metal-organic compounds
Bis(2-methoxyanilinium) hexabromidostannate(IV) dihydrate
aLaboratoire de Genie des Materiaux et Environnement, Ecole Nationale d'Ingenieurs de Sfax, BP 1173, Sfax, Tunisia, and bService commun d'analyse par diffraction des rayons X, Universite de Brest, 6, avenue Victor Le Gorgeu, CS 93837, F-29238 Brest cedex 3, France
*Correspondence e-mail: chouaib.hassen@yahoo.fr
The 7H10NO)2[SnBr6]·2H2O, contains one cation, one half-dianion and one lattice water molecule. The [SnBr6]2− dianion, located on an inversion center, exhibits a highly distorted octahedral coordination environment, with Sn—Br bond lengths ranging from 2.2426 (9) to 3.0886 (13) Å. In the crystal, O—H⋯Br, N—H⋯Br, N—H⋯O and C—H⋯Br hydrogen bonds consolidate the packing, which can be described as consisting of alternating anionic (containing dianions and lattice water molecules) and cationic layers parallel to ab plane.
of the title compound, (CCCDC reference: 972899
Related literature
For general background to hybrid organic–inorganic compounds, see: Kagan et al. (1999); Raptopoulou et al. (2002). For related structures, see: Tudela & Khan (1991); Chouaib et al. (2013); Benali-Cherif et al. (2007); Karoui et al. (2013); Guelmami et al. (2007); Souissi et al. (2011); Smith et al. (2006).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg et al., 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 972899
10.1107/S1600536813031681/cv5437sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813031681/cv5437Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813031681/cv5437Isup3.cdx
(C7H10NO)2SnBr6·2H2O was prepared by refluxing during 5 h a solution of metallic tin (3 g, 25 mmol) in 40 ml an aqueous solution of hydrobromic acid, HBr 47%. To this solution, 9.5 ml (75 mmol) of a solution of 2-methoxyanilin was added at reflux temperature. After a slow solvent evaporation yellow crystals suitable for X-ray analysis were obtained. They were washed with diethyl ether and dried over P2O5.
All H atoms were geometrically positioned and treated as riding on their parent atoms, with C—H = 0.93 Å for the phenyl, 0.96 Å for the methyl and N—H= 0.89 Å with Uiso(H)= 1.2 Ueq(C-phenyl, N) or 1.5 Ueq(C-methyl). The water H atoms were located in a difference Fourier map and refined using DFIX restraints (O—H 0.88 (7) Å). and a riding model, with Uiso(H) = 1.5 Ueq(O).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg et al., 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. A view of the asymmetric unit of (I) showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: (i) -x + 1, -y + 1, -z + 1]. | |
Fig. 2. An anionic layer in (I) viewed along the c axis. Intermolecular hydrogen bonds are shown as red dashed lines. | |
Fig. 3. A portion of the crystal packing showing the hydrogen bonds as red dashed lines. |
(C7H10NO)2[SnBr6]·2H2O | F(000) = 828 |
Mr = 882.50 | Dx = 2.276 Mg m−3 Dm = 2.276 Mg m−3 Dm measured by not measured |
Monoclinic, P21/a | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yab | Cell parameters from 5970 reflections |
a = 10.8728 (7) Å | θ = 3.6–24.7° |
b = 13.4403 (10) Å | µ = 10.32 mm−1 |
c = 9.0695 (6) Å | T = 293 K |
β = 103.680 (5)° | Prism, yellow |
V = 1287.76 (15) Å3 | 0.10 × 0.10 × 0.10 mm |
Z = 2 |
Agilent Xcalibur (Sapphire2) diffractometer | 1854 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.052 |
Graphite monochromator | θmax = 24.7°, θmin = 3.6° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) | k = −11→15 |
Tmin = 0.356, Tmax = 0.371 | l = −10→10 |
7762 measured reflections | 2 standard reflections every 120 min |
2188 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.156 | w = 1/[σ2(Fo2) + (0.0686P)2 + 18.8968P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2188 reflections | Δρmax = 1.51 e Å−3 |
133 parameters | Δρmin = −1.44 e Å−3 |
9 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0039 (8) |
(C7H10NO)2[SnBr6]·2H2O | V = 1287.76 (15) Å3 |
Mr = 882.50 | Z = 2 |
Monoclinic, P21/a | Mo Kα radiation |
a = 10.8728 (7) Å | µ = 10.32 mm−1 |
b = 13.4403 (10) Å | T = 293 K |
c = 9.0695 (6) Å | 0.10 × 0.10 × 0.10 mm |
β = 103.680 (5)° |
Agilent Xcalibur (Sapphire2) diffractometer | 2188 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) | 1854 reflections with I > 2σ(I) |
Tmin = 0.356, Tmax = 0.371 | Rint = 0.052 |
7762 measured reflections | 2 standard reflections every 120 min |
R[F2 > 2σ(F2)] = 0.061 | 9 restraints |
wR(F2) = 0.156 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0686P)2 + 18.8968P] where P = (Fo2 + 2Fc2)/3 |
2188 reflections | Δρmax = 1.51 e Å−3 |
133 parameters | Δρmin = −1.44 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.5000 | 0.5000 | 0.5000 | 0.0316 (4) | |
Br2 | 0.42826 (15) | 0.67591 (9) | 0.41106 (12) | 0.0609 (5) | |
Br3 | 0.56362 (12) | 0.57192 (8) | 0.72849 (10) | 0.0444 (4) | |
Br1 | 0.22150 (13) | 0.46965 (11) | 0.51438 (14) | 0.0582 (5) | |
OW | 0.3159 (10) | 0.1977 (7) | 0.3700 (8) | 0.056 (2) | |
N1 | 0.5673 (10) | 0.1749 (8) | 0.2638 (9) | 0.047 (2) | |
H1A | 0.5324 | 0.1285 | 0.3109 | 0.071* | |
H1B | 0.5596 | 0.2341 | 0.3048 | 0.071* | |
H1C | 0.6489 | 0.1611 | 0.2738 | 0.071* | |
O1 | 0.3632 (11) | 0.0449 (7) | 0.1485 (10) | 0.068 (3) | |
C1 | 0.5131 (11) | 0.1763 (8) | 0.1279 (11) | 0.043 (3) | |
C2 | 0.4114 (12) | 0.1068 (9) | 0.0787 (10) | 0.050 (3) | |
C6 | 0.5699 (11) | 0.2478 (9) | 0.0605 (10) | 0.052 (3) | |
H6 | 0.6399 | 0.2847 | 0.1101 | 0.063* | |
C4 | 0.4156 (15) | 0.1880 (12) | −0.1337 (13) | 0.072 (4) | |
H4 | 0.3809 | 0.1929 | −0.2375 | 0.086* | |
C7 | 0.2509 (19) | −0.0282 (12) | 0.0978 (18) | 0.081 (5) | |
H7A | 0.2398 | −0.0658 | 0.1838 | 0.122* | |
H7B | 0.2682 | −0.0728 | 0.0225 | 0.122* | |
H7C | 0.1751 | 0.0086 | 0.0557 | 0.122* | |
C3 | 0.3580 (13) | 0.1144 (11) | −0.0702 (11) | 0.077 (5) | |
H3 | 0.2914 | 0.0753 | −0.1227 | 0.092* | |
C5 | 0.5122 (16) | 0.2580 (13) | −0.0858 (11) | 0.081 (5) | |
H5 | 0.5338 | 0.3061 | −0.1489 | 0.097* | |
H1W | 0.360 (10) | 0.238 (7) | 0.439 (10) | 0.08 (5)* | |
H2W | 0.297 (16) | 0.139 (6) | 0.402 (14) | 0.10 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.0520 (7) | 0.0323 (6) | 0.0091 (5) | 0.0004 (4) | 0.0045 (4) | −0.0037 (3) |
Br2 | 0.1150 (12) | 0.0381 (7) | 0.0191 (6) | 0.0070 (6) | −0.0052 (6) | 0.0030 (4) |
Br3 | 0.0776 (9) | 0.0429 (7) | 0.0101 (5) | −0.0015 (5) | 0.0054 (5) | −0.0050 (4) |
Br1 | 0.0642 (8) | 0.0749 (9) | 0.0411 (7) | −0.0200 (7) | 0.0237 (6) | −0.0303 (6) |
OW | 0.099 (7) | 0.055 (5) | 0.015 (3) | −0.019 (5) | 0.015 (4) | 0.005 (3) |
N1 | 0.065 (6) | 0.057 (6) | 0.018 (4) | 0.006 (5) | 0.005 (4) | 0.007 (4) |
O1 | 0.106 (8) | 0.061 (6) | 0.038 (5) | −0.027 (5) | 0.021 (5) | −0.010 (4) |
C1 | 0.060 (7) | 0.048 (6) | 0.020 (5) | 0.007 (5) | 0.010 (5) | 0.004 (4) |
C2 | 0.066 (8) | 0.059 (8) | 0.031 (6) | −0.001 (6) | 0.021 (5) | −0.016 (5) |
C6 | 0.066 (8) | 0.063 (8) | 0.023 (5) | 0.001 (6) | 0.000 (5) | 0.000 (5) |
C4 | 0.088 (10) | 0.113 (13) | 0.016 (5) | 0.000 (9) | 0.015 (6) | 0.020 (7) |
C7 | 0.131 (15) | 0.061 (9) | 0.057 (9) | −0.034 (9) | 0.035 (9) | −0.032 (7) |
C3 | 0.068 (9) | 0.113 (13) | 0.041 (7) | 0.001 (9) | −0.004 (6) | −0.048 (8) |
C5 | 0.104 (12) | 0.100 (12) | 0.035 (7) | −0.003 (10) | 0.010 (7) | −0.012 (8) |
Sn1—Br3 | 2.2426 (9) | O1—C7 | 1.550 (18) |
Sn1—Br3i | 2.2426 (9) | C1—C6 | 1.363 (9) |
Sn1—Br2 | 2.5595 (11) | C1—C2 | 1.437 (16) |
Sn1—Br2i | 2.5595 (11) | C2—C3 | 1.341 (9) |
Sn1—Br2i | 2.5595 (11) | C6—C5 | 1.333 (9) |
Sn1—Br1 | 3.0886 (13) | C6—H6 | 0.9300 |
Sn1—Br1i | 3.0886 (13) | C4—C3 | 1.368 (9) |
OW—H1W | 0.88 (9) | C4—C5 | 1.40 (2) |
OW—H2W | 0.88 (9) | C4—H4 | 0.9300 |
N1—C1 | 1.234 (13) | C7—H7A | 0.9600 |
N1—H1A | 0.8900 | C7—H7B | 0.9600 |
N1—H1B | 0.8900 | C7—H7C | 0.9600 |
N1—H1C | 0.8900 | C3—H3 | 0.9300 |
O1—C2 | 1.235 (14) | C5—H5 | 0.9300 |
Br3—Sn1—Br3i | 180.0 | H1B—N1—H1C | 109.5 |
Br3—Sn1—Br2 | 84.12 (4) | C2—O1—C7 | 132.4 (11) |
Br3i—Sn1—Br2 | 95.88 (4) | N1—C1—C6 | 107.4 (10) |
Br3—Sn1—Br2i | 95.88 (4) | N1—C1—C2 | 116.8 (9) |
Br3i—Sn1—Br2i | 84.12 (4) | C6—C1—C2 | 135.8 (9) |
Br2—Sn1—Br2i | 180.0 | O1—C2—C3 | 115.7 (12) |
Br3—Sn1—Br2i | 95.88 (4) | O1—C2—C1 | 131.9 (9) |
Br3i—Sn1—Br2i | 84.12 (4) | C3—C2—C1 | 112.4 (10) |
Br2—Sn1—Br2i | 180.0 | C5—C6—C1 | 111.2 (11) |
Br2i—Sn1—Br2i | 0.00 (5) | C5—C6—H6 | 124.4 |
Br3—Sn1—Br1 | 96.26 (4) | C1—C6—H6 | 124.4 |
Br3i—Sn1—Br1 | 83.74 (4) | C3—C4—C5 | 137.6 (11) |
Br2—Sn1—Br1 | 84.64 (5) | C3—C4—H4 | 111.2 |
Br2i—Sn1—Br1 | 95.36 (5) | C5—C4—H4 | 111.2 |
Br2i—Sn1—Br1 | 95.36 (5) | O1—C7—H7A | 109.5 |
Br3—Sn1—Br1i | 83.74 (4) | O1—C7—H7B | 109.5 |
Br3i—Sn1—Br1i | 96.26 (4) | H7A—C7—H7B | 109.5 |
Br2—Sn1—Br1i | 95.36 (5) | O1—C7—H7C | 109.5 |
Br2i—Sn1—Br1i | 84.64 (5) | H7A—C7—H7C | 109.5 |
Br2i—Sn1—Br1i | 84.64 (5) | H7B—C7—H7C | 109.5 |
Br1—Sn1—Br1i | 180.00 (5) | C2—C3—C4 | 110.3 (10) |
H1W—OW—H2W | 116.9 (4) | C2—C3—H3 | 124.8 |
C1—N1—H1A | 109.5 | C4—C3—H3 | 124.8 |
C1—N1—H1B | 109.5 | C6—C5—C4 | 112.5 (12) |
H1A—N1—H1B | 109.5 | C6—C5—H5 | 123.8 |
C1—N1—H1C | 109.5 | C4—C5—H5 | 123.8 |
H1A—N1—H1C | 109.5 | ||
C7—O1—C2—C3 | 0 (2) | C2—C1—C6—C5 | 4 (2) |
C7—O1—C2—C1 | 177.8 (14) | O1—C2—C3—C4 | 177.3 (13) |
N1—C1—C2—O1 | 2 (2) | C1—C2—C3—C4 | −0.6 (17) |
C6—C1—C2—O1 | −178.2 (15) | C5—C4—C3—C2 | −2 (3) |
N1—C1—C2—C3 | 179.6 (12) | C1—C6—C5—C4 | −4.5 (19) |
C6—C1—C2—C3 | −1 (2) | C3—C4—C5—C6 | 5 (3) |
N1—C1—C6—C5 | −176.6 (13) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···Br2i | 0.89 | 2.82 | 3.557 (9) | 141 |
N1—H1C···OWii | 0.89 | 2.63 | 3.151 (15) | 119 |
OW—H1W···Br2i | 0.88 (9) | 2.64 (9) | 3.457 (9) | 154 (11) |
OW—H2W···Br1iii | 0.88 (9) | 2.42 (9) | 3.296 (8) | 171 (16) |
C7—H7A···Br1iii | 0.96 | 2.71 | 3.459 (15) | 135 |
N1—H1A···Br1ii | 0.89 | 2.75 | 3.154 (9) | 109 |
C5—H5···Br2iv | 0.93 | 2.52 | 3.289 (12) | 140 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+1/2, z; (iii) −x+1/2, y−1/2, −z+1; (iv) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···Br2i | 0.89 | 2.82 | 3.557 (9) | 140.9 |
N1—H1C···OWii | 0.89 | 2.63 | 3.151 (15) | 118.5 |
OW—H1W···Br2i | 0.88 (9) | 2.64 (9) | 3.457 (9) | 154 (11) |
OW—H2W···Br1iii | 0.88 (9) | 2.42 (9) | 3.296 (8) | 171 (16) |
C7—H7A···Br1iii | 0.96 | 2.71 | 3.459 (15) | 135.1 |
N1—H1A···Br1ii | 0.89 | 2.75 | 3.154 (9) | 108.8 |
C5—H5···Br2iv | 0.93 | 2.52 | 3.289 (12) | 140.3 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+1/2, z; (iii) −x+1/2, y−1/2, −z+1; (iv) −x+1, −y+1, −z. |
Acknowledgements
The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Benali-Cherif, N., Boussekine, H., Boutobba, Z. & Kateb, A. (2007). Acta Cryst. E63, o3287. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chouaib, H., Kamoun, S. & Ayedi, H. F. (2013). Acta Cryst. E69, m311. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Guelmami, L., Guerfel, T. & Jouini, A. (2007). Mater. Res. Bull. 42, 446–455. Web of Science CrossRef CAS Google Scholar
Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. (1999). Science, 286, 945–947. Web of Science CrossRef PubMed CAS Google Scholar
Karoui, S., Kamoun, S. & Michaud, F. (2013). Acta Cryst. E69, m187–m188. CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Raptopoulou, C. P., Terzis, A., Mousdis, G. A. & Papavassiliou, G. C. (2002). Z. Naturforsch. Teil B, 57, 645–650. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o2313–o2315. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Souissi, S., Smirani Sta, W., S. Al-Deyab, S. & Rzaigui, M. (2011). Acta Cryst. E67, m754. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tudela, D. & Khan, M. A. (1991). J. Chem. Soc. Dalton Trans. pp. 1003–1006. CSD CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hybrid organic-inorganic compounds are of great interest owing to their ionic, electrical, magnetic and optical properties (Kagan et al., 1999; Raptopoulou et al., 2002). As a continuation of our structural study of such hydrid compounds containing 2-methoxyanilinium cation (Karoui et al., 2013), we report herein the crystal structure of the title compound (I).
The asymmetric unit of (I) contains one 2-methoxyanilinium cation, one-half dianion and one crystalline water molecule (Fig. 1). The [SnBr6]2- dianion located on an inversion center exhibits a highly distorted octahedral coordination environment with Sn—Br bond lengths ranging from 2.2426 (9) Å to 3.0886 (13) Å. The Br—Sn—Br angles for the Br atoms in cis positions with respect to each other fall in the range of 83.74 (4) to 96.26 (4)°. The [SnBr6]2- dianions interact with water molecules via O—H···Br hydrogen bonds (Table 1) thus forming anionic layers parallel to the ab plane (Fig. 2). Bond lengths and angles within the cations and dianions are as expected and comparable with those observed in the related compounds (Benali-Cherif et al., 2007; Karoui et al., 2013; Guelmami et al., 2007; Souissi et al., 2011; Smith et al., 2006; Tudela & Khan, 1991; Chouaib et al., 2013). The phenyl ring is practically planar with the greatest deviation from the six-atoms least squares plane being 0.0156 Å. The torsion angle O1—C1—C2—N1 is 2 (2)° indicating that the N1—C2 and C1—O1 groups deviate from the phenyl ring plane. The methoxy group of the organic cation makes an angle of 0(2)° with the plane of the phenyl ring and is in short intramolecular contact with O1 (N···O =2.824 (14) Å). The benzene ring is regular with C—C—C angles in agreement with the expected sp2 hybridation.
In the crystal, intermolecular O—H···Br, N—H···Br, N—H···O and C—H···Br hydrogen bonds (Table 1) consolidate the packing (Fig. 3), which can be described as consisting of alternating anionic (containing dianions and crystalline water molecules) and cationic layers parallel to ab plane.