organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 8-(2,4-di­chloro­phen­yl)-6-methyl-1,2,4-triazolo[1,5-a]pyridine-7-carboxyl­ate

aSchool of Chemical Engineering, Taishan Medical University, Taian 271016, People's Republic of China
*Correspondence e-mail: chemyangli@gmail.com

(Received 29 October 2013; accepted 6 November 2013; online 20 November 2013)

In the title compound, C16H13Cl2N3O2, the carboxyl­ate group and the benzene ring attached to the central 1,2,4-triazolo[1,5-a]pyridine bicycle are twisted from its mean plane by 55.6 (1) and 72.6 (1)°, respectively. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into zigzag chains propagating in [100].

Related literature

For applications of [1,2,4]triazolo[1,5-a]pyridine derivatives, see: Luo & Hu (2006[Luo, Y. & Hu, Y. (2006). Arch. Pharm. Chem. Life Sci. 339, 262-266.]); Liu & Hu (2002[Liu, T. & Hu, Y. (2002). Bioorg. Med. Chem. Lett. 12, 2411-2413.]). For details of the synthesis, see: Jones & Sliskovic (1983[Jones, G. & Sliskovic, D. R. (1983). Adv. Heterocycl. Chem. 34, 79-143.]); Wang et al. (2003[Wang, J. W., Jia, J., Hou, D. J., li, H. M. & Yin, J. (2003). Chin. J. Org. Chem. 23, 173-175.]); Ge et al. (2009[Ge, Y. Q., Jia, J., Yang, H., Zhao, G. L., Zhan, F. X. & Wang, J. W. (2009). Heterocycles, 78, 725-736.]); Jia et al. (2010[Jia, J., Ge, Y. Q., Tao, X. T. & Wang, J. W. (2010). Heterocycles, 81, 185-194.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13Cl2N3O2

  • Mr = 350.19

  • Orthorhombic, P b c a

  • a = 14.693 (2) Å

  • b = 13.531 (2) Å

  • c = 16.347 (2) Å

  • V = 3250.0 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 K

  • 0.33 × 0.26 × 0.21 mm

Data collection
  • Brucker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.876, Tmax = 0.919

  • 15766 measured reflections

  • 2860 independent reflections

  • 2206 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.170

  • S = 1.07

  • 2860 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.55 3.296 (4) 137
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The [1,2,4]triazolo[1,5-a]pyridine derivatives exhibit antifungal, anticancer and anti-inflammatory activities (Liu & Hu, 2002; Luo & Hu, 2006). However, only small number of [1,2,4]triazolo[1,5-a]pyridines is known. The commonly used synthetic methods are the annulation of 1,2,4-triazole ring starting with amino substituted pyridines by a multistep procedure (Jones & Sliskovic, 1983). Recently, imidazo[1,5-a]pyridines, pyrazolo[1,5-a]pyridines, imidazo[1,2-a]pyridines and indolizines have been synthesized in our group wityh the use of a novel tandem reaction (Wang et al., 2003; Ge et al., 2009; Jia et al., 2010). We tried to extend this reaction to synthesize the [1,2,4]triazolo[1,5-a]pyridine heterocycles and obtained the title compound (I). Herewith we present its crystal structure.

In (I) (Fig. 1), all bond lengths and angles are normal (Allen et al., 1987). The carboxylate group and benzene ring attached to the central [1,2,4]triazolo[1,5-a]pyridine bicycle are twisted from its mean plane at 55.6 (1) and 72.6 (1)°, respectively. In the crystal, weak intermolecular C—H···O interactions (Table 1) link molecules into zigzag chains propagated in [100].

Related literature top

For aplications of [1,2,4]triazolo[1,5-a]pyridine derivatives, see: Luo & Hu (2006); Liu & Hu (2002). For details of the synthethis, see: Jones & Sliskovic (1983); Wang et al. (2003); Ge et al. (2009); Jia et al. (2010). For standard bond lengths in organic compounds, see: Allen et al. (1987).

Experimental top

(2,4-Dichlorophenyl)(1H-1,2,4-triazol-5-yl)methanone (6 mmol), ethyl 4-bromo-3-methylbut-2-enoate (12 mmol), potassium carbonate (1.8 g, 13.2 mmol) and DMF (30 ml) were added to a 100 ml round-bottomed flask. The reaction system was stirred for 8 h. Then the mixture was poured into water (200 ml) and extracted with dichloromethane (3 x 50 ml). Organic layers were combined and dried over anhydrous Na2SO4, then filtered. By rotary evaporation, the mixture was concentrated. After that, these crude products were depurated by using column chromatography in 76% isolated yield. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution of the title compound in a hexane/ethyl acetate mixture (3:1 v/v) at room temperature over a period of one week.

Refinement top

All H atoms were found on difference maps, but placed in idealized positions (C—H = 0.93–0.97 Å), and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for the methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 30% probability level.
Ethyl 8-(2,4-dichlorophenyl)-6-methyl-1,2,4-triazolo[1,5-a]pyridine-7-carboxylate top
Crystal data top
C16H13Cl2N3O2F(000) = 1440
Mr = 350.19Dx = 1.431 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5439 reflections
a = 14.693 (2) Åθ = 2.4–26.6°
b = 13.531 (2) ŵ = 0.41 mm1
c = 16.347 (2) ÅT = 298 K
V = 3250.0 (8) Å3Block, colourless
Z = 80.33 × 0.26 × 0.21 mm
Data collection top
Brucker SMART APEXII CCD area-detector
diffractometer
2860 independent reflections
Radiation source: fine-focus sealed tube2206 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1517
Tmin = 0.876, Tmax = 0.919k = 1416
15766 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.081P)2 + 1.792P]
where P = (Fo2 + 2Fc2)/3
2860 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H13Cl2N3O2V = 3250.0 (8) Å3
Mr = 350.19Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.693 (2) ŵ = 0.41 mm1
b = 13.531 (2) ÅT = 298 K
c = 16.347 (2) Å0.33 × 0.26 × 0.21 mm
Data collection top
Brucker SMART APEXII CCD area-detector
diffractometer
2860 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2206 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.919Rint = 0.090
15766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.07Δρmax = 0.42 e Å3
2860 reflectionsΔρmin = 0.33 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05484 (8)0.40274 (8)0.16648 (8)0.1076 (5)
Cl20.19892 (9)0.61061 (7)0.08078 (8)0.1131 (5)
N10.26136 (16)0.13047 (17)0.22123 (12)0.0520 (6)
N20.32941 (18)0.1240 (2)0.27788 (15)0.0667 (7)
N30.33128 (17)0.27522 (19)0.21631 (14)0.0597 (6)
O10.01914 (15)0.1842 (2)0.05658 (15)0.0854 (8)
O20.09633 (14)0.21635 (17)0.02602 (11)0.0703 (6)
C10.0817 (4)0.3050 (5)0.1491 (3)0.138 (2)
H1A0.11400.35760.12240.207*
H1B0.03910.33230.18740.207*
H1C0.12420.26340.17750.207*
C20.0347 (3)0.2488 (4)0.0903 (2)0.0953 (13)
H2A0.00740.19160.11640.114*
H2B0.01370.28830.06670.114*
C30.06111 (18)0.19142 (19)0.04424 (16)0.0498 (6)
C40.13260 (17)0.17205 (19)0.10725 (15)0.0451 (6)
C50.13144 (18)0.07882 (19)0.14927 (16)0.0494 (6)
C60.19780 (19)0.0596 (2)0.20462 (17)0.0558 (7)
H60.20000.00120.23100.067*
C70.3669 (2)0.2128 (3)0.27135 (19)0.0687 (9)
H70.41610.23110.30380.082*
C80.26346 (18)0.22155 (19)0.18455 (15)0.0478 (6)
C90.19725 (16)0.24312 (18)0.12376 (15)0.0439 (6)
C100.20186 (17)0.33997 (18)0.08023 (15)0.0460 (6)
C110.1376 (2)0.4141 (2)0.09152 (19)0.0597 (7)
C120.1379 (2)0.4988 (2)0.0427 (2)0.0717 (9)
H120.09420.54770.05000.086*
C130.2031 (2)0.5087 (2)0.0156 (2)0.0652 (8)
C140.2709 (2)0.4403 (2)0.02570 (17)0.0608 (7)
H140.31670.45010.06410.073*
C150.26961 (18)0.3567 (2)0.02229 (16)0.0521 (7)
H150.31540.30990.01580.062*
C160.0598 (2)0.0018 (2)0.1339 (2)0.0667 (8)
H16A0.07700.05880.16040.100*
H16B0.05420.00930.07610.100*
H16C0.00260.02410.15540.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0972 (8)0.0803 (7)0.1453 (10)0.0092 (5)0.0583 (7)0.0185 (6)
Cl20.1464 (10)0.0607 (6)0.1323 (10)0.0150 (6)0.0448 (8)0.0396 (6)
N10.0569 (13)0.0554 (13)0.0438 (11)0.0063 (11)0.0013 (10)0.0036 (10)
N20.0705 (16)0.0752 (18)0.0544 (14)0.0091 (14)0.0085 (12)0.0073 (12)
N30.0583 (14)0.0654 (15)0.0555 (13)0.0044 (11)0.0075 (11)0.0013 (11)
O10.0490 (13)0.130 (2)0.0777 (15)0.0008 (13)0.0030 (11)0.0062 (15)
O20.0600 (12)0.1014 (17)0.0494 (11)0.0223 (11)0.0043 (9)0.0141 (10)
C10.120 (4)0.192 (6)0.102 (3)0.071 (4)0.037 (3)0.068 (4)
C20.091 (3)0.118 (3)0.077 (2)0.042 (2)0.033 (2)0.035 (2)
C30.0508 (16)0.0464 (14)0.0523 (14)0.0042 (11)0.0019 (12)0.0053 (11)
C40.0476 (14)0.0442 (14)0.0436 (13)0.0007 (11)0.0073 (11)0.0030 (10)
C50.0534 (15)0.0442 (14)0.0507 (14)0.0001 (11)0.0123 (12)0.0022 (11)
C60.0678 (18)0.0448 (14)0.0549 (15)0.0036 (13)0.0116 (14)0.0056 (12)
C70.0627 (19)0.086 (2)0.0576 (18)0.0003 (16)0.0104 (15)0.0001 (16)
C80.0521 (15)0.0480 (15)0.0435 (13)0.0012 (11)0.0037 (11)0.0013 (11)
C90.0460 (14)0.0429 (13)0.0428 (13)0.0010 (11)0.0041 (10)0.0021 (10)
C100.0474 (14)0.0434 (14)0.0473 (14)0.0026 (11)0.0062 (11)0.0045 (11)
C110.0558 (16)0.0466 (16)0.0765 (19)0.0008 (12)0.0009 (14)0.0113 (13)
C120.067 (2)0.0407 (16)0.107 (3)0.0075 (13)0.0178 (19)0.0072 (16)
C130.077 (2)0.0452 (16)0.074 (2)0.0100 (15)0.0236 (17)0.0054 (14)
C140.0716 (19)0.0550 (17)0.0559 (16)0.0131 (14)0.0018 (14)0.0030 (13)
C150.0542 (16)0.0476 (15)0.0545 (15)0.0030 (12)0.0005 (12)0.0026 (12)
C160.0708 (19)0.0487 (16)0.081 (2)0.0097 (14)0.0069 (16)0.0006 (15)
