2003). Chem. Eur. J. 9, 2323-2330.]); Cadierno et al. (2004[Cadierno, V., Díez, J., García-Álvarez, J. & Gimeno, J. (2004). Chem. Commun. pp. 1820-1821.]); Ito et al. (2008[Ito, M., Endo, Y. & Ikariya, T. (2008). Organometallics, 27, 6053-6055.]); Arquier et al. (2009[Arquier, D., Vendier, L., Miqueu, K., Sotiropoulos, J.-M., Bastin, S. & Igau, A. (2009). Organometallics 28, 4945-4957.]); Parekh et al. (2012[Parekh, V., Ramsden, J. A. & Wills, M. (2012). Catal Sci. Technol. 2, 406-414.]). For η5-arene ruthenium(II) half-sandwich piano-stool complexes, see: Cole-Hamilton et al. (1976[Cole-Hamilton, D. J., Young, R. J. & Wilkinson, G. (1976). J. Chem. Soc. Dalton Trans. pp. 1995-2001.]); Rosete et al. (1979[Rosete, R. O., Cole-Hamilton, D. J. & Wilkinson, G. (1979). J. Chem. Soc. Dalton Trans. pp. 1618-1637.]); Snelgrove et al. (2005[Snelgrove, J. L., Conrad, J. C., Eelman, M. D., Moriarty, M. M., Yap, G. P. A. & Fogg, D. E. (2005). Organometallics 24, 103-109.]); Ferrando-Miguel et al. (2005[Ferrando-Miguel, G., Wu, P., Huffman, J. C. & Caulton, K. G. (2005). New J. Chem. 29, 193-204.]). For the increasing medicinal inter­est in η6-arene ruth­enium(II) half-sandwich complexes, see: Hartinger & Dyson (2009[Hartinger, C. G. & Dyson, P. J. (2009). Chem. Soc. Rev. 38, 391-401.]); Allardyce et al. (2001[Allardyce, C. S., Dyson, P. J., Ellis, D. J. & Heath, S. L. (2001). Chem. Commun. pp.1396-1397.]); Scolaro et al. (2005[Scolaro, C., Bergamo, A., Brescacin, L., Delfino, R., Cocchietto, M., Laurenczy, G., Geldbach, T. J., Sava, G. & Dyson, P. J. (2005). J. Med. Chem. 48, 4161-4171.]); Dyson (2007[Dyson, P. J. (2007). Chimia, 61, 698-703.]); Chatterjee et al. (2008[Chatterjee, S., Kundu, S., Bhattacharyya, A., Hartinger, C. G. & Dyson, P. J. (2008). J. Biol. Inorg. Chem. 13, 1149-1155.]). For the synthesis of the precursor, see: Kechaou et al. (2013[Kechaou, M., Vendier, L., Bastin, S., Sotiropoulos, J.-M., Miqueu, K., Menéndez-Rodríguez, L., Crochet, P., Cadierno, V. & Igau, A. (2013). Chem. Commun. Submitted.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl(C18H15P)(C26H31N2OP)](CF3O3S)·2C3H6O

  • Mr = 1082.51

  • Monoclinic, P 21 /c

  • a = 11.6970 (2) Å

  • b = 15.0260 (3) Å

  • c = 29.7770 (6) Å

  • β = 99.864 (2)°

  • V = 5156.21 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 180 K

  • 0.19 × 0.1 × 0.03 mm

Data collection
  • Oxford Diffraction Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.933, Tmax = 0.982

  • 43527 measured reflections

  • 10532 independent reflections

  • 8192 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.089

  • S = 1.09

  • 10532 reflections

  • 608 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In our efforts to prepare piano stool, half-sandwich, tethered functionalized η6-arene ruthenium(II) complexes, we investigated the reaction of the ruthenium(II) precursor complex RuCl(PPh3)(η5:κ1-OC6H4C(NiPr2)=N-PPh2)] with methyl trifluoromethanesulfonate. The aim was to prepare quantitatively, as assessed by NMR spectroscopy, the corresponding functionalized η6-arene methoxy ruthenium(II) complex. It is noteworthy that alkylation on the carbonyl function of a coordinated η5-oxocyclohexadienyl ligand had never been reported before our studies. The title complex was isolated as a dark-yellow powder and crystals of suitable quality for XRD analysis were obtained by slow diffusion of pentane into an acetone solution of the complex. Single crystal X-ray analysis determined the structure of the new three-legged piano stool half-sandwich type complex. The ruthenium(II) ion is coordinated to a chloro ligand, a triphenylphosphine and a tethered η6-(phenyl-p-O-methoxy) κ1-P N-diphenylphosphino N'-diisopropyl amidine ligand. The ruthenium adopts a pseudo-tetrahedral geometry with the P1—Ru1—Cl1, P1—Ru1—Cl2, and Cl2—Ru1—Cl1 bond angles close to 90 °. As expected, the carbon atoms of the η6-coordinated ring are coplanar. It is proposed that there are π-π intramolecular arene interactions between the phenyl ring (C14, C15, C16, C17, C18, C19) coordinated to P1 and the phenyl ring (C39, C40, C41, C42, C43, C44) on P2. The distance beween the centroids of the two rings is 3.609 Å, their average interplane distance is 3.397 Å and their offset angle α is 19.9 °. The title complex was fully characterized by infrared spectroscopy, 1H, 13C and 31P NMR spectroscopy, together with mass spectrometry. The formation of the title compound opens up a synthetic route for the preparation of a large variety of tethered three-legged piano stool, half-sandwich functionalized η6-arene ruthenium(II) complexes, which will be tested both as catalysts and anticancer drugs. Currently, η6-arene ruthenium-based anticancer chemotherapies are making significant advances in clinical trials.

Related literature top

For related tethered η6-arene ruthenium(II) half-sandwich piano-stool complexes, see: Therrien & Ward (1999); Faller & D'Alliessi (2003); Cetinkaya et al. (2003); Cadierno et al. (2004); Ito et al. (2008); Arquier et al. (2009); Parekh et al. (2012). For η5-arene ruthenium(II) half-sandwich piano-stool complexes, see: Cole-Hamilton et al. (1976); Rosete et al. (1979); Snelgrove et al. (2005); Ferrando-Miguel et al. (2005). For the increasing medicinal interest in η6-arene ruthenium(II) half-sandwich complexes, see: Hartinger & Dyson (2009); Allardyce et al. (2001); Scolaro et al. (2005); Dyson (2007); Chatterjee et al. (2008).

For related literature, see: Kechaou et al. (2013).

Experimental top

All manipulations were carried out in dry solvents and under dry argon atmosphere. The precursor complex [RuCl(PPh3)(η5:κ1-OC6H4C(NiPr2)=N-PPh2)] was prepared according to the previously described experimental procedure of Kechaou et al.(2013). Methyl trifluoromethanesulfonate was purchased from Aldrich and used as received without further purification. Methyl trifluoromethanesulfonate (0.025 ml; 0.230 mmol; 1 eq) was added at room temperature on the precursor complex [RuCl(PPh3)(η5:κ1-OC6H4C(NiPr2)=N-PPh2)] (0.185 g; 0.230 mmol) dissolved in dichloromethane (15 ml) using standard Schlenk-line and cannula techniques under dry argon atmosphere. The reaction mixture was stirred for 2 h at room temperature. After removal of the volatiles, the residue was washed with 2 x 15 ml of ether and dried under vacuum to give a dark-yellow powder of the title compound [RuCl(PPh3)(η6:κ1-MeOC6H4C(NiPr2)=N-PPh2)] (OSO2CF3)(0.200 mg, 90% isolated yield). Dissolution of 30 mg of the resulting dark yellow powder in 0.5 ml of dry acetone followed by careful diffusion of pentane as a non solvent into the resulting solution afforded at room temperature, crystals of the title compound suitable for XRD analysis.

Refinement top

The H atoms were positioned geometrically (C—H = 0.95 - 1.00 Å) and refined as riding on their parent atoms, with U(H) = 1.2 x Ueq(carrier).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis CCD (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A molecule of the title complex with atom labelling scheme and 30% probability displacement ellipsoids.
Chlorido(η6-N2-diphenylphosphanyl-N1,N1-diisopropyl-4-methoxybenzamidine-κP)(triphenylphosphane-κP)ruthenium(II) trifluoromethansulfonate acetone disolvate top
Crystal data top
[RuCl(C18H15P)(C26H31N2OP)](CF3O3S)·2C3H6OF(000) = 2240
Mr = 1082.51Dx = 1.394 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14433 reflections
a = 11.6970 (2) Åθ = 3.3–29.1°
b = 15.0260 (3) ŵ = 0.52 mm1
c = 29.7770 (6) ÅT = 180 K
β = 99.864 (2)°Parallelepiped, yellow
V = 5156.21 (17) Å30.19 × 0.1 × 0.03 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini ultra)
diffractometer
10532 independent reflections
Graphite monochromator8192 reflections with I > 2σ(I)
Detector resolution: 16.1978 pixels mm-1Rint = 0.046
ω scansθmax = 26.4°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
h = 1414
Tmin = 0.933, Tmax = 0.982k = 1818
43527 measured reflectionsl = 3736
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0251P)2 + 6.3129P]
where P = (Fo2 + 2Fc2)/3
10532 reflections(Δ/σ)max = 0.001
608 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[RuCl(C18H15P)(C26H31N2OP)](CF3O3S)·2C3H6OV = 5156.21 (17) Å3
Mr = 1082.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6970 (2) ŵ = 0.52 mm1
b = 15.0260 (3) ÅT = 180 K
c = 29.7770 (6) Å0.19 × 0.1 × 0.03 mm
β = 99.864 (2)°
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini ultra)
diffractometer
10532 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
8192 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.982Rint = 0.046
43527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.09Δρmax = 0.49 e Å3
10532 reflectionsΔρmin = 0.37 e Å3
608 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7448 (2)0.64736 (19)0.33547 (10)0.0191 (6)
C20.9016 (3)0.5770 (2)0.38976 (11)0.0304 (7)
H20.940.51740.39110.036*
C30.8536 (3)0.5865 (3)0.43390 (11)0.0438 (9)
H3A0.79450.54070.43510.066*
H3B0.81870.64560.43510.066*
H3C0.91670.57930.45990.066*
C40.9954 (3)0.6449 (3)0.38473 (14)0.0451 (10)
H4A1.02280.63490.35580.068*
H4B1.06040.63830.41010.068*
H4C0.96330.70510.38510.068*
C50.7945 (3)0.4909 (2)0.32253 (10)0.0258 (7)
H50.72670.49880.29740.031*
C60.9004 (3)0.4730 (2)0.30033 (13)0.0407 (9)
H6A0.91390.52410.28140.061*
H6B0.88690.41960.28120.061*
H6C0.96860.46380.3240.061*
C70.7657 (3)0.4149 (2)0.35213 (12)0.0344 (8)
H7A0.69660.43010.36510.052*
H7B0.83120.40450.37690.052*
H7C0.75060.36090.33360.052*
C80.6649 (2)0.64521 (18)0.28973 (9)0.0175 (6)
C90.5538 (2)0.60572 (18)0.28247 (10)0.0185 (6)
H90.52490.5750.30820.022*
C100.4784 (3)0.61740 (18)0.23983 (10)0.0205 (6)
H100.3950.60040.23740.025*
C110.5109 (3)0.66996 (19)0.20556 (9)0.0204 (6)
C120.6224 (2)0.71251 (19)0.21369 (10)0.0201 (6)
H120.64030.760.19240.024*
C130.7009 (2)0.69499 (18)0.25352 (9)0.0192 (6)
H130.77490.72960.25990.023*
C140.6426 (2)0.86642 (18)0.38598 (10)0.0191 (6)
C150.6010 (3)0.95355 (19)0.38091 (11)0.0242 (7)
H150.58350.97930.35140.029*
C160.5853 (3)1.0024 (2)0.41863 (12)0.0326 (8)
H160.55741.06180.41510.039*
C170.6101 (3)0.9647 (2)0.46174 (12)0.0354 (8)
H170.59910.99860.48760.042*
C180.6506 (3)0.8787 (2)0.46733 (11)0.0345 (8)
H180.66740.85320.49690.041*
C190.6669 (3)0.8291 (2)0.42919 (10)0.0269 (7)
H190.69470.76970.43290.032*
C200.7844 (2)0.88336 (18)0.32068 (10)0.0205 (6)
C210.7796 (3)0.9194 (2)0.27773 (11)0.0277 (7)
H210.71530.90720.25440.033*
C220.8695 (3)0.9736 (2)0.26888 (13)0.0389 (9)
H220.86690.99830.23930.047*
C230.9623 (3)0.9917 (2)0.30272 (13)0.0386 (9)
H231.02291.02930.29640.046*
C240.9680 (3)0.9559 (2)0.34557 (13)0.0385 (9)
H241.03250.96830.36870.046*
C250.8796 (3)0.9019 (2)0.35462 (11)0.0311 (7)
H250.88340.8770.38420.037*
C260.4576 (3)0.7429 (2)0.13336 (11)0.0361 (8)
H26A0.39430.74230.10710.054*
H26B0.53050.72710.12330.054*
H26C0.46440.80250.14690.054*
C270.2384 (2)0.75490 (18)0.27688 (9)0.0189 (6)
C280.2233 (3)0.73245 (18)0.23098 (10)0.0221 (6)
H280.28920.72260.21690.027*
C290.1127 (3)0.72436 (19)0.20550 (10)0.0259 (7)
H290.10330.70860.17420.031*
C300.0166 (3)0.7391 (2)0.22557 (11)0.0294 (7)
H300.05910.73330.20820.035*
C310.0305 (3)0.7624 (2)0.27103 (11)0.0291 (7)
H310.03580.77350.28470.035*
C320.1399 (3)0.76975 (19)0.29674 (11)0.0246 (7)
H320.14850.7850.32810.029*
C330.3814 (2)0.65650 (18)0.34787 (10)0.0192 (6)
C340.4756 (3)0.6391 (2)0.38184 (10)0.0239 (7)
H340.53160.68420.39090.029*
C350.4885 (3)0.5561 (2)0.40268 (11)0.0327 (8)
H350.55330.54450.42590.039*
C360.4065 (3)0.4902 (2)0.38956 (12)0.0391 (9)
H360.41570.43320.40350.047*
C370.3121 (3)0.5075 (2)0.35641 (13)0.0408 (9)
H370.25590.46230.34760.049*
C380.2983 (3)0.59039 (19)0.33575 (11)0.0271 (7)
H380.2320.60210.31330.033*
C390.3551 (2)0.84996 (18)0.35094 (10)0.0179 (6)
C400.3472 (3)0.8362 (2)0.39642 (10)0.0245 (7)
H400.36550.77960.410.029*
C410.3125 (3)0.9056 (2)0.42219 (11)0.0323 (8)
H410.30730.89580.45330.039*
C420.2858 (3)0.9876 (2)0.40318 (12)0.0317 (8)
H420.2621.03440.42090.038*
C430.2936 (3)1.0015 (2)0.35794 (11)0.0296 (7)
H430.27511.05830.34470.035*
C440.3281 (3)0.93381 (19)0.33178 (11)0.0246 (7)
H440.33340.94430.30070.03*
C500.8526 (4)0.6788 (3)0.56855 (15)0.0553 (11)
C660.6369 (3)0.3577 (3)0.48420 (13)0.0424 (9)
C670.7339 (4)0.3712 (3)0.52314 (14)0.0592 (12)
H67A0.78810.41540.51470.089*
H67B0.77470.31470.53060.089*
H67C0.70270.39240.54970.089*
C680.5406 (4)0.2982 (3)0.49175 (13)0.0580 (12)
H68A0.47930.29930.46480.087*
H68B0.50920.31860.51840.087*
H68C0.56980.23720.4970.087*
C690.8491 (5)0.1454 (4)0.4658 (2)0.0786 (16)
C700.8658 (6)0.1162 (6)0.4222 (3)0.175 (5)
H70A0.89070.05380.4240.263*
H70B0.92540.15280.41180.263*
H70C0.79280.12160.40070.263*
C710.9401 (7)0.1297 (7)0.5068 (3)0.190 (5)
H71A1.00760.16740.5050.285*
H71B0.96360.06710.50780.285*
H71C0.90890.14440.53440.285*
N10.7535 (2)0.72111 (15)0.35940 (8)0.0198 (5)
N20.8092 (2)0.57553 (15)0.34877 (8)0.0213 (5)
O10.43348 (18)0.67901 (14)0.16692 (7)0.0263 (5)
O20.7757 (2)0.70212 (17)0.64312 (8)0.0464 (7)
O30.8895 (2)0.81958 (17)0.61752 (9)0.0490 (7)
O40.6950 (2)0.79177 (18)0.57825 (9)0.0502 (7)
O50.7618 (4)0.1818 (3)0.47194 (14)0.1011 (13)
O60.6368 (3)0.3922 (2)0.44746 (10)0.0660 (9)
P10.67390 (6)0.80800 (5)0.33617 (2)0.01691 (15)
P20.38071 (6)0.75812 (5)0.31383 (2)0.01565 (15)
S10.79746 (7)0.75662 (6)0.60604 (3)0.02905 (17)
Cl10.47598 (6)0.89077 (5)0.24250 (3)0.02359 (16)
Ru10.541225 (18)0.750672 (15)0.276075 (7)0.01445 (6)
F10.9469 (3)0.6396 (3)0.58828 (13)0.1238 (14)
F20.8779 (3)0.7198 (2)0.53197 (10)0.0985 (11)
F30.7758 (3)0.61686 (19)0.55310 (11)0.0963 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0157 (15)0.0222 (15)0.0200 (15)0.0012 (11)0.0046 (12)0.0035 (12)
C20.0301 (18)0.0293 (17)0.0266 (17)0.0070 (14)0.0094 (14)0.0016 (14)
C30.056 (2)0.048 (2)0.0244 (19)0.0118 (19)0.0037 (17)0.0037 (16)
C40.0236 (19)0.050 (2)0.055 (2)0.0009 (16)0.0121 (17)0.0023 (19)
C50.0280 (17)0.0241 (16)0.0236 (16)0.0078 (13)0.0003 (13)0.0030 (13)
C60.049 (2)0.0341 (19)0.044 (2)0.0098 (17)0.0218 (19)0.0033 (17)
C70.042 (2)0.0266 (17)0.0345 (19)0.0002 (15)0.0060 (16)0.0032 (15)
C80.0199 (15)0.0151 (13)0.0169 (14)0.0050 (11)0.0018 (12)0.0028 (11)
C90.0196 (15)0.0146 (13)0.0218 (15)0.0036 (11)0.0054 (12)0.0022 (12)
C100.0202 (16)0.0174 (14)0.0235 (16)0.0007 (12)0.0030 (13)0.0045 (12)
C110.0236 (16)0.0217 (15)0.0154 (14)0.0044 (12)0.0021 (12)0.0049 (12)
C120.0217 (15)0.0215 (14)0.0190 (15)0.0016 (12)0.0084 (12)0.0006 (12)
C130.0191 (15)0.0178 (14)0.0215 (15)0.0011 (11)0.0061 (12)0.0032 (12)
C140.0185 (15)0.0201 (14)0.0183 (15)0.0054 (12)0.0023 (12)0.0045 (12)
C150.0250 (16)0.0230 (15)0.0254 (16)0.0038 (13)0.0067 (13)0.0032 (13)
C160.0284 (18)0.0292 (17)0.041 (2)0.0048 (14)0.0094 (16)0.0125 (15)
C170.0316 (19)0.046 (2)0.0299 (19)0.0055 (16)0.0086 (15)0.0211 (16)
C180.0312 (19)0.052 (2)0.0202 (17)0.0044 (16)0.0037 (14)0.0052 (15)
C190.0269 (17)0.0304 (17)0.0231 (16)0.0016 (14)0.0031 (13)0.0014 (13)
C200.0163 (15)0.0194 (14)0.0271 (16)0.0002 (11)0.0076 (13)0.0045 (12)
C210.0203 (16)0.0284 (16)0.0342 (18)0.0007 (13)0.0039 (14)0.0056 (14)
C220.0297 (19)0.039 (2)0.049 (2)0.0015 (16)0.0086 (17)0.0215 (17)
C230.0243 (18)0.0335 (19)0.061 (3)0.0082 (15)0.0157 (18)0.0018 (18)
C240.0279 (19)0.046 (2)0.042 (2)0.0157 (16)0.0072 (16)0.0125 (17)
C250.0250 (17)0.044 (2)0.0243 (17)0.0107 (15)0.0038 (14)0.0059 (15)
C260.0392 (19)0.046 (2)0.0219 (16)0.0074 (17)0.0023 (14)0.0078 (16)
C270.0176 (13)0.0141 (13)0.0241 (14)0.0003 (12)0.0012 (11)0.0016 (13)
C280.0212 (15)0.0218 (16)0.0236 (15)0.0021 (12)0.0044 (12)0.0017 (12)
C290.0294 (17)0.0260 (16)0.0206 (16)0.0004 (13)0.0006 (13)0.0016 (12)
C300.0169 (15)0.0321 (18)0.0364 (18)0.0040 (14)0.0038 (13)0.0035 (15)
C310.0193 (15)0.0329 (18)0.0359 (18)0.0004 (13)0.0067 (13)0.0024 (15)
C320.0211 (15)0.0268 (17)0.0261 (16)0.0025 (12)0.0051 (13)0.0033 (13)
C330.0211 (15)0.0182 (14)0.0200 (15)0.0014 (12)0.0081 (12)0.0021 (12)
C340.0244 (16)0.0253 (16)0.0218 (16)0.0017 (13)0.0037 (13)0.0028 (13)
C350.035 (2)0.0354 (19)0.0270 (18)0.0088 (15)0.0036 (15)0.0093 (15)
C360.054 (2)0.0227 (17)0.041 (2)0.0006 (16)0.0093 (18)0.0113 (15)
C370.047 (2)0.0257 (18)0.048 (2)0.0117 (16)0.0049 (19)0.0059 (16)
C380.0298 (18)0.0222 (16)0.0285 (17)0.0042 (13)0.0029 (14)0.0022 (13)
C390.0131 (14)0.0195 (14)0.0219 (15)0.0013 (11)0.0049 (12)0.0042 (12)
C400.0284 (17)0.0225 (15)0.0228 (16)0.0016 (13)0.0053 (13)0.0031 (13)
C410.040 (2)0.0370 (19)0.0218 (17)0.0055 (16)0.0101 (15)0.0102 (14)
C420.0297 (18)0.0280 (17)0.038 (2)0.0010 (14)0.0091 (15)0.0142 (15)
C430.0321 (18)0.0192 (15)0.037 (2)0.0043 (13)0.0053 (15)0.0043 (14)
C440.0258 (17)0.0241 (16)0.0246 (16)0.0010 (13)0.0062 (13)0.0027 (13)
C500.065 (3)0.052 (3)0.054 (3)0.012 (2)0.025 (2)0.001 (2)
C660.048 (2)0.045 (2)0.032 (2)0.0074 (18)0.0013 (17)0.0012 (17)
C670.055 (3)0.071 (3)0.047 (3)0.010 (2)0.003 (2)0.006 (2)
C680.049 (3)0.087 (3)0.036 (2)0.015 (2)0.0002 (19)0.000 (2)
C690.085 (4)0.060 (3)0.099 (5)0.006 (3)0.041 (4)0.006 (3)
C700.124 (6)0.267 (11)0.164 (7)0.105 (7)0.107 (6)0.131 (7)
C710.118 (7)0.263 (13)0.188 (10)0.034 (8)0.023 (7)0.105 (9)
N10.0192 (13)0.0201 (12)0.0185 (12)0.0007 (10)0.0012 (10)0.0019 (10)
N20.0218 (13)0.0195 (12)0.0205 (13)0.0044 (10)0.0024 (11)0.0015 (10)
O10.0259 (12)0.0333 (12)0.0179 (11)0.0001 (9)0.0014 (9)0.0020 (9)
O20.0642 (18)0.0409 (15)0.0380 (14)0.0084 (13)0.0201 (13)0.0028 (12)
O30.0382 (15)0.0519 (16)0.0543 (17)0.0170 (13)0.0010 (13)0.0013 (14)
O40.0375 (15)0.0547 (16)0.0525 (17)0.0067 (13)0.0086 (13)0.0005 (14)
O50.114 (3)0.095 (3)0.098 (3)0.025 (3)0.031 (3)0.019 (2)
O60.081 (2)0.064 (2)0.0507 (19)0.0075 (17)0.0058 (17)0.0228 (16)
P10.0171 (4)0.0170 (3)0.0162 (4)0.0007 (3)0.0016 (3)0.0014 (3)
P20.0156 (3)0.0150 (3)0.0165 (3)0.0006 (3)0.0029 (3)0.0002 (3)
S10.0282 (4)0.0303 (4)0.0283 (4)0.0015 (4)0.0040 (3)0.0004 (4)
Cl10.0252 (4)0.0190 (3)0.0264 (4)0.0033 (3)0.0040 (3)0.0059 (3)
Ru10.01440 (11)0.01440 (10)0.01446 (11)0.00007 (9)0.00221 (8)0.00016 (10)
F10.113 (3)0.133 (3)0.129 (3)0.091 (2)0.028 (2)0.004 (2)
F20.139 (3)0.111 (2)0.0626 (18)0.002 (2)0.065 (2)0.0061 (17)
F30.139 (3)0.0638 (18)0.097 (2)0.0247 (19)0.050 (2)0.0467 (17)
Geometric parameters (Å, º) top
C1—N11.312 (4)C26—H26C0.98
C1—N21.337 (4)C27—C281.389 (4)
C1—C81.514 (4)C27—C321.401 (4)
C2—N21.486 (4)C27—P21.832 (3)
C2—C31.522 (5)C28—C291.388 (4)
C2—C41.523 (5)C28—H280.95
C2—H21C29—C301.379 (4)
C3—H3A0.98C29—H290.95
C3—H3B0.98C30—C311.380 (4)
C3—H3C0.98C30—H300.95
C4—H4A0.98C31—C321.378 (4)
C4—H4B0.98C31—H310.95
C4—H4C0.98C32—H320.95
C5—N21.487 (4)C33—C341.387 (4)
C5—C71.516 (4)C33—C381.394 (4)
C5—C61.524 (4)C33—P21.832 (3)
C5—H51C34—C351.389 (4)
C6—H6A0.98C34—H340.95
C6—H6B0.98C35—C361.387 (5)
C6—H6C0.98C35—H350.95
C7—H7A0.98C36—C371.374 (5)
C7—H7B0.98C36—H360.95
C7—H7C0.98C37—C381.387 (4)
C8—C91.411 (4)C37—H370.95
C8—C131.434 (4)C38—H380.95
C8—Ru12.137 (3)C39—C401.388 (4)
C9—C101.427 (4)C39—C441.397 (4)
C9—Ru12.189 (3)C39—P21.824 (3)
C9—H91C40—C411.395 (4)
C10—C111.394 (4)C40—H400.95
C10—Ru12.333 (3)C41—C421.370 (5)
C10—H101C41—H410.95
C11—O11.344 (3)C42—C431.382 (5)
C11—C121.435 (4)C42—H420.95
C11—Ru12.398 (3)C43—C441.382 (4)
C12—C131.395 (4)C43—H430.95
C12—Ru12.299 (3)C44—H440.95
C12—H121C50—F11.299 (5)
C13—Ru12.252 (3)C50—F31.320 (5)
C13—H131C50—F21.328 (5)
C14—C191.388 (4)C50—S11.810 (4)
C14—C151.396 (4)C66—O61.210 (4)
C14—P11.814 (3)C66—C681.486 (5)
C15—C161.380 (4)C66—C671.490 (5)
C15—H150.95C67—H67A0.98
C16—C171.388 (5)C67—H67B0.98
C16—H160.95C67—H67C0.98
C17—C181.377 (5)C68—H68A0.98
C17—H170.95C68—H68B0.98
C18—C191.398 (4)C68—H68C0.98
C18—H180.95C69—O51.199 (6)
C19—H190.95C69—C701.416 (8)
C20—C211.381 (4)C69—C711.493 (9)
C20—C251.398 (4)C70—H70A0.98
C20—P11.836 (3)C70—H70B0.98
C21—C221.391 (4)C70—H70C0.98
C21—H210.95C71—H71A0.98
C22—C231.375 (5)C71—H71B0.98
C22—H220.95C71—H71C0.98
C23—C241.376 (5)N1—P11.682 (2)
C23—H230.95O2—S11.432 (2)
C24—C251.377 (4)O3—S11.430 (2)
C24—H240.95O4—S11.435 (3)
C25—H250.95P1—Ru12.3240 (8)
C26—O11.448 (4)P2—Ru12.3505 (7)
C26—H26A0.98Cl1—Ru12.3984 (7)
C26—H26B0.98
N1—C1—N2122.3 (3)C31—C32—H32119.8
N1—C1—C8119.0 (2)C27—C32—H32119.8
N2—C1—C8118.6 (2)C34—C33—C38119.1 (3)
N2—C2—C3112.7 (3)C34—C33—P2119.2 (2)
N2—C2—C4111.4 (3)C38—C33—P2120.9 (2)
C3—C2—C4113.6 (3)C33—C34—C35120.5 (3)
N2—C2—H2106.2C33—C34—H34119.8
C3—C2—H2106.2C35—C34—H34119.8
C4—C2—H2106.2C36—C35—C34119.8 (3)
C2—C3—H3A109.5C36—C35—H35120.1
C2—C3—H3B109.5C34—C35—H35120.1
H3A—C3—H3B109.5C37—C36—C35120.0 (3)
C2—C3—H3C109.5C37—C36—H36120
H3A—C3—H3C109.5C35—C36—H36120
H3B—C3—H3C109.5C36—C37—C38120.4 (3)
C2—C4—H4A109.5C36—C37—H37119.8
C2—C4—H4B109.5C38—C37—H37119.8
H4A—C4—H4B109.5C37—C38—C33120.2 (3)
C2—C4—H4C109.5C37—C38—H38119.9
H4A—C4—H4C109.5C33—C38—H38119.9
H4B—C4—H4C109.5C40—C39—C44119.0 (3)
N2—C5—C7110.9 (2)C40—C39—P2121.6 (2)
N2—C5—C6110.5 (3)C44—C39—P2118.9 (2)
C7—C5—C6113.4 (3)C39—C40—C41120.0 (3)
N2—C5—H5107.3C39—C40—H40120
C7—C5—H5107.3C41—C40—H40120
C6—C5—H5107.3C42—C41—C40120.8 (3)
C5—C6—H6A109.5C42—C41—H41119.6
C5—C6—H6B109.5C40—C41—H41119.6
H6A—C6—H6B109.5C41—C42—C43119.4 (3)
C5—C6—H6C109.5C41—C42—H42120.3
H6A—C6—H6C109.5C43—C42—H42120.3
H6B—C6—H6C109.5C42—C43—C44120.8 (3)
C5—C7—H7A109.5C42—C43—H43119.6
C5—C7—H7B109.5C44—C43—H43119.6
H7A—C7—H7B109.5C43—C44—C39120.0 (3)
C5—C7—H7C109.5C43—C44—H44120
H7A—C7—H7C109.5C39—C44—H44120
H7B—C7—H7C109.5F1—C50—F3108.2 (4)
C9—C8—C13119.1 (3)F1—C50—F2106.8 (4)
C9—C8—C1123.8 (2)F3—C50—F2106.0 (4)
C13—C8—C1116.7 (2)F1—C50—S1112.2 (3)
C9—C8—Ru172.97 (16)F3—C50—S1112.2 (3)
C13—C8—Ru175.33 (16)F2—C50—S1111.1 (3)
C1—C8—Ru1116.66 (18)O6—C66—C68120.7 (4)
C8—C9—C10119.8 (3)O6—C66—C67121.9 (4)
C8—C9—Ru168.97 (15)C68—C66—C67117.4 (3)
C10—C9—Ru177.18 (16)C66—C67—H67A109.5
C8—C9—H9120C66—C67—H67B109.5
C10—C9—H9120H67A—C67—H67B109.5
Ru1—C9—H9120C66—C67—H67C109.5
C11—C10—C9121.1 (3)H67A—C67—H67C109.5
C11—C10—Ru175.44 (16)H67B—C67—H67C109.5
C9—C10—Ru166.20 (15)C66—C68—H68A109.5
C11—C10—H10118.6C66—C68—H68B109.5
C9—C10—H10118.6H68A—C68—H68B109.5
Ru1—C10—H10118.6C66—C68—H68C109.5
O1—C11—C10117.1 (3)H68A—C68—H68C109.5
O1—C11—C12124.0 (3)H68B—C68—H68C109.5
C10—C11—C12118.9 (3)O5—C69—C70122.4 (7)
O1—C11—Ru1132.48 (19)O5—C69—C71117.0 (6)
C10—C11—Ru170.33 (16)C70—C69—C71120.6 (7)
C12—C11—Ru168.49 (15)C69—C70—H70A109.5
C13—C12—C11120.4 (3)C69—C70—H70B109.5
C13—C12—Ru170.31 (15)H70A—C70—H70B109.5
C11—C12—Ru176.01 (16)C69—C70—H70C109.5
C13—C12—H12119.6H70A—C70—H70C109.5
C11—C12—H12119.6H70B—C70—H70C109.5
Ru1—C12—H12119.6C69—C71—H71A109.5
C12—C13—C8120.2 (3)C69—C71—H71B109.5
C12—C13—Ru174.01 (16)H71A—C71—H71B109.5
C8—C13—Ru166.65 (15)C69—C71—H71C109.5
C12—C13—H13119H71A—C71—H71C109.5
C8—C13—H13119H71B—C71—H71C109.5
Ru1—C13—H13119C1—N1—P1116.5 (2)
C19—C14—C15119.4 (3)C1—N2—C2121.7 (2)
C19—C14—P1121.7 (2)C1—N2—C5121.8 (2)
C15—C14—P1118.7 (2)C2—N2—C5116.5 (2)
C16—C15—C14120.2 (3)C11—O1—C26118.4 (2)
C16—C15—H15119.9N1—P1—C14102.38 (13)
C14—C15—H15119.9N1—P1—C20102.62 (13)
C15—C16—C17120.0 (3)C14—P1—C2098.99 (13)
C15—C16—H16120N1—P1—Ru1106.16 (9)
C17—C16—H16120C14—P1—Ru1127.40 (10)
C18—C17—C16120.5 (3)C20—P1—Ru1116.18 (10)
C18—C17—H17119.7C39—P2—C2799.05 (13)
C16—C17—H17119.7C39—P2—C33106.32 (13)
C17—C18—C19119.6 (3)C27—P2—C33103.16 (13)
C17—C18—H18120.2C39—P2—Ru1123.58 (9)
C19—C18—H18120.2C27—P2—Ru1115.43 (9)
C14—C19—C18120.2 (3)C33—P2—Ru1107.27 (9)
C14—C19—H19119.9O3—S1—O2114.85 (16)
C18—C19—H19119.9O3—S1—O4114.49 (17)
C21—C20—C25119.5 (3)O2—S1—O4114.44 (17)
C21—C20—P1123.8 (2)O3—S1—C50103.96 (19)
C25—C20—P1116.7 (2)O2—S1—C50103.62 (18)
C20—C21—C22119.5 (3)O4—S1—C50103.45 (19)
C20—C21—H21120.2C8—Ru1—C938.06 (10)
C22—C21—H21120.2C8—Ru1—C1338.02 (10)
C23—C22—C21120.3 (3)C9—Ru1—C1367.02 (10)
C23—C22—H22119.9C8—Ru1—C1266.99 (10)
C21—C22—H22119.9C9—Ru1—C1277.96 (10)
C22—C23—C24120.6 (3)C13—Ru1—C1235.68 (10)
C22—C23—H23119.7C8—Ru1—P177.72 (8)
C24—C23—H23119.7C9—Ru1—P1106.01 (8)
C23—C24—C25119.5 (3)C13—Ru1—P183.61 (8)
C23—C24—H24120.2C12—Ru1—P1113.63 (8)
C25—C24—H24120.2C8—Ru1—C1066.47 (10)
C24—C25—C20120.5 (3)C9—Ru1—C1036.61 (10)
C24—C25—H25119.7C13—Ru1—C1075.79 (10)
C20—C25—H25119.7C12—Ru1—C1063.45 (10)
O1—C26—H26A109.5P1—Ru1—C10142.20 (7)
O1—C26—H26B109.5C8—Ru1—P2120.95 (8)
H26A—C26—H26B109.5C9—Ru1—P293.03 (7)
O1—C26—H26C109.5C13—Ru1—P2158.72 (7)
H26A—C26—H26C109.5C12—Ru1—P2150.77 (8)
H26B—C26—H26C109.5P1—Ru1—P295.56 (3)
C28—C27—C32118.6 (3)C10—Ru1—P292.76 (7)
C28—C27—P2123.2 (2)C8—Ru1—C1177.60 (10)
C32—C27—P2118.1 (2)C9—Ru1—C1164.57 (10)
C29—C28—C27120.6 (3)C13—Ru1—C1163.67 (10)
C29—C28—H28119.7C12—Ru1—C1135.50 (10)
C27—C28—H28119.7P1—Ru1—C11147.21 (7)
C30—C29—C28120.1 (3)C10—Ru1—C1134.23 (10)
C30—C29—H29120P2—Ru1—C11115.64 (7)
C28—C29—H29120C8—Ru1—Cl1152.47 (8)
C29—C30—C31119.8 (3)C9—Ru1—Cl1157.13 (8)
C29—C30—H30120.1C13—Ru1—Cl1115.01 (7)
C31—C30—H30120.1C12—Ru1—Cl191.60 (7)
C32—C31—C30120.5 (3)P1—Ru1—Cl196.80 (3)
C32—C31—H31119.7C10—Ru1—Cl1120.54 (7)
C30—C31—H31119.7P2—Ru1—Cl186.24 (3)
C31—C32—C27120.4 (3)C11—Ru1—Cl195.17 (7)

Experimental details

Crystal data
Chemical formula[RuCl(C18H15P)(C26H31N2OP)](CF3O3S)·2C3H6O
Mr1082.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)180
a, b, c (Å)11.6970 (2), 15.0260 (3), 29.7770 (6)
β (°) 99.864 (2)
V3)5156.21 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.19 × 0.1 × 0.03
Data collection
DiffractometerOxford Diffraction Xcalibur (Eos, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.933, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
43527, 10532, 8192
Rint0.046
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.089, 1.09
No. of reflections10532
No. of parameters608
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.37

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX publication routines (Farrugia, 2012).

 

Acknowledgements

We thank the French Ministry of Education for a PhD Fellowship for M-KP and the CNRS for financial support. Johnson Matthey is gratefully acknowledged for the loan of RuCl3·xH2O.

References

First citationAllardyce, C. S., Dyson, P. J., Ellis, D. J. & Heath, S. L. (2001). Chem. Commun. pp.1396–1397.  Web of Science CSD CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationArquier, D., Vendier, L., Miqueu, K., Sotiropoulos, J.-M., Bastin, S. & Igau, A. (2009). Organometallics 28, 4945-4957.  Web of Science CSD CrossRef CAS Google Scholar
First citationCadierno, V., Díez, J., García-Álvarez, J. & Gimeno, J. (2004). Chem. Commun. pp. 1820–1821.  Web of Science CSD CrossRef Google Scholar
First citationCetinkaya, B., Demir, S., Ozdemir, I., Toupet, L., Sémeril, D., Bruneau, C. & Dixneuf, P. H. (2003). Chem. Eur. J. 9, 2323–2330.  Web of Science PubMed CAS Google Scholar
First citationChatterjee, S., Kundu, S., Bhattacharyya, A., Hartinger, C. G. & Dyson, P. J. (2008). J. Biol. Inorg. Chem. 13, 1149–1155.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCole-Hamilton, D. J., Young, R. J. & Wilkinson, G. (1976). J. Chem. Soc. Dalton Trans. pp. 1995–2001.  Google Scholar
First citationDyson, P. J. (2007). Chimia, 61, 698-703.  Web of Science CrossRef CAS Google Scholar
First citationFaller, J. W. & D'Alliessi, D. G. (2003). Organometallics, 22, 2749–2757.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerrando-Miguel, G., Wu, P., Huffman, J. C. & Caulton, K. G. (2005). New J. Chem. 29, 193–204.  CAS Google Scholar
First citationHartinger, C. G. & Dyson, P. J. (2009). Chem. Soc. Rev. 38, 391–401.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIto, M., Endo, Y. & Ikariya, T. (2008). Organometallics, 27, 6053–6055.  Web of Science CSD CrossRef CAS Google Scholar
First citationKechaou, M., Vendier, L., Bastin, S., Sotiropoulos, J.-M., Miqueu, K., Menéndez-Rodríguez, L., Crochet, P., Cadierno, V. & Igau, A. (2013). Chem. Commun. Submitted.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParekh, V., Ramsden, J. A. & Wills, M. (2012). Catal Sci. Technol. 2, 406–414.  Web of Science CrossRef CAS Google Scholar
First citationRosete, R. O., Cole-Hamilton, D. J. & Wilkinson, G. (1979). J. Chem. Soc. Dalton Trans. pp. 1618–1637.  CrossRef Web of Science Google Scholar
First citationScolaro, C., Bergamo, A., Brescacin, L., Delfino, R., Cocchietto, M., Laurenczy, G., Geldbach, T. J., Sava, G. & Dyson, P. J. (2005). J. Med. Chem. 48, 4161–4171.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSnelgrove, J. L., Conrad, J. C., Eelman, M. D., Moriarty, M. M., Yap, G. P. A. & Fogg, D. E. (2005). Organometallics 24, 103-109.  Web of Science CSD CrossRef CAS Google Scholar
First citationTherrien, B. & Ward, T. R. (1999). Angew. Chem. Int. Ed. 38, 405–408.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m659-m660
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds