metal-organic compounds
Di-μ2-acetato-1:2κ2O:O′;2:3κ2O:O′-bis{μ2-4,4′-dichloro-2,2′-[2,2-dimethylpropane-1,3-diylbis(nitrilomethanylylidene)]diphenolato}-1:2κ6O,N,N′,O′:O,O′;2:3κ6O,O′:O,N,N′,O′-tricadmium
aDivision of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan, and bInstitute for Materials Chemistry and Engineering, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
*Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp
In the title linear homo-trinuclear complex, [Cd3(C19H18Cl2N2O2)2(C2H3O2)2], the central CdII atom is located on a centre of inversion and has a distorted octahedral coordination geometry formed by four O atoms from two bidentate/tetradentate Schiff base ligands and two O atoms from two bridging acetate ligands. The coordination geometry of the terminal CdII atom is square-pyramidal with the tetradentate part of the ligand in the basal plane and one O atom from an acetate ligand occupying the apical site. The six-membered CdN2C3 ring adopts a chair conformation. The acetate-bridged Cd⋯Cd distance is 3.3071 (2) Å. The is stabilized by C—H⋯O hydrogen bonds, which form C(7) chain motifs and give rise to a two-dimensional supramolecular network structure lying parallel to the ab plane.
CCDC reference: 968631
Related literature
For metalloligands, see: Du et al. (2012); Carlucci et al. (2011); Das et al. (2011). Metal complexes with the Schiff base ligand, bis(salicylidene)propane-1,3-diamine can be metalloligands, forming linear homo- or hetero-trinuclear complexes with divalent metal salts, see: Atakol, Arıcı et al. (1999), Das et al. (2013); Fukuhara et al. (1990). For related structures, see: Atakol, Aksu et al. (1999); Kubono et al. (2012); Xue et al. (2012). For analysis of ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: RAPID-AUTO (Rigaku, 2006); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR92 (Altomare, et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).
Supporting information
CCDC reference: 968631
10.1107/S1600536813029413/cq2008sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813029413/cq2008Isup2.hkl
The Schiff base ligand, 4'-dichloro-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethanylylidene)]diphenol, (0.40 mmol) was dissolved in 20 ml hot methanol. A solution of cadmium acetate dihydrate (0.60 mmol) in 20 ml hot methanol was then added to the ligand solution. The mixture was stirred for 20 min at 340 K. After a few weeks at room temperature, colorless crystals of the title complex were obtained. Yield 48%. Analysis calculated for C42H42Cd3Cl4N4O8: C 41.70, H 3.50, N 4.63%; found: C 41.50, H 3.44, N 4.33%.
All H atoms bound to carbon were placed at idealized positions and refined using a riding model, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).
Data collection: RAPID-AUTO (Rigaku, 2006); cell
RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare, et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).[Cd3(C19H18Cl2N2O2)2(C2H3O2)2] | F(000) = 2392.00 |
Mr = 1209.83 | Dx = 1.799 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 65865 reflections |
a = 19.3078 (15) Å | θ = 3.2–27.5° |
b = 11.2651 (8) Å | µ = 1.71 mm−1 |
c = 20.535 (3) Å | T = 123 K |
V = 4466.5 (8) Å3 | Prism, colorless |
Z = 4 | 0.21 × 0.16 × 0.11 mm |
Rigaku RAPID-HR diffractometer | 4990 reflections with F2 > 2.0σ(F2) |
Detector resolution: 10.00 pixels mm-1 | Rint = 0.025 |
ω scans | θmax = 27.5° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −24→24 |
Tmin = 0.727, Tmax = 0.828 | k = −14→14 |
70676 measured reflections | l = −26→26 |
5107 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.043P)2 + 1.9282P] where P = (Fo2 + 2Fc2)/3 |
5107 reflections | (Δ/σ)max = 0.002 |
280 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.84 e Å−3 |
Primary atom site location: structure-invariant direct methods |
[Cd3(C19H18Cl2N2O2)2(C2H3O2)2] | V = 4466.5 (8) Å3 |
Mr = 1209.83 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 19.3078 (15) Å | µ = 1.71 mm−1 |
b = 11.2651 (8) Å | T = 123 K |
c = 20.535 (3) Å | 0.21 × 0.16 × 0.11 mm |
Rigaku RAPID-HR diffractometer | 5107 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 4990 reflections with F2 > 2.0σ(F2) |
Tmin = 0.727, Tmax = 0.828 | Rint = 0.025 |
70676 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 0 restraints |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.43 e Å−3 |
5107 reflections | Δρmin = −0.84 e Å−3 |
280 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.362773 (5) | 0.859740 (9) | 0.441968 (5) | 0.02095 (5) | |
Cd2 | 0.5000 | 1.0000 | 0.5000 | 0.01883 (5) | |
Cl1 | 0.51482 (2) | 1.15865 (3) | 0.144318 (18) | 0.02734 (8) | |
Cl2 | 0.20809 (2) | 1.33156 (4) | 0.66126 (2) | 0.03710 (10) | |
O1 | 0.45450 (5) | 0.95298 (10) | 0.40088 (5) | 0.0225 (2) | |
O2 | 0.38433 (5) | 0.99130 (10) | 0.52101 (6) | 0.0257 (3) | |
O3 | 0.40248 (6) | 0.70129 (10) | 0.48903 (5) | 0.0250 (3) | |
O4 | 0.49801 (6) | 0.79948 (11) | 0.51990 (7) | 0.0299 (3) | |
N1 | 0.32621 (6) | 0.85897 (10) | 0.33787 (6) | 0.0212 (3) | |
N2 | 0.25153 (6) | 0.89528 (12) | 0.46924 (6) | 0.0251 (3) | |
C1 | 0.46601 (7) | 0.99631 (12) | 0.34260 (7) | 0.0194 (3) | |
C2 | 0.52539 (7) | 1.06800 (13) | 0.33204 (7) | 0.0226 (3) | |
C3 | 0.53978 (8) | 1.11685 (13) | 0.27195 (7) | 0.0237 (3) | |
C4 | 0.49576 (7) | 1.09536 (13) | 0.21952 (7) | 0.0214 (3) | |
C5 | 0.43805 (7) | 1.02528 (13) | 0.22745 (7) | 0.0206 (3) | |
C6 | 0.42155 (7) | 0.97504 (12) | 0.28852 (7) | 0.0192 (3) | |
C7 | 0.35682 (7) | 0.90848 (13) | 0.28945 (7) | 0.0208 (3) | |
C8 | 0.26034 (8) | 0.79767 (13) | 0.32396 (8) | 0.0269 (3) | |
C9 | 0.19671 (8) | 0.84468 (14) | 0.36087 (8) | 0.0258 (3) | |
C10 | 0.19962 (8) | 0.82302 (16) | 0.43504 (8) | 0.0300 (4) | |
C11 | 0.18625 (9) | 0.97609 (16) | 0.34678 (9) | 0.0350 (4) | |
C12 | 0.13541 (9) | 0.7716 (3) | 0.33557 (11) | 0.0470 (6) | |
C13 | 0.22970 (8) | 0.97577 (17) | 0.50828 (8) | 0.0267 (3) | |
C14 | 0.26924 (7) | 1.06011 (15) | 0.54673 (7) | 0.0243 (3) | |
C15 | 0.22917 (8) | 1.14259 (15) | 0.58208 (8) | 0.0276 (4) | |
C16 | 0.25948 (8) | 1.22761 (15) | 0.62020 (7) | 0.0280 (4) | |
C17 | 0.33148 (8) | 1.23407 (15) | 0.62587 (8) | 0.0290 (4) | |
C18 | 0.37173 (8) | 1.15406 (15) | 0.59164 (8) | 0.0264 (4) | |
C19 | 0.34295 (8) | 1.06565 (14) | 0.55137 (7) | 0.0224 (3) | |
C20 | 0.45884 (8) | 0.71155 (13) | 0.52040 (7) | 0.0230 (3) | |
C21 | 0.47888 (10) | 0.60752 (18) | 0.56294 (10) | 0.0379 (4) | |
H2 | 0.5561 | 1.0827 | 0.3673 | 0.0271* | |
H3 | 0.5797 | 1.1651 | 0.2663 | 0.0284* | |
H5 | 0.4088 | 1.0104 | 0.1912 | 0.0247* | |
H7 | 0.3342 | 0.9006 | 0.2486 | 0.0250* | |
H8A | 0.2661 | 0.7125 | 0.3345 | 0.0322* | |
H8B | 0.2510 | 0.8036 | 0.2767 | 0.0322* | |
H10A | 0.1534 | 0.8400 | 0.4538 | 0.0360* | |
H10B | 0.2099 | 0.7381 | 0.4429 | 0.0360* | |
H11A | 0.1455 | 1.0048 | 0.3705 | 0.0420* | |
H11B | 0.1793 | 0.9876 | 0.2999 | 0.0420* | |
H11C | 0.2272 | 1.0205 | 0.3609 | 0.0420* | |
H12A | 0.1283 | 0.7884 | 0.2892 | 0.0564* | |
H12B | 0.0935 | 0.7928 | 0.3599 | 0.0564* | |
H12C | 0.1452 | 0.6869 | 0.3414 | 0.0564* | |
H13 | 0.1808 | 0.9810 | 0.5127 | 0.0320* | |
H15 | 0.1801 | 1.1390 | 0.5794 | 0.0332* | |
H17 | 0.3524 | 1.2925 | 0.6528 | 0.0348* | |
H18 | 0.4207 | 1.1589 | 0.5954 | 0.0317* | |
H21A | 0.4760 | 0.6309 | 0.6088 | 0.0454* | |
H21B | 0.5264 | 0.5831 | 0.5527 | 0.0454* | |
H21C | 0.4472 | 0.5412 | 0.5548 | 0.0454* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.01340 (7) | 0.02433 (7) | 0.02512 (8) | 0.00059 (3) | 0.00053 (3) | 0.00617 (4) |
Cd2 | 0.01134 (8) | 0.02545 (9) | 0.01971 (9) | 0.00049 (5) | 0.00088 (5) | 0.00179 (5) |
Cl1 | 0.02882 (18) | 0.03126 (18) | 0.02194 (17) | −0.00684 (14) | 0.00090 (14) | 0.00652 (13) |
Cl2 | 0.0367 (3) | 0.0413 (3) | 0.0332 (2) | 0.01901 (18) | 0.01043 (17) | 0.00549 (17) |
O1 | 0.0169 (5) | 0.0313 (6) | 0.0192 (5) | −0.0029 (4) | 0.0008 (4) | 0.0037 (4) |
O2 | 0.0130 (5) | 0.0361 (6) | 0.0279 (6) | 0.0022 (4) | 0.0028 (5) | −0.0027 (5) |
O3 | 0.0213 (5) | 0.0280 (6) | 0.0257 (5) | 0.0032 (5) | 0.0015 (4) | 0.0065 (4) |
O4 | 0.0257 (6) | 0.0267 (6) | 0.0372 (7) | 0.0003 (4) | 0.0035 (5) | 0.0063 (5) |
N1 | 0.0161 (6) | 0.0207 (6) | 0.0269 (7) | −0.0006 (5) | 0.0010 (5) | −0.0003 (5) |
N2 | 0.0147 (6) | 0.0366 (7) | 0.0241 (7) | −0.0010 (6) | 0.0008 (5) | 0.0066 (5) |
C1 | 0.0156 (7) | 0.0212 (7) | 0.0214 (7) | 0.0021 (5) | 0.0024 (6) | 0.0014 (5) |
C2 | 0.0158 (7) | 0.0299 (7) | 0.0219 (7) | −0.0024 (6) | −0.0010 (5) | 0.0017 (6) |
C3 | 0.0177 (7) | 0.0270 (7) | 0.0263 (7) | −0.0040 (6) | 0.0016 (6) | 0.0014 (6) |
C4 | 0.0210 (7) | 0.0232 (7) | 0.0200 (7) | 0.0003 (5) | 0.0026 (5) | 0.0029 (6) |
C5 | 0.0187 (7) | 0.0228 (6) | 0.0203 (7) | 0.0007 (6) | −0.0012 (5) | −0.0006 (6) |
C6 | 0.0157 (6) | 0.0194 (6) | 0.0224 (7) | 0.0010 (5) | 0.0019 (5) | −0.0007 (5) |
C7 | 0.0176 (7) | 0.0208 (7) | 0.0241 (7) | 0.0008 (5) | −0.0004 (5) | −0.0033 (6) |
C8 | 0.0214 (7) | 0.0223 (7) | 0.0369 (8) | −0.0065 (6) | 0.0044 (6) | −0.0052 (6) |
C9 | 0.0176 (7) | 0.0291 (8) | 0.0306 (8) | −0.0044 (6) | 0.0003 (6) | −0.0040 (6) |
C10 | 0.0177 (7) | 0.0377 (9) | 0.0346 (9) | −0.0084 (7) | 0.0026 (6) | 0.0049 (7) |
C11 | 0.0314 (9) | 0.0352 (9) | 0.0383 (9) | 0.0094 (7) | −0.0095 (8) | 0.0005 (8) |
C12 | 0.0240 (9) | 0.0685 (15) | 0.0485 (12) | −0.0192 (9) | 0.0050 (8) | −0.0235 (11) |
C13 | 0.0124 (7) | 0.0436 (9) | 0.0241 (7) | 0.0026 (7) | 0.0018 (6) | 0.0069 (7) |
C14 | 0.0163 (7) | 0.0363 (8) | 0.0202 (7) | 0.0053 (6) | 0.0014 (5) | 0.0065 (6) |
C15 | 0.0168 (7) | 0.0435 (10) | 0.0225 (8) | 0.0096 (6) | 0.0038 (6) | 0.0092 (6) |
C16 | 0.0263 (8) | 0.0345 (8) | 0.0232 (7) | 0.0124 (7) | 0.0062 (6) | 0.0062 (6) |
C17 | 0.0266 (8) | 0.0328 (8) | 0.0276 (8) | 0.0027 (7) | 0.0027 (6) | 0.0011 (7) |
C18 | 0.0181 (7) | 0.0338 (8) | 0.0273 (8) | 0.0029 (6) | 0.0008 (6) | 0.0020 (6) |
C19 | 0.0151 (7) | 0.0308 (8) | 0.0213 (7) | 0.0033 (6) | 0.0027 (5) | 0.0058 (6) |
C20 | 0.0210 (7) | 0.0262 (7) | 0.0218 (7) | 0.0046 (6) | 0.0051 (6) | 0.0042 (6) |
C21 | 0.0333 (10) | 0.0339 (9) | 0.0463 (11) | −0.0015 (8) | −0.0108 (8) | 0.0164 (8) |
Cd1—O1 | 2.2253 (11) | C9—C12 | 1.532 (3) |
Cd1—O2 | 2.2370 (12) | C13—C14 | 1.452 (3) |
Cd1—O3 | 2.1698 (12) | C14—C15 | 1.410 (3) |
Cd1—N1 | 2.2513 (13) | C14—C19 | 1.428 (2) |
Cd1—N2 | 2.2555 (12) | C15—C16 | 1.368 (3) |
Cd2—O1 | 2.2794 (11) | C16—C17 | 1.397 (3) |
Cd2—O1i | 2.2794 (11) | C17—C18 | 1.382 (3) |
Cd2—O2 | 2.2767 (10) | C18—C19 | 1.409 (3) |
Cd2—O2i | 2.2767 (10) | C20—C21 | 1.512 (3) |
Cd2—O4 | 2.2959 (13) | C2—H2 | 0.950 |
Cd2—O4i | 2.2959 (13) | C3—H3 | 0.950 |
Cl1—C4 | 1.7403 (15) | C5—H5 | 0.950 |
Cl2—C16 | 1.7512 (17) | C7—H7 | 0.950 |
O1—C1 | 1.3115 (18) | C8—H8A | 0.990 |
O2—C19 | 1.3147 (19) | C8—H8B | 0.990 |
O3—C20 | 1.2698 (19) | C10—H10A | 0.990 |
O4—C20 | 1.246 (2) | C10—H10B | 0.990 |
N1—C7 | 1.2842 (19) | C11—H11A | 0.980 |
N1—C8 | 1.475 (2) | C11—H11B | 0.980 |
N2—C10 | 1.470 (2) | C11—H11C | 0.980 |
N2—C13 | 1.282 (3) | C12—H12A | 0.980 |
C1—C2 | 1.419 (2) | C12—H12B | 0.980 |
C1—C6 | 1.424 (2) | C12—H12C | 0.980 |
C2—C3 | 1.379 (2) | C13—H13 | 0.950 |
C3—C4 | 1.393 (2) | C15—H15 | 0.950 |
C4—C5 | 1.375 (2) | C17—H17 | 0.950 |
C5—C6 | 1.412 (2) | C18—H18 | 0.950 |
C6—C7 | 1.458 (2) | C21—H21A | 0.980 |
C8—C9 | 1.538 (3) | C21—H21B | 0.980 |
C9—C10 | 1.544 (3) | C21—H21C | 0.980 |
C9—C11 | 1.522 (3) | ||
O1—Cd1—O2 | 79.30 (4) | N2—C13—C14 | 129.06 (14) |
O1—Cd1—O3 | 106.02 (5) | C13—C14—C15 | 114.99 (13) |
O1—Cd1—N1 | 83.76 (4) | C13—C14—C19 | 126.08 (14) |
O1—Cd1—N2 | 140.20 (5) | C15—C14—C19 | 118.93 (14) |
O2—Cd1—O3 | 98.98 (5) | C14—C15—C16 | 121.40 (15) |
O2—Cd1—N1 | 138.58 (5) | Cl2—C16—C15 | 120.08 (12) |
O2—Cd1—N2 | 83.07 (5) | Cl2—C16—C17 | 119.27 (13) |
O3—Cd1—N1 | 122.04 (4) | C15—C16—C17 | 120.65 (15) |
O3—Cd1—N2 | 111.83 (5) | C16—C17—C18 | 118.89 (15) |
N1—Cd1—N2 | 86.44 (5) | C17—C18—C19 | 122.53 (15) |
O1—Cd2—O1i | 180.00 (6) | O2—C19—C14 | 123.11 (14) |
O1—Cd2—O2 | 77.36 (4) | O2—C19—C18 | 119.28 (14) |
O1—Cd2—O2i | 102.64 (4) | C14—C19—C18 | 117.60 (14) |
O1—Cd2—O4 | 85.63 (5) | O3—C20—O4 | 126.03 (15) |
O1—Cd2—O4i | 94.37 (5) | O3—C20—C21 | 116.22 (14) |
O1i—Cd2—O2 | 102.64 (4) | O4—C20—C21 | 117.74 (15) |
O1i—Cd2—O2i | 77.36 (4) | C1—C2—H2 | 119.118 |
O1i—Cd2—O4 | 94.37 (5) | C3—C2—H2 | 119.114 |
O1i—Cd2—O4i | 85.63 (5) | C2—C3—H3 | 120.024 |
O2—Cd2—O2i | 180.00 (6) | C4—C3—H3 | 120.026 |
O2—Cd2—O4 | 84.69 (4) | C4—C5—H5 | 119.399 |
O2—Cd2—O4i | 95.31 (4) | C6—C5—H5 | 119.406 |
O2i—Cd2—O4 | 95.31 (4) | N1—C7—H7 | 115.542 |
O2i—Cd2—O4i | 84.69 (4) | C6—C7—H7 | 115.541 |
O4—Cd2—O4i | 180.00 (7) | N1—C8—H8A | 108.369 |
Cd1—O1—Cd2 | 94.46 (4) | N1—C8—H8B | 108.371 |
Cd1—O1—C1 | 131.04 (9) | C9—C8—H8A | 108.384 |
Cd2—O1—C1 | 131.54 (9) | C9—C8—H8B | 108.387 |
Cd1—O2—Cd2 | 94.22 (5) | H8A—C8—H8B | 107.442 |
Cd1—O2—C19 | 130.77 (10) | N2—C10—H10A | 108.721 |
Cd2—O2—C19 | 131.19 (10) | N2—C10—H10B | 108.717 |
Cd1—O3—C20 | 116.99 (10) | C9—C10—H10A | 108.725 |
Cd2—O4—C20 | 142.52 (11) | C9—C10—H10B | 108.728 |
Cd1—N1—C7 | 126.10 (10) | H10A—C10—H10B | 107.633 |
Cd1—N1—C8 | 117.13 (10) | C9—C11—H11A | 109.477 |
C7—N1—C8 | 116.76 (13) | C9—C11—H11B | 109.476 |
Cd1—N2—C10 | 115.62 (10) | C9—C11—H11C | 109.471 |
Cd1—N2—C13 | 126.45 (11) | H11A—C11—H11B | 109.472 |
C10—N2—C13 | 117.80 (13) | H11A—C11—H11C | 109.461 |
O1—C1—C2 | 119.22 (13) | H11B—C11—H11C | 109.470 |
O1—C1—C6 | 123.16 (13) | C9—C12—H12A | 109.468 |
C2—C1—C6 | 117.62 (13) | C9—C12—H12B | 109.476 |
C1—C2—C3 | 121.77 (14) | C9—C12—H12C | 109.467 |
C2—C3—C4 | 119.95 (14) | H12A—C12—H12B | 109.466 |
Cl1—C4—C3 | 119.06 (11) | H12A—C12—H12C | 109.472 |
Cl1—C4—C5 | 120.77 (11) | H12B—C12—H12C | 109.479 |
C3—C4—C5 | 120.17 (14) | N2—C13—H13 | 115.482 |
C4—C5—C6 | 121.20 (13) | C14—C13—H13 | 115.461 |
C1—C6—C5 | 119.28 (13) | C14—C15—H15 | 119.306 |
C1—C6—C7 | 126.39 (13) | C16—C15—H15 | 119.296 |
C5—C6—C7 | 114.28 (13) | C16—C17—H17 | 120.554 |
N1—C7—C6 | 128.92 (14) | C18—C17—H17 | 120.553 |
N1—C8—C9 | 115.61 (13) | C17—C18—H18 | 118.727 |
C8—C9—C10 | 113.76 (13) | C19—C18—H18 | 118.741 |
C8—C9—C11 | 110.32 (13) | C20—C21—H21A | 109.462 |
C8—C9—C12 | 105.37 (14) | C20—C21—H21B | 109.465 |
C10—C9—C11 | 110.26 (14) | C20—C21—H21C | 109.462 |
C10—C9—C12 | 106.13 (14) | H21A—C21—H21B | 109.487 |
C11—C9—C12 | 110.83 (15) | H21A—C21—H21C | 109.485 |
N2—C10—C9 | 114.13 (14) | H21B—C21—H21C | 109.466 |
O1—Cd1—O2—Cd2 | −28.74 (4) | O4—Cd2—O2—C19 | 142.33 (11) |
O1—Cd1—O2—C19 | 130.57 (11) | O2—Cd2—O4i—C20i | 156.99 (16) |
O2—Cd1—O1—Cd2 | 28.71 (4) | O4i—Cd2—O2—Cd1 | 121.51 (5) |
O2—Cd1—O1—C1 | −133.05 (10) | O4i—Cd2—O2—C19 | −37.67 (11) |
O1—Cd1—O3—C20 | 39.81 (8) | O2i—Cd2—O4—C20 | −156.99 (16) |
O3—Cd1—O1—Cd2 | −67.66 (5) | O4—Cd2—O2i—Cd1i | −121.51 (5) |
O3—Cd1—O1—C1 | 130.58 (9) | O4—Cd2—O2i—C19i | 37.67 (11) |
O1—Cd1—N1—C7 | −4.33 (9) | O2i—Cd2—O4i—C20i | −23.01 (16) |
O1—Cd1—N1—C8 | 176.77 (8) | O4i—Cd2—O2i—Cd1i | 58.49 (5) |
N1—Cd1—O1—Cd2 | 170.75 (5) | O4i—Cd2—O2i—C19i | −142.33 (11) |
N1—Cd1—O1—C1 | 8.98 (9) | Cd1—O1—C1—C2 | 170.40 (7) |
O1—Cd1—N2—C10 | 120.25 (8) | Cd1—O1—C1—C6 | −9.61 (19) |
O1—Cd1—N2—C13 | −55.53 (13) | Cd2—O1—C1—C2 | 15.04 (18) |
N2—Cd1—O1—Cd2 | 93.98 (7) | Cd2—O1—C1—C6 | −164.98 (8) |
N2—Cd1—O1—C1 | −67.79 (12) | Cd1—O2—C19—C14 | 12.4 (2) |
O2—Cd1—O3—C20 | −41.55 (8) | Cd1—O2—C19—C18 | −168.95 (8) |
O3—Cd1—O2—Cd2 | 76.00 (5) | Cd2—O2—C19—C14 | 164.46 (9) |
O3—Cd1—O2—C19 | −124.68 (10) | Cd2—O2—C19—C18 | −16.9 (2) |
O2—Cd1—N1—C7 | 61.70 (12) | Cd1—O3—C20—O4 | −9.83 (19) |
O2—Cd1—N1—C8 | −117.20 (7) | Cd1—O3—C20—C21 | 169.05 (7) |
N1—Cd1—O2—Cd2 | −96.32 (6) | Cd2—O4—C20—O3 | 22.9 (3) |
N1—Cd1—O2—C19 | 62.99 (12) | Cd2—O4—C20—C21 | −155.94 (13) |
O2—Cd1—N2—C10 | −175.73 (9) | Cd1—N1—C7—C6 | 0.7 (2) |
O2—Cd1—N2—C13 | 8.50 (10) | Cd1—N1—C8—C9 | 58.78 (13) |
N2—Cd1—O2—Cd2 | −172.89 (5) | C7—N1—C8—C9 | −120.22 (14) |
N2—Cd1—O2—C19 | −13.58 (10) | C8—N1—C7—C6 | 179.65 (12) |
O3—Cd1—N1—C7 | −109.35 (9) | Cd1—N2—C10—C9 | −64.13 (14) |
O3—Cd1—N1—C8 | 71.75 (9) | Cd1—N2—C13—C14 | −3.0 (3) |
N1—Cd1—O3—C20 | 132.47 (7) | C10—N2—C13—C14 | −178.65 (14) |
O3—Cd1—N2—C10 | −78.79 (8) | C13—N2—C10—C9 | 112.03 (16) |
O3—Cd1—N2—C13 | 105.43 (10) | O1—C1—C2—C3 | −179.39 (12) |
N2—Cd1—O3—C20 | −127.64 (8) | O1—C1—C6—C5 | −179.95 (11) |
N1—Cd1—N2—C10 | 44.42 (8) | O1—C1—C6—C7 | 2.7 (3) |
N1—Cd1—N2—C13 | −131.36 (10) | C2—C1—C6—C5 | 0.03 (19) |
N2—Cd1—N1—C7 | 137.03 (10) | C2—C1—C6—C7 | −177.28 (12) |
N2—Cd1—N1—C8 | −41.86 (8) | C6—C1—C2—C3 | 0.6 (2) |
O1—Cd2—O2—Cd1 | 28.21 (4) | C1—C2—C3—C4 | −0.6 (2) |
O1—Cd2—O2—C19 | −130.97 (11) | C2—C3—C4—Cl1 | 179.67 (12) |
O2—Cd2—O1—Cd1 | −28.38 (4) | C2—C3—C4—C5 | −0.2 (2) |
O2—Cd2—O1—C1 | 133.23 (10) | Cl1—C4—C5—C6 | −179.00 (9) |
O1—Cd2—O2i—Cd1i | 151.79 (4) | C3—C4—C5—C6 | 0.8 (2) |
O1—Cd2—O2i—C19i | −49.03 (11) | C4—C5—C6—C1 | −0.8 (2) |
O2i—Cd2—O1—Cd1 | 151.62 (4) | C4—C5—C6—C7 | 176.87 (12) |
O2i—Cd2—O1—C1 | −46.77 (10) | C1—C6—C7—N1 | 1.8 (3) |
O1—Cd2—O4—C20 | −54.67 (16) | C5—C6—C7—N1 | −175.58 (13) |
O4—Cd2—O1—Cd1 | 57.15 (5) | N1—C8—C9—C10 | −66.99 (16) |
O4—Cd2—O1—C1 | −141.24 (9) | N1—C8—C9—C11 | 57.51 (16) |
O1—Cd2—O4i—C20i | −125.33 (16) | N1—C8—C9—C12 | 177.18 (11) |
O4i—Cd2—O1—Cd1 | −122.85 (5) | C8—C9—C10—N2 | 70.18 (17) |
O4i—Cd2—O1—C1 | 38.76 (9) | C11—C9—C10—N2 | −54.36 (17) |
O1i—Cd2—O2—Cd1 | −151.79 (4) | C12—C9—C10—N2 | −174.44 (14) |
O1i—Cd2—O2—C19 | 49.03 (11) | N2—C13—C14—C15 | 176.27 (16) |
O2—Cd2—O1i—Cd1i | −151.62 (4) | N2—C13—C14—C19 | −3.8 (3) |
O2—Cd2—O1i—C1i | 46.77 (10) | C13—C14—C15—C16 | −179.71 (14) |
O1i—Cd2—O2i—Cd1i | −28.21 (4) | C13—C14—C19—O2 | −1.1 (3) |
O1i—Cd2—O2i—C19i | 130.97 (11) | C13—C14—C19—C18 | −179.75 (14) |
O2i—Cd2—O1i—Cd1i | 28.38 (4) | C15—C14—C19—O2 | 178.88 (14) |
O2i—Cd2—O1i—C1i | −133.23 (10) | C15—C14—C19—C18 | 0.2 (2) |
O1i—Cd2—O4—C20 | 125.33 (16) | C19—C14—C15—C16 | 0.3 (3) |
O4—Cd2—O1i—Cd1i | 122.85 (5) | C14—C15—C16—Cl2 | 177.90 (13) |
O4—Cd2—O1i—C1i | −38.76 (9) | C14—C15—C16—C17 | −0.9 (3) |
O1i—Cd2—O4i—C20i | 54.67 (16) | Cl2—C16—C17—C18 | −177.94 (10) |
O4i—Cd2—O1i—Cd1i | −57.15 (5) | C15—C16—C17—C18 | 0.8 (3) |
O4i—Cd2—O1i—C1i | 141.24 (9) | C16—C17—C18—C19 | −0.3 (3) |
O2—Cd2—O4—C20 | 23.01 (16) | C17—C18—C19—O2 | −178.95 (14) |
O4—Cd2—O2—Cd1 | −58.49 (5) | C17—C18—C19—C14 | −0.2 (3) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···O3ii | 0.95 | 2.54 | 3.248 (2) | 131 |
Symmetry code: (ii) −x+1/2, y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···O3i | 0.95 | 2.54 | 3.248 (2) | 131 |
Symmetry code: (i) −x+1/2, y+1/2, z. |
Acknowledgements
This study was supported financially in part by Grants-in-Aid for Scientific Research (No. 23550094) from the Japan Society for the Promotion of Science, and was performed under the Cooperative Research Program of "Network Joint Research Center for Materials and Devices".
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Atakol, O., Aksu, M., Ercan, F., Arıcı, C., Tahir, M. N. & Ülkü, D. (1999). Acta Cryst. C55, 1072–1075. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Atakol, O., Arıcı, C., Ercan, F. & Ülkü, D. (1999). Acta Cryst. C55, 511–513. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Carlucci, L., Ciani, G., Proserpio, D. M. & Visconti, M. (2011). CrystEngComm, 13, 761–764. Web of Science CSD CrossRef Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Das, L. K., Biswas, A., Frontera, A. & Ghosh, A. (2013). Polyhedron, 52, 1416–1424. Web of Science CSD CrossRef CAS Google Scholar
Das, M. C., Xiang, S., Zhang, Z. & Chen, B. (2011). Angew. Chem. Int. Ed. 50, 10510–10520. Web of Science CrossRef CAS Google Scholar
Du, D.-Y., Qin, J.-S., Sun, C.-X., Wang, X.-L., Zhang, S.-R., Shen, P., Li, S.-L., Su, Z.-M. & Lan, Y.-Q. (2012). J. Mater. Chem. 22, 19673–19678. Web of Science CSD CrossRef CAS Google Scholar
Fukuhara, C., Tsuneyoshi, K., Matsumoto, N., Kida, S., Mikuriya, M. & Mori, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3473–3479. CSD CrossRef Web of Science Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kubono, K., Tani, K. & Yokoi, K. (2012). Acta Cryst. E68, m1430–m1431. CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xue, L. W., Han, Y. J., Zhao, G. Q. & Feg, Y. X. (2012). Russ. J. Coord. Chem. 38, 24–28. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metalloligands are metal-complex molecules which can act as ligands by reacting with other metal ions to form, for example, polynuclear complexes, coordination polymers and metal-organic frameworks. Recently metalloligands have received much attention, because of their functional properties and many potential applications, such as luminescence, catalysis, magnetism, gas storage, ion recognition, see: Du et al. (2012), Carlucci et al. (2011) and Das et al. (2011). The metal complexes with Schiff base ligand, bis(salicylidene)propane-1,3-diamine can be metalloligands, forming linear homo- or hetero-triuclear complexes with divalent metal salts, see: Atakol, Arıcı et al. (1999), Das et al. (2013) and Fukuhara et al. (1990). We have recently studied the structure of a homo-trinuclear CuII complex with tetradentate bis-chlorosalicylidene, 4,4'-dichloro-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethanylylidene)]diphenol and copper acetate units as the building blocks. (Kubono et al., 2012). It can be considered that the compound is a 1:2 metal-complex between a copper(II) ion and a CuII mononuclear complex, which acts as a metalloligand. Subsequently, we have tried to synthesize further trinuclear complexes with the same ligand and other metal ions. Herein, the structure of the title cadmium-based trinuclear complex, containing the tetradentate Schiff base ligand and cadmium acetate units, is reported.
The central CdII atom, Cd2, is located on a centre of inversion and has a distorted octahedral coordination enviroment, formed by four oxygen atoms from two tetradentate Schiff base ligands in the equatorial plane and an oxygen atom from each of the two bridging acetate ligands in the axial positions. The terminal CdII atom, Cd1, has a distorted square-pyramidal configuration with atoms in the basal plane comprising two phenolate O and two imine N atoms from the tetradentate ligand. The apical site is occupied by one O atom from an acetate bridging ligand. Cd1 is located at 0.77466 (10) Å above the mean basal plane (N1/N2/O1/O2) of the square-based pyramid. The six-membered Cd1/N1/C8/C9/C10/N2 ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975): Q = 0.6280 (15) Å, θ = 3.29 (14)° and ϕ = 251 (2)°. The bond lengths and angles involving CdII atoms are comparable to those observed in related linear homo-trinuclear CdII complexes (Atakol, Aksu et al., 1999; Xue et al., 2012). The dihedral angle between the benzene rings (C1–C6 and C14–C19) is 71.88 (7)°, a value comparable with that found in the related trinuclear CuII complex (Kubono et al., 2012). The Cd1···Cd2 distance is 3.3071 (2) Å, similar to that found in related structures (Atakol, Aksu et al., 1999; Xue et al., 2012). In the crystal structure of the title complex, there is an intermolecular C15—H15···O3i hydrogen bond [symmetry code: (i) -x + 1/2, y + 1/2, z; Table 1], forming a C(7) chain motif (Bernstein et al., 1995). C15—H in the benzene ring at (x, y, z) acts as hydrogen bond donor to atom O3 from an acetate at (-x + 1/2, y + 1/2, z), so forming a C(7) chain running parallel to the b-axis and generated by the b-glide plane at x = 1/4. The crystal structure is stabilised by intermolecular C—H···O hydrogen bonds, which form a two-dimensional supramolecular network structure parallel to the ab plane with an R44(34) graph-set ring motif (Fig. 2).