Geometric parameters (Å, º) top
Cl1—C111.733 (3)C4—C51.437 (4)
Cl2—C131.743 (3)C5—C61.355 (4)
N1—C61.365 (4)C5—C161.502 (4)
N1—N21.366 (3)C6—H60.9300
N1—C81.371 (3)C7—H70.9300
N2—C71.326 (4)C8—C91.421 (4)
N3—C81.338 (3)C9—C101.493 (4)
N3—C71.341 (4)C10—C111.389 (4)
O1—C31.200 (3)C10—C151.393 (4)
O2—C31.304 (3)C11—C121.398 (4)
O2—C21.455 (4)C12—C131.357 (5)
C1—C21.406 (5)C12—H120.9300
C1—H1A0.9600C13—C141.371 (4)
C1—H1B0.9600C14—C151.376 (4)
C1—H1C0.9600C14—H140.9300
C2—H2A0.9700C15—H150.9300
C2—H2B0.9700C16—H16A0.9600
C3—C41.494 (4)C16—H16B0.9600
C4—C91.378 (4)C16—H16C0.9600
C6—N1—N2126.2 (2)N3—C7—H7121.2
C6—N1—C8124.0 (2)N3—C8—N1109.6 (2)
N2—N1—C8109.7 (2)N3—C8—C9132.1 (2)
C7—N2—N1101.1 (2)N1—C8—C9118.4 (2)
C8—N3—C7102.1 (3)C4—C9—C8117.7 (2)
C3—O2—C2117.9 (2)C4—C9—C10123.4 (2)
C2—C1—H1A109.5C8—C9—C10118.9 (2)
C2—C1—H1B109.5C11—C10—C15117.3 (3)
H1A—C1—H1B109.5C11—C10—C9122.6 (2)
C2—C1—H1C109.5C15—C10—C9120.0 (2)
H1A—C1—H1C109.5C10—C11—C12120.9 (3)
H1B—C1—H1C109.5C10—C11—Cl1120.5 (2)
C1—C2—O2110.6 (3)C12—C11—Cl1118.6 (2)
C1—C2—H2A109.5C13—C12—C11119.0 (3)
O2—C2—H2A109.5C13—C12—H12120.5
C1—C2—H2B109.5C11—C12—H12120.5
O2—C2—H2B109.5C12—C13—C14122.0 (3)
H2A—C2—H2B108.1C12—C13—Cl2118.9 (3)
O1—C3—O2124.0 (3)C14—C13—Cl2119.1 (3)
O1—C3—C4124.1 (3)C13—C14—C15118.5 (3)
O2—C3—C4111.9 (2)C13—C14—H14120.8
C9—C4—C5121.8 (2)C15—C14—H14120.8
C9—C4—C3119.8 (2)C14—C15—C10122.1 (3)
C5—C4—C3118.4 (2)C14—C15—H15119.0
C6—C5—C4118.6 (2)C10—C15—H15119.0
C6—C5—C16118.8 (3)C5—C16—H16A109.5
C4—C5—C16122.5 (3)C5—C16—H16B109.5
C5—C6—N1119.4 (2)H16A—C16—H16B109.5
C5—C6—H6120.3C5—C16—H16C109.5
N1—C6—H6120.3H16A—C16—H16C109.5
N2—C7—N3117.6 (3)H16B—C16—H16C109.5
N2—C7—H7121.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.553.296 (4)137
Symmetry code: (i) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.553.296 (4)137
Symmetry code: (i) x+1/2, y, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGe, Y. Q., Jia, J., Yang, H., Zhao, G. L., Zhan, F. X. & Wang, J. W. (2009). Heterocycles, 78, 725–736.  CAS Google Scholar
First citationJia, J., Ge, Y. Q., Tao, X. T. & Wang, J. W. (2010). Heterocycles, 81, 185–194.  CAS Google Scholar
First citationJones, G. & Sliskovic, D. R. (1983). Adv. Heterocycl. Chem. 34, 79–143.  CrossRef CAS Google Scholar
First citationLiu, T. & Hu, Y. (2002). Bioorg. Med. Chem. Lett. 12, 2411–2413.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLuo, Y. & Hu, Y. (2006). Arch. Pharm. Chem. Life Sci. 339, 262–266.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. W., Jia, J., Hou, D. J., li, H. M. & Yin, J. (2003). Chin. J. Org. Chem. 23, 173–175.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds