metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m678-m679

Bis(2-meth­­oxy­anilinium) hexa­bromido­stannate(IV) dihydrate

aLaboratoire de Genie des Materiaux et Environnement, Ecole Nationale d'Ingenieurs de Sfax, BP 1173, Sfax, Tunisia, and bService commun d'analyse par diffraction des rayons X, Universite de Brest, 6, avenue Victor Le Gorgeu, CS 93837, F-29238 Brest cedex 3, France
*Correspondence e-mail: chouaib.hassen@yahoo.fr

(Received 13 November 2013; accepted 20 November 2013; online 23 November 2013)

The asymmetric unit of the title compound, (C7H10NO)2[SnBr6]·2H2O, contains one cation, one half-dianion and one lattice water mol­ecule. The [SnBr6]2− dianion, located on an inversion center, exhibits a highly distorted octa­hedral coordination environment, with Sn—Br bond lengths ranging from 2.2426 (9) to 3.0886 (13) Å. In the crystal, O—H⋯Br, N—H⋯Br, N—H⋯O and C—H⋯Br hydrogen bonds consolidate the packing, which can be described as consisting of alternating anionic (containing dianions and lattice water mol­ecules) and cationic layers parallel to ab plane.

Related literature

For general background to hybrid organic–inorganic compounds, see: Kagan et al. (1999[Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. (1999). Science, 286, 945-947.]); Raptopoulou et al. (2002[Raptopoulou, C. P., Terzis, A., Mousdis, G. A. & Papavassiliou, G. C. (2002). Z. Naturforsch. Teil B, 57, 645-650.]). For related structures, see: Tudela & Khan (1991[Tudela, D. & Khan, M. A. (1991). J. Chem. Soc. Dalton Trans. pp. 1003-1006.]); Chouaib et al. (2013[Chouaib, H., Kamoun, S. & Ayedi, H. F. (2013). Acta Cryst. E69, m311.]); Benali-Cherif et al. (2007[Benali-Cherif, N., Boussekine, H., Boutobba, Z. & Kateb, A. (2007). Acta Cryst. E63, o3287.]); Karoui et al. (2013[Karoui, S., Kamoun, S. & Michaud, F. (2013). Acta Cryst. E69, m187-m188.]); Guelmami et al. (2007[Guelmami, L., Guerfel, T. & Jouini, A. (2007). Mater. Res. Bull. 42, 446-455.]); Souissi et al. (2011[Souissi, S., Smirani Sta, W., S. Al-Deyab, S. & Rzaigui, M. (2011). Acta Cryst. E67, m754.]); Smith et al. (2006[Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o2313-o2315.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H10NO)2[SnBr6]·2H2O

  • Mr = 882.50

  • Monoclinic, P 21 /a

  • a = 10.8728 (7) Å

  • b = 13.4403 (10) Å

  • c = 9.0695 (6) Å

  • β = 103.680 (5)°

  • V = 1287.76 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.32 mm−1

  • T = 293 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Agilent Xcalibur (Sapphire2) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.356, Tmax = 0.371

  • 7762 measured reflections

  • 2188 independent reflections

  • 1854 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.156

  • S = 1.07

  • 2188 reflections

  • 133 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.51 e Å−3

  • Δρmin = −1.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Br2i 0.89 2.82 3.557 (9) 141
N1—H1C⋯OWii 0.89 2.63 3.151 (15) 119
OW—H1W⋯Br2i 0.88 (9) 2.64 (9) 3.457 (9) 154 (11)
OW—H2W⋯Br1iii 0.88 (9) 2.42 (9) 3.296 (8) 171 (16)
C7—H7A⋯Br1iii 0.96 2.71 3.459 (15) 135
N1—H1A⋯Br1ii 0.89 2.75 3.154 (9) 109
C5—H5⋯Br2iv 0.93 2.52 3.289 (12) 140
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (iv) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg et al., 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Hybrid organic-inorganic compounds are of great interest owing to their ionic, electrical, magnetic and optical properties (Kagan et al., 1999; Raptopoulou et al., 2002). As a continuation of our structural study of such hydrid compounds containing 2-methoxyanilinium cation (Karoui et al., 2013), we report herein the crystal structure of the title compound (I).

The asymmetric unit of (I) contains one 2-methoxyanilinium cation, one-half dianion and one crystalline water molecule (Fig. 1). The [SnBr6]2- dianion located on an inversion center exhibits a highly distorted octahedral coordination environment with Sn—Br bond lengths ranging from 2.2426 (9) Å to 3.0886 (13) Å. The Br—Sn—Br angles for the Br atoms in cis positions with respect to each other fall in the range of 83.74 (4) to 96.26 (4)°. The [SnBr6]2- dianions interact with water molecules via O—H···Br hydrogen bonds (Table 1) thus forming anionic layers parallel to the ab plane (Fig. 2). Bond lengths and angles within the cations and dianions are as expected and comparable with those observed in the related compounds (Benali-Cherif et al., 2007; Karoui et al., 2013; Guelmami et al., 2007; Souissi et al., 2011; Smith et al., 2006; Tudela & Khan, 1991; Chouaib et al., 2013). The phenyl ring is practically planar with the greatest deviation from the six-atoms least squares plane being 0.0156 Å. The torsion angle O1—C1—C2—N1 is 2 (2)° indicating that the N1—C2 and C1—O1 groups deviate from the phenyl ring plane. The methoxy group of the organic cation makes an angle of 0(2)° with the plane of the phenyl ring and is in short intramolecular contact with O1 (N···O =2.824 (14) Å). The benzene ring is regular with C—C—C angles in agreement with the expected sp2 hybridation.

In the crystal, intermolecular O—H···Br, N—H···Br, N—H···O and C—H···Br hydrogen bonds (Table 1) consolidate the packing (Fig. 3), which can be described as consisting of alternating anionic (containing dianions and crystalline water molecules) and cationic layers parallel to ab plane.

Related literature top

For general background to hybrid organic–inorganic compounds, see: Kagan et al. (1999); Raptopoulou et al. (2002). For related structures, see: Tudela & Khan (1991); Chouaib et al. (2013); Benali-Cherif et al. (2007); Karoui et al. (2013); Guelmami et al. (2007); Souissi et al. (2011); Smith et al. (2006).

Experimental top

(C7H10NO)2SnBr6·2H2O was prepared by refluxing during 5 h a solution of metallic tin (3 g, 25 mmol) in 40 ml an aqueous solution of hydrobromic acid, HBr 47%. To this solution, 9.5 ml (75 mmol) of a solution of 2-methoxyanilin was added at reflux temperature. After a slow solvent evaporation yellow crystals suitable for X-ray analysis were obtained. They were washed with diethyl ether and dried over P2O5.

Refinement top

All H atoms were geometrically positioned and treated as riding on their parent atoms, with C—H = 0.93 Å for the phenyl, 0.96 Å for the methyl and N—H= 0.89 Å with Uiso(H)= 1.2 Ueq(C-phenyl, N) or 1.5 Ueq(C-methyl). The water H atoms were located in a difference Fourier map and refined using DFIX restraints (O—H 0.88 (7) Å). and a riding model, with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg et al., 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I) showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: (i) -x + 1, -y + 1, -z + 1].
[Figure 2] Fig. 2. An anionic layer in (I) viewed along the c axis. Intermolecular hydrogen bonds are shown as red dashed lines.
[Figure 3] Fig. 3. A portion of the crystal packing showing the hydrogen bonds as red dashed lines.
Bis(2-methoxyanilinium) hexabromidostannate(IV) dihydrate top
Crystal data top
(C7H10NO)2[SnBr6]·2H2OF(000) = 828
Mr = 882.50Dx = 2.276 Mg m3
Dm = 2.276 Mg m3
Dm measured by not measured
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 5970 reflections
a = 10.8728 (7) Åθ = 3.6–24.7°
b = 13.4403 (10) ŵ = 10.32 mm1
c = 9.0695 (6) ÅT = 293 K
β = 103.680 (5)°Prism, yellow
V = 1287.76 (15) Å30.10 × 0.10 × 0.10 mm
Z = 2
Data collection top
Agilent Xcalibur (Sapphire2)
diffractometer
1854 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 24.7°, θmin = 3.6°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
k = 1115
Tmin = 0.356, Tmax = 0.371l = 1010
7762 measured reflections2 standard reflections every 120 min
2188 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0686P)2 + 18.8968P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2188 reflectionsΔρmax = 1.51 e Å3
133 parametersΔρmin = 1.44 e Å3
9 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (8)
Crystal data top
(C7H10NO)2[SnBr6]·2H2OV = 1287.76 (15) Å3
Mr = 882.50Z = 2
Monoclinic, P21/aMo Kα radiation
a = 10.8728 (7) ŵ = 10.32 mm1
b = 13.4403 (10) ÅT = 293 K
c = 9.0695 (6) Å0.10 × 0.10 × 0.10 mm
β = 103.680 (5)°
Data collection top
Agilent Xcalibur (Sapphire2)
diffractometer
2188 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
1854 reflections with I > 2σ(I)
Tmin = 0.356, Tmax = 0.371Rint = 0.052
7762 measured reflections2 standard reflections every 120 min
Refinement top
R[F2 > 2σ(F2)] = 0.0619 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0686P)2 + 18.8968P]
where P = (Fo2 + 2Fc2)/3
2188 reflectionsΔρmax = 1.51 e Å3
133 parametersΔρmin = 1.44 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50000.50000.50000.0316 (4)
Br20.42826 (15)0.67591 (9)0.41106 (12)0.0609 (5)
Br30.56362 (12)0.57192 (8)0.72849 (10)0.0444 (4)
Br10.22150 (13)0.46965 (11)0.51438 (14)0.0582 (5)
OW0.3159 (10)0.1977 (7)0.3700 (8)0.056 (2)
N10.5673 (10)0.1749 (8)0.2638 (9)0.047 (2)
H1A0.53240.12850.31090.071*
H1B0.55960.23410.30480.071*
H1C0.64890.16110.27380.071*
O10.3632 (11)0.0449 (7)0.1485 (10)0.068 (3)
C10.5131 (11)0.1763 (8)0.1279 (11)0.043 (3)
C20.4114 (12)0.1068 (9)0.0787 (10)0.050 (3)
C60.5699 (11)0.2478 (9)0.0605 (10)0.052 (3)
H60.63990.28470.11010.063*
C40.4156 (15)0.1880 (12)0.1337 (13)0.072 (4)
H40.38090.19290.23750.086*
C70.2509 (19)0.0282 (12)0.0978 (18)0.081 (5)
H7A0.23980.06580.18380.122*
H7B0.26820.07280.02250.122*
H7C0.17510.00860.05570.122*
C30.3580 (13)0.1144 (11)0.0702 (11)0.077 (5)
H30.29140.07530.12270.092*
C50.5122 (16)0.2580 (13)0.0858 (11)0.081 (5)
H50.53380.30610.14890.097*
H1W0.360 (10)0.238 (7)0.439 (10)0.08 (5)*
H2W0.297 (16)0.139 (6)0.402 (14)0.10 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0520 (7)0.0323 (6)0.0091 (5)0.0004 (4)0.0045 (4)0.0037 (3)
Br20.1150 (12)0.0381 (7)0.0191 (6)0.0070 (6)0.0052 (6)0.0030 (4)
Br30.0776 (9)0.0429 (7)0.0101 (5)0.0015 (5)0.0054 (5)0.0050 (4)
Br10.0642 (8)0.0749 (9)0.0411 (7)0.0200 (7)0.0237 (6)0.0303 (6)
OW0.099 (7)0.055 (5)0.015 (3)0.019 (5)0.015 (4)0.005 (3)
N10.065 (6)0.057 (6)0.018 (4)0.006 (5)0.005 (4)0.007 (4)
O10.106 (8)0.061 (6)0.038 (5)0.027 (5)0.021 (5)0.010 (4)
C10.060 (7)0.048 (6)0.020 (5)0.007 (5)0.010 (5)0.004 (4)
C20.066 (8)0.059 (8)0.031 (6)0.001 (6)0.021 (5)0.016 (5)
C60.066 (8)0.063 (8)0.023 (5)0.001 (6)0.000 (5)0.000 (5)
C40.088 (10)0.113 (13)0.016 (5)0.000 (9)0.015 (6)0.020 (7)
C70.131 (15)0.061 (9)0.057 (9)0.034 (9)0.035 (9)0.032 (7)
C30.068 (9)0.113 (13)0.041 (7)0.001 (9)0.004 (6)0.048 (8)
C50.104 (12)0.100 (12)0.035 (7)0.003 (10)0.010 (7)0.012 (8)
Geometric parameters (Å, º) top
Sn1—Br32.2426 (9)O1—C71.550 (18)
Sn1—Br3i2.2426 (9)C1—C61.363 (9)
Sn1—Br22.5595 (11)C1—C21.437 (16)
Sn1—Br2i2.5595 (11)C2—C31.341 (9)
Sn1—Br2i2.5595 (11)C6—C51.333 (9)
Sn1—Br13.0886 (13)C6—H60.9300
Sn1—Br1i3.0886 (13)C4—C31.368 (9)
OW—H1W0.88 (9)C4—C51.40 (2)
OW—H2W0.88 (9)C4—H40.9300
N1—C11.234 (13)C7—H7A0.9600
N1—H1A0.8900C7—H7B0.9600
N1—H1B0.8900C7—H7C0.9600
N1—H1C0.8900C3—H30.9300
O1—C21.235 (14)C5—H50.9300
Br3—Sn1—Br3i180.0H1B—N1—H1C109.5
Br3—Sn1—Br284.12 (4)C2—O1—C7132.4 (11)
Br3i—Sn1—Br295.88 (4)N1—C1—C6107.4 (10)
Br3—Sn1—Br2i95.88 (4)N1—C1—C2116.8 (9)
Br3i—Sn1—Br2i84.12 (4)C6—C1—C2135.8 (9)
Br2—Sn1—Br2i180.0O1—C2—C3115.7 (12)
Br3—Sn1—Br2i95.88 (4)O1—C2—C1131.9 (9)
Br3i—Sn1—Br2i84.12 (4)C3—C2—C1112.4 (10)
Br2—Sn1—Br2i180.0C5—C6—C1111.2 (11)
Br2i—Sn1—Br2i0.00 (5)C5—C6—H6124.4
Br3—Sn1—Br196.26 (4)C1—C6—H6124.4
Br3i—Sn1—Br183.74 (4)C3—C4—C5137.6 (11)
Br2—Sn1—Br184.64 (5)C3—C4—H4111.2
Br2i—Sn1—Br195.36 (5)C5—C4—H4111.2
Br2i—Sn1—Br195.36 (5)O1—C7—H7A109.5
Br3—Sn1—Br1i83.74 (4)O1—C7—H7B109.5
Br3i—Sn1—Br1i96.26 (4)H7A—C7—H7B109.5
Br2—Sn1—Br1i95.36 (5)O1—C7—H7C109.5
Br2i—Sn1—Br1i84.64 (5)H7A—C7—H7C109.5
Br2i—Sn1—Br1i84.64 (5)H7B—C7—H7C109.5
Br1—Sn1—Br1i180.00 (5)C2—C3—C4110.3 (10)
H1W—OW—H2W116.9 (4)C2—C3—H3124.8
C1—N1—H1A109.5C4—C3—H3124.8
C1—N1—H1B109.5C6—C5—C4112.5 (12)
H1A—N1—H1B109.5C6—C5—H5123.8
C1—N1—H1C109.5C4—C5—H5123.8
H1A—N1—H1C109.5
C7—O1—C2—C30 (2)C2—C1—C6—C54 (2)
C7—O1—C2—C1177.8 (14)O1—C2—C3—C4177.3 (13)
N1—C1—C2—O12 (2)C1—C2—C3—C40.6 (17)
C6—C1—C2—O1178.2 (15)C5—C4—C3—C22 (3)
N1—C1—C2—C3179.6 (12)C1—C6—C5—C44.5 (19)
C6—C1—C2—C31 (2)C3—C4—C5—C65 (3)
N1—C1—C6—C5176.6 (13)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Br2i0.892.823.557 (9)141
N1—H1C···OWii0.892.633.151 (15)119
OW—H1W···Br2i0.88 (9)2.64 (9)3.457 (9)154 (11)
OW—H2W···Br1iii0.88 (9)2.42 (9)3.296 (8)171 (16)
C7—H7A···Br1iii0.962.713.459 (15)135
N1—H1A···Br1ii0.892.753.154 (9)109
C5—H5···Br2iv0.932.523.289 (12)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z+1; (iv) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Br2i0.892.823.557 (9)140.9
N1—H1C···OWii0.892.633.151 (15)118.5
OW—H1W···Br2i0.88 (9)2.64 (9)3.457 (9)154 (11)
OW—H2W···Br1iii0.88 (9)2.42 (9)3.296 (8)171 (16)
C7—H7A···Br1iii0.962.713.459 (15)135.1
N1—H1A···Br1ii0.892.753.154 (9)108.8
C5—H5···Br2iv0.932.523.289 (12)140.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z+1; (iv) x+1, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBenali-Cherif, N., Boussekine, H., Boutobba, Z. & Kateb, A. (2007). Acta Cryst. E63, o3287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChouaib, H., Kamoun, S. & Ayedi, H. F. (2013). Acta Cryst. E69, m311.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuelmami, L., Guerfel, T. & Jouini, A. (2007). Mater. Res. Bull. 42, 446–455.  Web of Science CrossRef CAS Google Scholar
First citationKagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. (1999). Science, 286, 945–947.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaroui, S., Kamoun, S. & Michaud, F. (2013). Acta Cryst. E69, m187–m188.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRaptopoulou, C. P., Terzis, A., Mousdis, G. A. & Papavassiliou, G. C. (2002). Z. Naturforsch. Teil B, 57, 645–650.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o2313–o2315.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSouissi, S., Smirani Sta, W., S. Al-Deyab, S. & Rzaigui, M. (2011). Acta Cryst. E67, m754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTudela, D. & Khan, M. A. (1991). J. Chem. Soc. Dalton Trans. pp. 1003–1006.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m678-m679
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds