organic compounds
Ethyl 3-(10-bromoanthracen-9-yl)-5-methyl-1,2-oxazole-4-carboxylate
aDepartment of Chemistry, Ithaca College, 953 Danby Road, Ithaca, NY 14850, USA, and bDepartment of Pharmaceutical & Biomedical Science, The University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
*Correspondence e-mail: nicholas.natale@umontana.edu
In the title compound, C21H16BrNO3, the mean planes of the anthracene tricycle and isoxazole ring are inclined to each other at a dihedral angle of 72.12 (7)°. The carboxy group is slightly out of the isoxazole mean plane, with a maximum deviation of 0.070 (5) Å for the carbonyl O atom. In the crystal, pairs of weak C—H⋯O hydrogen bonds link the molecules into dimers, and weak C—H⋯N interactions further link these dimers into corrugated layers parallel to the bc plane.
CCDC reference: 972271
Related literature
For the synthesis of anthryl isoxazoles, see: Mosher & Natale (1995); Zhou et al. (1997); Han & Natale (2001); Rider et al. (2010); Mirzaei et al. (2012). For related structures, see: Mosher et al. (1996); Han et al. (2002, 2003); Li et al. (2006, 2008). For the antitumor activity of aryl isoxazole (AIMs), see: Han et al. (2009); Gajewski et al. (2009); Balasubramanian et al. (2011); Neidle (2012); Kohn et al. (2012); Shoemaker (2006).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 972271
10.1107/S1600536813031395/cv5433sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813031395/cv5433Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813031395/cv5433Isup3.cml
The aryl isoxazole
(AIMs) (Han et al., 2009; Gajewski et al., 2009) have significant activity in the National Cancer Institutes 60 cell line screen (Kohn et al., 2012; Shoemaker et al., 2006) comparable to several agents in general medical practice, such as fluorouridine and bleomycin. Our working hypothesis for developing the structure activity relationship (SAR) of AIMs to improve their anti-tumor efficacy is focused on the quadruplex DNA conformations (Balasubramanian et al., 2011; Neidle, 2012). To more accurately inform our G-4 - small molecule we rely on crystallographic determinations of AIMs.To a suspension of anthracene-9-carbaldehyde (10.0 g, 48.49 mmol; Sigma-Aldrich, 97%) in THF:Ethanol:H2O (135 mL:67.5 mL:67.5 mL) was dissolved sodium acetate (3.5 eq., 13.92 g, 169.7 mmol) and hydroxylamine hydrochloride (2 eq, 6.7387 g, 96.974 mmol). The reaction was covered and let stir at room temperature until TLC showed no starting material remained (ca. 96 hours). The solution was then transferred to a separatory funnel and washed 4 x 350 mL Brine and the combined aqueous layers washed 2x100 mL CHCl3, dried over sodium sulfate, filtered, and the solvent removed under vacuum to yield anthracene-9-carbaldehyde oxime (99%). 1H NMR(CDCl3) δ 9.22 (s, 1H), 8.51 (s, 1H), 8.42 (d, J=8.66 Hz, 2H), 8.03 (d, J=8.16 Hz, 2H), 7.55 (m, 4H).
The anthracene-9-carbaldehyde oxime (10.516 g, 47.53 mmol) was taken up in 200 mL of chloroform at room temperature, to which solution was added pyridine (10 mol%, 0.38 mL) and recrystallized NCS (1.1 eq., 7.197 g, 52.28 mmol). The solution brought to 40°C for three hours then cooled to room temperature. The organic layer was washed with 4x450 mL Brine and 4x300 mL H2O, then the aqueous layer washed with 2x300 mL CHCl3, dried with sodium sulfate, filtered, and the solvent removed under reduced pressure to yield the nitrile oxide. The intermediate was purified only through extractive isolation using brine and CHCl3 and taken on to the next reaction as is. To a solution of the nitrile oxide in absolute ethanol (230 mL) was added 1.4 equivalents of ethylacetoacetate. In a separate flask was added 115 mL absolute ethanol and 2.341 g Na(s). Once the sodium dissociation had completed, the warm solution was added to the nitrile oxide and the mixture was allowed to stir at room temperature under argon for 20 hours until TLC in 4:1 Hex/EtOAc revealed all nitrile oxide had been consumed. Finally, the ethanol was removed via rotary evaporation and the solid chromatographed using 4:1 Hex/EtOAc (Rf=0.56). Ethyl 3-(anthracen-9-yl)-5-methylisoxazole-4-carboxylate. Yield 97%. 1H NMR(400 MHz, CDCl3) δ 8.59 (s, 1H), 8.06 (d, J=7.91 Hz, 2H), 7.66 (d, J=8.16 Hz, 2H), 7.41-7.50 (m, 4H), 3.70 (q, J=7.15, 14.31 Hz, 2H), 2.93 (s, 3H), 0.33 (t, J=7.15 Hz, 3H). Spectral data are in accord with those reported previously (Mirzaei et al., 2012).
Ethyl 3-(anthracen-9-yl)-5-methylisoxazole-4-carboxylate (4.88 g, 14.73 mmol) was taken up in 80 mL DMF to which was added a solution of recrystallized N-Bromosuccinamide (NBS) (1.1 eq, 2.884 g, 16.203 mmol) dissolved in 80 mL DMF. The solution was brought to 40°C and let stir for 5 hours where upon the solution was poured into 1200mL ice/water which was allowed to stir for 2 hours, in which the product precipitated out. Product was filtered, dissolved in CH2Cl2, dried over anhydrous sodium sulfate, filtered and concentrated under vacuum. Yield 88%, 1H NMR(CDCl3) δ 8.62 (d, J=8.91 Hz, 2H), 7.60-7.67 (m, 4H), 7.61 (m, 2H), 3.72 (q, J=7.03, 14.18 Hz, 2H), 2.94 (s, 3H), 0.39 (t, J=7.15, 14.31 Hz, 3H); 13C NMR(CDCl3) δ 176.28, 161.23, 160.21, 131.31, 130.01, 128.03, 127.04, 126.50, 125.87, 125.18, 123.62, 111.40, 60.14, 13.41, 12.89. Spectral data are in accord with those reported previously (Han et al., 2003), the crystals were obtained by slow evapotation from a methylene chloride and heptane solution.
All H atoms were placed at geometrically calculated positions and included in the
in the riding model approximation, with C—H lengths of 0.95 (aromatic CH), 0.98 (CH3) and 0.99 (CH2) Å. Idealized methyl groups were refined as rotating groups. Uiso of the H atoms was set at 1.5Ueq of the parent C atom for the methyl group and at 1.2Ueq for the remaining H atoms.The aryl isoxazole
(AIMs) (Han et al., 2009; Gajewski et al., 2009) have significant activity in the National Cancer Institutes 60 cell line screen, (Kohn et al., 2012; Shoemaker, 2006) comparable to several agents in general medical practice, such as fluorouridine and bleomycin. Our working hypothesis for developing the structure activity relationship (SAR) of AIMs to improve their anti-tumor efficacy is focused on the quadruplex DNA conformations (Balasubramanian et al., 2011; Neidle et al., 2012). To more accurately inform our G-4 - small molecule we rely on crystallographic determinations of AIMs. In previous studies we have determined that the dihedral angle between the isoxazole and the C-3 aryl is approximately orthogonal (Mosher et al., 1996; Li et al., 2008), and we have postulated that this is a critical feature in the biological activity of the AIMs. The anthracenyl group is almost perpendicular to the isoxazole plane in ethyl 3-(10'-chloroanthracenyl)-5-(1''-phenyl-2''-hydroxylethylenyl)isoxazole-4-carboxylate [85.51 (4)°] (Li et al., 2006), which is similar to analogous anthracenyl isoxazole structures in the Cambridge Structural Database, i.e. ethyl 3-(10'-chloro-9'-anthracenyl)-5-methyl-4-isoxazolcarboxylate [74.3°] (Han et al., 2003; CSD refcode EZENEC), ethyl 3-(10'-chloro-9'-anthracenyl)-5-(2-phenylethyl)-4-isoxazolecarboxylate [78.5°] (Han et al., 2002; CSD refcode MUQMOA). This AIM analog represents a key intermediate in future synthesis and SAR studies, and our progress will be reported in due course.Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).C21H16BrNO3 | F(000) = 832 |
Mr = 410.26 | Dx = 1.575 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.8437 (1) Å | Cell parameters from 330 reflections |
b = 16.7099 (2) Å | θ = 0.3–27.5° |
c = 11.7157 (2) Å | µ = 2.40 mm−1 |
β = 92.419 (1)° | T = 100 K |
V = 1729.77 (4) Å3 | Prism, translucent yellow |
Z = 4 | 0.49 × 0.47 × 0.38 mm |
Bruker SMART BREEZE CCD diffractometer | 4128 reflections with I > 2σ(I) |
Radiation source: 2 kW sealed X-ray tube | Rint = 0.020 |
π and ω scans | θmax = 28.3°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −11→11 |
Tmin = 0.39, Tmax = 0.47 | k = −22→22 |
34958 measured reflections | l = −15→14 |
4290 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.0448P)2 + 1.2294P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.002 |
4290 reflections | Δρmax = 0.51 e Å−3 |
237 parameters | Δρmin = −0.39 e Å−3 |
0 restraints |
C21H16BrNO3 | V = 1729.77 (4) Å3 |
Mr = 410.26 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.8437 (1) Å | µ = 2.40 mm−1 |
b = 16.7099 (2) Å | T = 100 K |
c = 11.7157 (2) Å | 0.49 × 0.47 × 0.38 mm |
β = 92.419 (1)° |
Bruker SMART BREEZE CCD diffractometer | 4290 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 4128 reflections with I > 2σ(I) |
Tmin = 0.39, Tmax = 0.47 | Rint = 0.020 |
34958 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.51 e Å−3 |
4290 reflections | Δρmin = −0.39 e Å−3 |
237 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.65922 (2) | 0.19002 (2) | 0.12783 (2) | 0.02178 (7) | |
O1 | 0.29601 (12) | 0.46676 (6) | 0.02087 (8) | 0.0145 (2) | |
O2 | 0.14962 (15) | 0.57548 (8) | −0.00887 (10) | 0.0261 (3) | |
O3 | 0.06569 (12) | 0.53843 (6) | 0.34089 (9) | 0.0145 (2) | |
N1 | 0.15853 (14) | 0.46963 (7) | 0.35626 (10) | 0.0142 (2) | |
C1 | 0.31314 (18) | 0.19895 (9) | 0.06508 (13) | 0.0166 (3) | |
H1 | 0.3800 | 0.1580 | 0.0424 | 0.020* | |
C2 | 0.16567 (19) | 0.19731 (9) | 0.02681 (13) | 0.0187 (3) | |
H2 | 0.1310 | 0.1554 | −0.0224 | 0.022* | |
C3 | 0.06357 (17) | 0.25744 (9) | 0.05964 (12) | 0.0167 (3) | |
H3 | −0.0390 | 0.2555 | 0.0323 | 0.020* | |
C4 | 0.11134 (17) | 0.31807 (8) | 0.13019 (12) | 0.0135 (3) | |
H4 | 0.0412 | 0.3577 | 0.1520 | 0.016* | |
C5 | 0.52484 (16) | 0.45590 (8) | 0.35132 (12) | 0.0141 (3) | |
H5 | 0.4571 | 0.4969 | 0.3725 | 0.017* | |
C6 | 0.67305 (17) | 0.45991 (9) | 0.38810 (12) | 0.0171 (3) | |
H6 | 0.7075 | 0.5034 | 0.4345 | 0.020* | |
C7 | 0.77617 (17) | 0.39918 (10) | 0.35718 (13) | 0.0191 (3) | |
H7 | 0.8791 | 0.4022 | 0.3834 | 0.023* | |
C8 | 0.72856 (16) | 0.33668 (9) | 0.29027 (13) | 0.0175 (3) | |
H8 | 0.7993 | 0.2969 | 0.2701 | 0.021* | |
C9 | 0.52055 (16) | 0.26791 (8) | 0.17830 (12) | 0.0133 (2) | |
C10 | 0.31823 (15) | 0.38718 (8) | 0.23963 (11) | 0.0111 (2) | |
C11 | 0.46912 (15) | 0.39100 (8) | 0.28134 (11) | 0.0116 (2) | |
C12 | 0.57441 (16) | 0.32977 (8) | 0.24980 (12) | 0.0132 (3) | |
C13 | 0.36915 (16) | 0.26146 (8) | 0.13894 (11) | 0.0126 (2) | |
C14 | 0.26560 (16) | 0.32284 (8) | 0.17184 (11) | 0.0114 (2) | |
C15 | 0.21490 (15) | 0.45584 (8) | 0.25655 (11) | 0.0111 (2) | |
C16 | 0.16273 (15) | 0.51365 (8) | 0.17353 (11) | 0.0118 (2) | |
C17 | 0.06993 (15) | 0.56274 (8) | 0.23177 (12) | 0.0128 (2) | |
C18 | −0.02091 (17) | 0.63431 (9) | 0.19866 (13) | 0.0184 (3) | |
H18A | −0.1080 | 0.6384 | 0.2474 | 0.028* | |
H18B | −0.0567 | 0.6295 | 0.1186 | 0.028* | |
H18C | 0.0419 | 0.6824 | 0.2081 | 0.028* | |
C19 | 0.19946 (16) | 0.52302 (8) | 0.05278 (12) | 0.0139 (3) | |
C20 | 0.34574 (17) | 0.47134 (9) | −0.09567 (12) | 0.0162 (3) | |
H20A | 0.4147 | 0.5174 | −0.1044 | 0.019* | |
H20B | 0.2578 | 0.4778 | −0.1500 | 0.019* | |
C21 | 0.42720 (19) | 0.39376 (10) | −0.11786 (13) | 0.0211 (3) | |
H21A | 0.4647 | 0.3944 | −0.1954 | 0.032* | |
H21B | 0.3571 | 0.3488 | −0.1102 | 0.032* | |
H21C | 0.5126 | 0.3878 | −0.0624 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01713 (9) | 0.01729 (9) | 0.03139 (10) | 0.00372 (5) | 0.00673 (6) | −0.00296 (5) |
O1 | 0.0174 (5) | 0.0153 (5) | 0.0111 (4) | 0.0030 (4) | 0.0040 (4) | 0.0021 (4) |
O2 | 0.0333 (7) | 0.0279 (6) | 0.0175 (5) | 0.0158 (5) | 0.0050 (5) | 0.0084 (4) |
O3 | 0.0153 (5) | 0.0136 (5) | 0.0146 (5) | 0.0031 (4) | 0.0024 (4) | −0.0010 (4) |
N1 | 0.0152 (6) | 0.0125 (5) | 0.0150 (5) | 0.0029 (4) | 0.0015 (4) | 0.0002 (4) |
C1 | 0.0210 (7) | 0.0129 (6) | 0.0162 (6) | −0.0005 (5) | 0.0036 (5) | −0.0019 (5) |
C2 | 0.0237 (8) | 0.0157 (7) | 0.0167 (7) | −0.0045 (5) | 0.0010 (6) | −0.0026 (5) |
C3 | 0.0169 (7) | 0.0167 (6) | 0.0162 (6) | −0.0039 (5) | −0.0020 (5) | 0.0016 (5) |
C4 | 0.0143 (7) | 0.0125 (6) | 0.0135 (6) | 0.0005 (5) | 0.0004 (5) | 0.0020 (5) |
C5 | 0.0157 (6) | 0.0142 (6) | 0.0124 (6) | 0.0002 (5) | 0.0003 (5) | 0.0002 (5) |
C6 | 0.0177 (7) | 0.0183 (7) | 0.0150 (6) | −0.0038 (5) | −0.0016 (5) | −0.0002 (5) |
C7 | 0.0128 (6) | 0.0222 (7) | 0.0219 (7) | −0.0011 (5) | −0.0023 (5) | 0.0041 (6) |
C8 | 0.0121 (6) | 0.0175 (7) | 0.0227 (7) | 0.0020 (5) | 0.0006 (5) | 0.0028 (5) |
C9 | 0.0131 (6) | 0.0108 (6) | 0.0162 (6) | 0.0029 (5) | 0.0042 (5) | 0.0010 (5) |
C10 | 0.0123 (6) | 0.0110 (6) | 0.0101 (5) | 0.0013 (5) | 0.0013 (4) | 0.0018 (4) |
C11 | 0.0126 (6) | 0.0115 (6) | 0.0106 (6) | 0.0000 (5) | 0.0012 (4) | 0.0019 (4) |
C12 | 0.0124 (6) | 0.0128 (6) | 0.0143 (6) | 0.0008 (5) | 0.0015 (5) | 0.0033 (5) |
C13 | 0.0147 (6) | 0.0107 (6) | 0.0126 (6) | 0.0001 (5) | 0.0024 (5) | 0.0014 (5) |
C14 | 0.0125 (6) | 0.0111 (5) | 0.0107 (6) | −0.0004 (5) | 0.0013 (5) | 0.0021 (5) |
C15 | 0.0108 (6) | 0.0104 (6) | 0.0122 (6) | −0.0010 (5) | −0.0003 (4) | −0.0007 (4) |
C16 | 0.0114 (6) | 0.0111 (6) | 0.0129 (6) | 0.0004 (5) | −0.0005 (4) | 0.0004 (5) |
C17 | 0.0121 (6) | 0.0120 (6) | 0.0144 (6) | −0.0012 (5) | −0.0008 (5) | −0.0009 (5) |
C18 | 0.0179 (7) | 0.0135 (6) | 0.0235 (7) | 0.0043 (5) | −0.0016 (5) | −0.0019 (5) |
C19 | 0.0132 (6) | 0.0145 (6) | 0.0139 (6) | 0.0001 (5) | 0.0006 (5) | −0.0001 (5) |
C20 | 0.0207 (7) | 0.0175 (7) | 0.0106 (6) | −0.0008 (5) | 0.0049 (5) | 0.0010 (5) |
C21 | 0.0246 (8) | 0.0213 (7) | 0.0180 (7) | 0.0028 (6) | 0.0063 (6) | −0.0027 (6) |
Br1—C9 | 1.8996 (13) | C8—H8 | 0.9500 |
O1—C19 | 1.3340 (17) | C8—C12 | 1.4290 (19) |
O1—C20 | 1.4539 (16) | C9—C12 | 1.4013 (19) |
O2—C19 | 1.2073 (18) | C9—C13 | 1.4017 (19) |
O3—N1 | 1.4197 (15) | C10—C11 | 1.4031 (18) |
O3—C17 | 1.3435 (17) | C10—C14 | 1.4043 (19) |
N1—C15 | 1.3097 (18) | C10—C15 | 1.4853 (18) |
C1—H1 | 0.9500 | C11—C12 | 1.4420 (19) |
C1—C2 | 1.361 (2) | C13—C14 | 1.4384 (19) |
C1—C13 | 1.4314 (19) | C15—C16 | 1.4332 (18) |
C2—H2 | 0.9500 | C16—C17 | 1.3636 (19) |
C2—C3 | 1.415 (2) | C16—C19 | 1.4731 (18) |
C3—H3 | 0.9500 | C17—C18 | 1.4832 (19) |
C3—C4 | 1.363 (2) | C18—H18A | 0.9800 |
C4—H4 | 0.9500 | C18—H18B | 0.9800 |
C4—C14 | 1.4316 (19) | C18—H18C | 0.9800 |
C5—H5 | 0.9500 | C20—H20A | 0.9900 |
C5—C6 | 1.364 (2) | C20—H20B | 0.9900 |
C5—C11 | 1.4342 (19) | C20—C21 | 1.511 (2) |
C6—H6 | 0.9500 | C21—H21A | 0.9800 |
C6—C7 | 1.422 (2) | C21—H21B | 0.9800 |
C7—H7 | 0.9500 | C21—H21C | 0.9800 |
C7—C8 | 1.362 (2) | ||
C19—O1—C20 | 116.66 (11) | C9—C12—C11 | 118.01 (12) |
C17—O3—N1 | 109.05 (10) | C1—C13—C14 | 118.32 (13) |
C15—N1—O3 | 105.62 (11) | C9—C13—C1 | 123.80 (13) |
C2—C1—H1 | 119.5 | C9—C13—C14 | 117.85 (12) |
C2—C1—C13 | 121.07 (14) | C4—C14—C13 | 118.50 (12) |
C13—C1—H1 | 119.5 | C10—C14—C4 | 121.59 (13) |
C1—C2—H2 | 119.7 | C10—C14—C13 | 119.86 (13) |
C1—C2—C3 | 120.64 (13) | N1—C15—C10 | 120.96 (12) |
C3—C2—H2 | 119.7 | N1—C15—C16 | 111.28 (12) |
C2—C3—H3 | 119.8 | C16—C15—C10 | 127.76 (12) |
C4—C3—C2 | 120.50 (14) | C15—C16—C19 | 130.21 (12) |
C4—C3—H3 | 119.8 | C17—C16—C15 | 104.43 (12) |
C3—C4—H4 | 119.5 | C17—C16—C19 | 125.33 (12) |
C3—C4—C14 | 120.97 (13) | O3—C17—C16 | 109.62 (12) |
C14—C4—H4 | 119.5 | O3—C17—C18 | 117.14 (12) |
C6—C5—H5 | 119.3 | C16—C17—C18 | 133.24 (13) |
C6—C5—C11 | 121.34 (13) | C17—C18—H18A | 109.5 |
C11—C5—H5 | 119.3 | C17—C18—H18B | 109.5 |
C5—C6—H6 | 119.9 | C17—C18—H18C | 109.5 |
C5—C6—C7 | 120.18 (14) | H18A—C18—H18B | 109.5 |
C7—C6—H6 | 119.9 | H18A—C18—H18C | 109.5 |
C6—C7—H7 | 119.7 | H18B—C18—H18C | 109.5 |
C8—C7—C6 | 120.54 (13) | O1—C19—C16 | 111.34 (12) |
C8—C7—H7 | 119.7 | O2—C19—O1 | 124.46 (13) |
C7—C8—H8 | 119.3 | O2—C19—C16 | 124.19 (13) |
C7—C8—C12 | 121.36 (14) | O1—C20—H20A | 110.5 |
C12—C8—H8 | 119.3 | O1—C20—H20B | 110.5 |
C12—C9—Br1 | 118.94 (10) | O1—C20—C21 | 106.36 (11) |
C12—C9—C13 | 123.32 (12) | H20A—C20—H20B | 108.6 |
C13—C9—Br1 | 117.72 (10) | C21—C20—H20A | 110.5 |
C11—C10—C14 | 121.29 (12) | C21—C20—H20B | 110.5 |
C11—C10—C15 | 120.00 (12) | C20—C21—H21A | 109.5 |
C14—C10—C15 | 118.41 (12) | C20—C21—H21B | 109.5 |
C5—C11—C12 | 118.23 (12) | C20—C21—H21C | 109.5 |
C10—C11—C5 | 122.15 (12) | H21A—C21—H21B | 109.5 |
C10—C11—C12 | 119.57 (12) | H21A—C21—H21C | 109.5 |
C8—C12—C11 | 118.36 (13) | H21B—C21—H21C | 109.5 |
C9—C12—C8 | 123.60 (13) | ||
Br1—C9—C12—C8 | −1.87 (19) | C10—C15—C16—C19 | −2.4 (2) |
Br1—C9—C12—C11 | 176.22 (10) | C11—C5—C6—C7 | 0.1 (2) |
Br1—C9—C13—C1 | 1.24 (19) | C11—C10—C14—C4 | 179.20 (12) |
Br1—C9—C13—C14 | −176.59 (9) | C11—C10—C14—C13 | −3.33 (19) |
O3—N1—C15—C10 | −179.64 (11) | C11—C10—C15—N1 | −75.68 (17) |
O3—N1—C15—C16 | 0.03 (15) | C11—C10—C15—C16 | 104.71 (16) |
N1—O3—C17—C16 | −0.55 (15) | C12—C9—C13—C1 | 179.42 (13) |
N1—O3—C17—C18 | 179.89 (11) | C12—C9—C13—C14 | 1.6 (2) |
N1—C15—C16—C17 | −0.35 (16) | C13—C1—C2—C3 | −0.3 (2) |
N1—C15—C16—C19 | 178.00 (13) | C13—C9—C12—C8 | 179.97 (13) |
C1—C2—C3—C4 | 0.0 (2) | C13—C9—C12—C11 | −1.9 (2) |
C1—C13—C14—C4 | 0.65 (19) | C14—C10—C11—C5 | −179.58 (12) |
C1—C13—C14—C10 | −176.89 (12) | C14—C10—C11—C12 | 2.97 (19) |
C2—C1—C13—C9 | −177.91 (14) | C14—C10—C15—N1 | 110.56 (15) |
C2—C1—C13—C14 | −0.1 (2) | C14—C10—C15—C16 | −69.05 (18) |
C2—C3—C4—C14 | 0.6 (2) | C15—C10—C11—C5 | 6.85 (19) |
C3—C4—C14—C10 | 176.60 (13) | C15—C10—C11—C12 | −170.60 (12) |
C3—C4—C14—C13 | −0.9 (2) | C15—C10—C14—C4 | −7.13 (19) |
C5—C6—C7—C8 | 0.3 (2) | C15—C10—C14—C13 | 170.34 (12) |
C5—C11—C12—C8 | 0.29 (19) | C15—C16—C17—O3 | 0.54 (15) |
C5—C11—C12—C9 | −177.91 (12) | C15—C16—C17—C18 | −179.99 (15) |
C6—C5—C11—C10 | −177.89 (13) | C15—C16—C19—O1 | 0.5 (2) |
C6—C5—C11—C12 | −0.4 (2) | C15—C16—C19—O2 | −178.75 (15) |
C6—C7—C8—C12 | −0.4 (2) | C17—O3—N1—C15 | 0.32 (14) |
C7—C8—C12—C9 | 178.20 (14) | C17—C16—C19—O1 | 178.55 (13) |
C7—C8—C12—C11 | 0.1 (2) | C17—C16—C19—O2 | −0.7 (2) |
C9—C13—C14—C4 | 178.60 (12) | C19—O1—C20—C21 | −169.06 (12) |
C9—C13—C14—C10 | 1.06 (19) | C19—C16—C17—O3 | −177.91 (12) |
C10—C11—C12—C8 | 177.84 (12) | C19—C16—C17—C18 | 1.6 (2) |
C10—C11—C12—C9 | −0.36 (19) | C20—O1—C19—O2 | 1.5 (2) |
C10—C15—C16—C17 | 179.29 (13) | C20—O1—C19—C16 | −177.73 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N1i | 0.95 | 2.54 | 3.4305 (19) | 155 |
C4—H4···O2ii | 0.95 | 2.58 | 3.1990 (18) | 123 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N1i | 0.95 | 2.54 | 3.4305 (19) | 155 |
C4—H4···O2ii | 0.95 | 2.58 | 3.1990 (18) | 123 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y+1, −z. |
Acknowledgements
The Bruker single-crystal X-ray diffraction facility was established at Ithaca College in 2012. NRN, MJC, MJW and ND thank the National Institutes of Health for grants NINDS P20RR015583 Center for Structural and Functional Neuroscience (CSFN) and P20 RR017670 Center for Environmental Health Sciences (CEHS), and the University of Montana Grant Program.
References
Balasubramanian, S., Hurley, L. H. & Neidle, S. (2011). Nat. Rev. Drug Discov. 10, 261–275. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Ins., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gajewski, M. P., Beall, H., Schnieder, M., Stranahan, S. M., Mosher, M. D., Rider, K. C. & Natale, N. R. (2009). Bioorg. Med. Chem. Lett. 19, 4067–4069. Web of Science CrossRef PubMed CAS Google Scholar
Han, X., Li, C., Mosher, M. D., Rider, K. C., Zhou, P., Crawford, R. L., Fusco, W., Paszczynski, A. & Natale, N. R. (2009). Bioorg. Med. Chem. 17, 1671–1680. Web of Science CrossRef PubMed CAS Google Scholar
Han, X., Li, C., Rider, K. C., Blumenfeld, A., Twamley, B. & Natale, N. R. (2002). Tetrahedron Lett. 43, 7673–7677. Web of Science CSD CrossRef CAS Google Scholar
Han, X. & Natale, N. R. (2001). J. Heterocycl. Chem. 38, 415–418. CrossRef CAS Google Scholar
Han, X., Twamley, B. & Natale, N. R. (2003). J. Heterocycl. Chem. 40, 539–545. CrossRef CAS Google Scholar
Kohn, K. W., Zeeberg, B. R., Reinhold, W. C., Sunshine, M., Luna, A. & Pommier, Y. (2012). PLoS ONE, 7, e35716. Web of Science CrossRef PubMed Google Scholar
Li, C., Twamley, B. & Natale, N. R. (2006). Acta Cryst. E62, o854–o856. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Li, C., Twamley, B. & Natale, N. R. (2008). J. Heterocycl. Chem. 45, 259–264. CrossRef CAS Google Scholar
Mirzaei, Y. R., Weaver, M. W., Steiger, S. A., Kearns, A. K., Gajewski, M. P., Rider, K. C., Beall, H. D. & Natale, N. R. (2012). Tetrahedron, 68, 10360–10364. Web of Science CrossRef CAS PubMed Google Scholar
Mosher, M. D. & Natale, N. R. (1995). J. Heterocycl. Chem. 32, 779–781. CrossRef CAS Google Scholar
Mosher, M. D., Natale, N. R. & Vij, A. (1996). Acta Cryst. C52, 2513–2515. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Neidle, S. (2012). In Therapeutic Applications of Quadruplex Nucleic Acids. Amsterdam: Elsevier/Academic Press. Google Scholar
Rider, K. C., Burkhart, D. J., Li, C., Mckenzie, A. R., Nelson, J. K. & Natale, N. R. (2010). Arkivoc, pp. 97–107. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shoemaker, R. H. (2006). Nat. Rev. Cancer, 6, 816–823. Web of Science CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhou, P., Mosher, M. D., Taylor, W. D., Crawford, G. A. & Natale, N. R. (1997). Bioorg. Med. Chem. Lett. 7, 2455–2456. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.