metal-organic compounds
Hexa-μ-acetato-1:2κ4O,O′;1:2κ2O:O;2:3κ4O,O′;2:3κ2O:O-bis(4,4′-dimethyl-2,2′-bipyridine)-1κ2N,N′;3κ2N,N′-2-calcium-1,3-dizinc
aDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: alamgir.hossain@jsums.edu
In the centrosymmetric trinuclear ZnII⋯CaII⋯ZnII title complex, [CaZn2(CH3COO)6(C12H12N2)2], the CaII ion lies on an inversion centre and is octahedrally coordinated by six acetate O atoms. The ZnII ion is coordinated by two N atoms from a bidentate dimethylbipyridine ligand and three O atoms from acetate ligands bridging to the CaII ion, leading to a distorted square-pyramidal coordination sphere. The Zn⋯Ca distance is 3.4668 (5) Å.
CCDC reference: 969906
Related literature
For a review of the coordination chemistry of metal carboxylates, see: Rao et al. (2004). For applications of metal complexes in anion binding, see: Saeed et al. (2010); Mendy et al. (2010). For multimetallic complexes involving azide, cyanide, isocyanate, isothiocyanate, hydroxide, oxide and carboxylate anions, see: Herold & Lippard (1997). For coordination modes of carboxylate ions acting as bidentate ligands in metalloenzymes, see: Voegtli et al. (2000). For details of the synthesis, see: Hossain et al. (2010).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 969906
10.1107/S1600536813030122/fj2647sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813030122/fj2647Isup2.hkl
4,4'-dimethyl-2,2'-bipyridine (0.5 g, 2.71 mmol) and zinc acetate (0.9 g, 4.1 mmol) of was added to hexa N-substituted (p-cyano benzamido) para xylyl based octa-aza
(0.15 g) in 20 mL of ethanol-water (1:1, v/v) mixture at room temperature (Hossain et al., 2010). The mixture was further diluted with 10 mL DMSO solvent with constant stirring. Only a few crystals were grown after a week, which was characterized by single-crystal diffraction method. Further analysis was not possible because of the small quantity of the product.H atoms on C were placed in idealized positions with C—H distances 0.95 - 0.98 Å and thereafter treated as riding. Uiso for H was assigned as 1.2 times Ueq of the attached atom (1.5 for methyl). The largest residual density peak was 1.50 Å from O2.
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. ORTEP drawings of the crystal structure and atomic numbering scheme of trinuclear ZnII—CaII—ZnII complex. Ellipsoids are set at the 50% probability level. |
[CaZn2(C2H3O2)6(C12H12N2)2] | Z = 1 |
Mr = 893.56 | F(000) = 462 |
Triclinic, P1 | Dx = 1.545 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3356 (10) Å | Cell parameters from 7990 reflections |
b = 8.841 (1) Å | θ = 2.5–36.7° |
c = 13.696 (2) Å | µ = 1.45 mm−1 |
α = 74.103 (7)° | T = 100 K |
β = 83.263 (6)° | Parallelepiped, colorless |
γ = 83.560 (7)° | 0.34 × 0.32 × 0.27 mm |
V = 960.6 (2) Å3 |
Nonius KappaCCD diffractometer | 8962 independent reflections |
Radiation source: fine-focus sealed tube | 7497 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω and ϕ scans | θmax = 36.7°, θmin = 3.0° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | h = −13→13 |
Tmin = 0.639, Tmax = 0.699 | k = −14→14 |
16096 measured reflections | l = −22→22 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0386P)2 + 0.3887P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
8962 reflections | Δρmax = 0.65 e Å−3 |
256 parameters | Δρmin = −0.78 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0061 (13) |
[CaZn2(C2H3O2)6(C12H12N2)2] | γ = 83.560 (7)° |
Mr = 893.56 | V = 960.6 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.3356 (10) Å | Mo Kα radiation |
b = 8.841 (1) Å | µ = 1.45 mm−1 |
c = 13.696 (2) Å | T = 100 K |
α = 74.103 (7)° | 0.34 × 0.32 × 0.27 mm |
β = 83.263 (6)° |
Nonius KappaCCD diffractometer | 8962 independent reflections |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | 7497 reflections with I > 2σ(I) |
Tmin = 0.639, Tmax = 0.699 | Rint = 0.025 |
16096 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.65 e Å−3 |
8962 reflections | Δρmin = −0.78 e Å−3 |
256 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.645512 (17) | 0.565205 (16) | 0.245482 (10) | 0.01344 (4) | |
Ca1 | 0.5000 | 0.5000 | 0.5000 | 0.01472 (6) | |
O1 | 0.42917 (11) | 0.57148 (11) | 0.33397 (7) | 0.01780 (16) | |
O2 | 0.36225 (13) | 0.71366 (13) | 0.18192 (8) | 0.02391 (19) | |
O3 | 0.83825 (11) | 0.42210 (11) | 0.30301 (7) | 0.01864 (16) | |
O4 | 0.69345 (13) | 0.32456 (12) | 0.45013 (8) | 0.02265 (18) | |
O5 | 0.71692 (12) | 0.76819 (11) | 0.26269 (7) | 0.01935 (17) | |
O6 | 0.68069 (13) | 0.68704 (12) | 0.43296 (7) | 0.02151 (18) | |
N1 | 0.73039 (13) | 0.60239 (13) | 0.09209 (8) | 0.01657 (18) | |
N2 | 0.56062 (13) | 0.37004 (12) | 0.20333 (8) | 0.01583 (17) | |
C1 | 0.81557 (16) | 0.72407 (16) | 0.04117 (10) | 0.0197 (2) | |
H1 | 0.8270 | 0.8035 | 0.0740 | 0.024* | |
C2 | 0.88835 (16) | 0.73989 (19) | −0.05764 (10) | 0.0240 (3) | |
C3 | 0.87138 (17) | 0.62079 (19) | −0.10347 (10) | 0.0252 (3) | |
H3 | 0.9215 | 0.6255 | −0.1701 | 0.030* | |
C4 | 0.78117 (17) | 0.49493 (18) | −0.05182 (10) | 0.0222 (2) | |
H4 | 0.7676 | 0.4143 | −0.0832 | 0.027* | |
C5 | 0.71088 (15) | 0.48875 (15) | 0.04678 (9) | 0.0172 (2) | |
C6 | 0.61311 (15) | 0.35900 (15) | 0.10892 (9) | 0.0169 (2) | |
C7 | 0.57756 (16) | 0.23203 (17) | 0.07454 (11) | 0.0218 (2) | |
H7 | 0.6131 | 0.2261 | 0.0071 | 0.026* | |
C8 | 0.48959 (17) | 0.11521 (16) | 0.14069 (12) | 0.0232 (3) | |
H8 | 0.4667 | 0.0273 | 0.1189 | 0.028* | |
C9 | 0.43442 (15) | 0.12613 (15) | 0.23931 (11) | 0.0196 (2) | |
C10 | 0.47342 (15) | 0.25801 (14) | 0.26603 (10) | 0.0176 (2) | |
H10 | 0.4362 | 0.2690 | 0.3322 | 0.021* | |
C11 | 0.9812 (2) | 0.8811 (2) | −0.11066 (13) | 0.0346 (4) | |
H11A | 1.0352 | 0.8670 | −0.1755 | 0.052* | |
H11B | 1.0625 | 0.8915 | −0.0673 | 0.052* | |
H11C | 0.9061 | 0.9765 | −0.1237 | 0.052* | |
C12 | 0.34091 (18) | 0.00266 (16) | 0.31539 (13) | 0.0256 (3) | |
H12A | 0.3132 | 0.0348 | 0.3787 | 0.038* | |
H12B | 0.4074 | −0.0983 | 0.3295 | 0.038* | |
H12C | 0.2413 | −0.0090 | 0.2876 | 0.038* | |
C13 | 0.32312 (15) | 0.64702 (15) | 0.27164 (10) | 0.0181 (2) | |
C14 | 0.14820 (17) | 0.6467 (2) | 0.31439 (13) | 0.0278 (3) | |
H14A | 0.0848 | 0.7359 | 0.2725 | 0.042* | |
H14B | 0.1400 | 0.6562 | 0.3845 | 0.042* | |
H14C | 0.1060 | 0.5478 | 0.3141 | 0.042* | |
C15 | 0.82225 (15) | 0.33229 (14) | 0.39256 (10) | 0.0172 (2) | |
C16 | 0.97115 (18) | 0.22946 (17) | 0.43100 (12) | 0.0258 (3) | |
H16A | 1.0392 | 0.2906 | 0.4569 | 0.039* | |
H16B | 1.0326 | 0.1928 | 0.3751 | 0.039* | |
H16C | 0.9382 | 0.1383 | 0.4860 | 0.039* | |
C17 | 0.71988 (15) | 0.78611 (14) | 0.35138 (10) | 0.0168 (2) | |
C18 | 0.77759 (17) | 0.93922 (15) | 0.35734 (11) | 0.0211 (2) | |
H18A | 0.7256 | 0.9663 | 0.4190 | 0.032* | |
H18B | 0.7491 | 1.0235 | 0.2972 | 0.032* | |
H18C | 0.8955 | 0.9271 | 0.3597 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01502 (6) | 0.01454 (7) | 0.01144 (6) | −0.00042 (4) | −0.00181 (4) | −0.00464 (4) |
Ca1 | 0.01700 (14) | 0.01496 (13) | 0.01184 (13) | −0.00157 (10) | −0.00028 (10) | −0.00328 (10) |
O1 | 0.0157 (4) | 0.0207 (4) | 0.0197 (4) | 0.0005 (3) | −0.0035 (3) | −0.0098 (3) |
O2 | 0.0267 (5) | 0.0276 (5) | 0.0201 (4) | −0.0007 (4) | −0.0052 (4) | −0.0103 (4) |
O3 | 0.0182 (4) | 0.0205 (4) | 0.0170 (4) | 0.0008 (3) | −0.0045 (3) | −0.0043 (3) |
O4 | 0.0236 (4) | 0.0183 (4) | 0.0232 (5) | −0.0002 (3) | 0.0002 (4) | −0.0024 (3) |
O5 | 0.0234 (4) | 0.0193 (4) | 0.0172 (4) | −0.0026 (3) | −0.0031 (3) | −0.0072 (3) |
O6 | 0.0267 (5) | 0.0201 (4) | 0.0180 (4) | −0.0057 (3) | −0.0054 (3) | −0.0026 (3) |
N1 | 0.0152 (4) | 0.0210 (5) | 0.0138 (4) | 0.0009 (3) | −0.0031 (3) | −0.0053 (3) |
N2 | 0.0169 (4) | 0.0158 (4) | 0.0168 (4) | 0.0015 (3) | −0.0045 (3) | −0.0076 (3) |
C1 | 0.0180 (5) | 0.0246 (6) | 0.0152 (5) | −0.0017 (4) | −0.0014 (4) | −0.0032 (4) |
C2 | 0.0177 (5) | 0.0345 (7) | 0.0161 (5) | 0.0009 (5) | −0.0013 (4) | −0.0017 (5) |
C3 | 0.0210 (6) | 0.0391 (8) | 0.0132 (5) | 0.0048 (5) | −0.0015 (4) | −0.0058 (5) |
C4 | 0.0209 (5) | 0.0320 (7) | 0.0149 (5) | 0.0056 (5) | −0.0042 (4) | −0.0104 (5) |
C5 | 0.0159 (5) | 0.0235 (5) | 0.0137 (5) | 0.0044 (4) | −0.0050 (4) | −0.0080 (4) |
C6 | 0.0154 (5) | 0.0209 (5) | 0.0166 (5) | 0.0041 (4) | −0.0061 (4) | −0.0091 (4) |
C7 | 0.0212 (6) | 0.0259 (6) | 0.0234 (6) | 0.0042 (5) | −0.0075 (5) | −0.0152 (5) |
C8 | 0.0211 (6) | 0.0225 (6) | 0.0322 (7) | 0.0032 (4) | −0.0095 (5) | −0.0166 (5) |
C9 | 0.0166 (5) | 0.0166 (5) | 0.0281 (6) | 0.0024 (4) | −0.0072 (4) | −0.0097 (4) |
C10 | 0.0171 (5) | 0.0166 (5) | 0.0211 (5) | 0.0007 (4) | −0.0039 (4) | −0.0081 (4) |
C11 | 0.0299 (7) | 0.0446 (9) | 0.0227 (7) | −0.0096 (7) | 0.0040 (6) | 0.0022 (6) |
C12 | 0.0218 (6) | 0.0177 (5) | 0.0392 (8) | −0.0020 (4) | −0.0039 (5) | −0.0102 (5) |
C13 | 0.0159 (5) | 0.0188 (5) | 0.0241 (6) | −0.0008 (4) | −0.0039 (4) | −0.0129 (4) |
C14 | 0.0143 (5) | 0.0355 (7) | 0.0371 (8) | −0.0019 (5) | −0.0008 (5) | −0.0160 (6) |
C15 | 0.0204 (5) | 0.0133 (5) | 0.0189 (5) | 0.0013 (4) | −0.0063 (4) | −0.0053 (4) |
C16 | 0.0263 (6) | 0.0225 (6) | 0.0279 (7) | 0.0090 (5) | −0.0108 (5) | −0.0066 (5) |
C17 | 0.0168 (5) | 0.0155 (5) | 0.0195 (5) | 0.0000 (4) | −0.0049 (4) | −0.0063 (4) |
C18 | 0.0259 (6) | 0.0165 (5) | 0.0234 (6) | −0.0039 (4) | −0.0062 (5) | −0.0067 (4) |
Zn1—O3 | 2.0243 (10) | C4—C5 | 1.3968 (18) |
Zn1—O5 | 2.0334 (10) | C4—H4 | 0.9500 |
Zn1—O1 | 2.0556 (10) | C5—C6 | 1.4887 (19) |
Zn1—N1 | 2.0851 (11) | C6—C7 | 1.4023 (18) |
Zn1—N2 | 2.1741 (10) | C7—C8 | 1.388 (2) |
Zn1—Ca1 | 3.4668 (5) | C7—H7 | 0.9500 |
Ca1—O4i | 2.2876 (10) | C8—C9 | 1.400 (2) |
Ca1—O4 | 2.2876 (10) | C8—H8 | 0.9500 |
Ca1—O6i | 2.2910 (10) | C9—C10 | 1.3949 (17) |
Ca1—O6 | 2.2910 (10) | C9—C12 | 1.504 (2) |
Ca1—O1 | 2.3158 (10) | C10—H10 | 0.9500 |
Ca1—O1i | 2.3158 (10) | C11—H11A | 0.9800 |
Ca1—Zn1i | 3.4668 (5) | C11—H11B | 0.9800 |
O1—C13 | 1.2994 (16) | C11—H11C | 0.9800 |
O2—C13 | 1.2313 (17) | C12—H12A | 0.9800 |
O3—C15 | 1.2666 (15) | C12—H12B | 0.9800 |
O4—C15 | 1.2520 (17) | C12—H12C | 0.9800 |
O5—C17 | 1.2706 (15) | C13—C14 | 1.5061 (19) |
O6—C17 | 1.2509 (16) | C14—H14A | 0.9800 |
N1—C1 | 1.3386 (17) | C14—H14B | 0.9800 |
N1—C5 | 1.3502 (16) | C14—H14C | 0.9800 |
N2—C10 | 1.3401 (17) | C15—C16 | 1.5106 (18) |
N2—C6 | 1.3415 (16) | C16—H16A | 0.9800 |
C1—C2 | 1.3935 (19) | C16—H16B | 0.9800 |
C1—H1 | 0.9500 | C16—H16C | 0.9800 |
C2—C3 | 1.393 (2) | C17—C18 | 1.5121 (17) |
C2—C11 | 1.507 (2) | C18—H18A | 0.9800 |
C3—C4 | 1.391 (2) | C18—H18B | 0.9800 |
C3—H3 | 0.9500 | C18—H18C | 0.9800 |
O3—Zn1—O5 | 96.76 (4) | N2—C6—C5 | 114.92 (10) |
O3—Zn1—O1 | 120.20 (4) | C7—C6—C5 | 124.11 (11) |
O5—Zn1—O1 | 95.68 (4) | C8—C7—C6 | 118.89 (12) |
O3—Zn1—N1 | 96.90 (4) | C8—C7—H7 | 120.6 |
O5—Zn1—N1 | 96.21 (4) | C6—C7—H7 | 120.6 |
O1—Zn1—N1 | 139.18 (4) | C7—C8—C9 | 120.39 (12) |
O3—Zn1—N2 | 89.55 (4) | C7—C8—H8 | 119.8 |
O5—Zn1—N2 | 171.01 (4) | C9—C8—H8 | 119.8 |
O1—Zn1—N2 | 86.60 (4) | C10—C9—C8 | 116.57 (13) |
N1—Zn1—N2 | 76.62 (4) | C10—C9—C12 | 120.25 (13) |
O4i—Ca1—O4 | 180.0 | C8—C9—C12 | 123.17 (12) |
O4i—Ca1—O6i | 86.56 (4) | N2—C10—C9 | 123.49 (12) |
O4—Ca1—O6i | 93.44 (4) | N2—C10—H10 | 118.3 |
O4i—Ca1—O6 | 93.44 (4) | C9—C10—H10 | 118.3 |
O4—Ca1—O6 | 86.56 (4) | C2—C11—H11A | 109.5 |
O6i—Ca1—O6 | 180.0 | C2—C11—H11B | 109.5 |
O4i—Ca1—O1 | 93.28 (4) | H11A—C11—H11B | 109.5 |
O4—Ca1—O1 | 86.72 (4) | C2—C11—H11C | 109.5 |
O6i—Ca1—O1 | 97.73 (3) | H11A—C11—H11C | 109.5 |
O6—Ca1—O1 | 82.27 (3) | H11B—C11—H11C | 109.5 |
O4i—Ca1—O1i | 86.72 (4) | C9—C12—H12A | 109.5 |
O4—Ca1—O1i | 93.28 (4) | C9—C12—H12B | 109.5 |
O6i—Ca1—O1i | 82.27 (3) | H12A—C12—H12B | 109.5 |
O6—Ca1—O1i | 97.73 (3) | C9—C12—H12C | 109.5 |
O1—Ca1—O1i | 179.999 (17) | H12A—C12—H12C | 109.5 |
C13—O1—Zn1 | 105.63 (8) | H12B—C12—H12C | 109.5 |
C13—O1—Ca1 | 146.51 (8) | O2—C13—O1 | 122.19 (12) |
Zn1—O1—Ca1 | 104.79 (4) | O2—C13—C14 | 121.36 (13) |
C15—O3—Zn1 | 119.31 (8) | O1—C13—C14 | 116.44 (12) |
C15—O4—Ca1 | 136.47 (8) | C13—C14—H14A | 109.5 |
C17—O5—Zn1 | 120.05 (8) | C13—C14—H14B | 109.5 |
C17—O6—Ca1 | 140.65 (8) | H14A—C14—H14B | 109.5 |
C1—N1—C5 | 119.60 (11) | C13—C14—H14C | 109.5 |
C1—N1—Zn1 | 122.94 (9) | H14A—C14—H14C | 109.5 |
C5—N1—Zn1 | 117.12 (9) | H14B—C14—H14C | 109.5 |
C10—N2—C6 | 119.69 (11) | O4—C15—O3 | 124.57 (12) |
C10—N2—Zn1 | 125.10 (8) | O4—C15—C16 | 118.87 (12) |
C6—N2—Zn1 | 115.00 (9) | O3—C15—C16 | 116.56 (12) |
N1—C1—C2 | 123.20 (13) | C15—C16—H16A | 109.5 |
N1—C1—H1 | 118.4 | C15—C16—H16B | 109.5 |
C2—C1—H1 | 118.4 | H16A—C16—H16B | 109.5 |
C3—C2—C1 | 117.19 (13) | C15—C16—H16C | 109.5 |
C3—C2—C11 | 122.54 (13) | H16A—C16—H16C | 109.5 |
C1—C2—C11 | 120.27 (14) | H16B—C16—H16C | 109.5 |
C4—C3—C2 | 120.09 (12) | O6—C17—O5 | 125.19 (11) |
C4—C3—H3 | 120.0 | O6—C17—C18 | 118.20 (11) |
C2—C3—H3 | 120.0 | O5—C17—C18 | 116.61 (11) |
C3—C4—C5 | 119.08 (13) | C17—C18—H18A | 109.5 |
C3—C4—H4 | 120.5 | C17—C18—H18B | 109.5 |
C5—C4—H4 | 120.5 | H18A—C18—H18B | 109.5 |
N1—C5—C4 | 120.82 (13) | C17—C18—H18C | 109.5 |
N1—C5—C6 | 115.76 (10) | H18A—C18—H18C | 109.5 |
C4—C5—C6 | 123.42 (12) | H18B—C18—H18C | 109.5 |
N2—C6—C7 | 120.96 (12) | ||
O3—Zn1—O1—C13 | −167.59 (7) | O1—Zn1—N2—C6 | 148.38 (9) |
O5—Zn1—O1—C13 | 91.19 (8) | N1—Zn1—N2—C6 | 5.87 (8) |
N1—Zn1—O1—C13 | −15.15 (11) | C5—N1—C1—C2 | −0.71 (19) |
N2—Zn1—O1—C13 | −80.09 (8) | Zn1—N1—C1—C2 | 172.43 (10) |
Ca1—Zn1—O1—C13 | 165.81 (10) | N1—C1—C2—C3 | −0.8 (2) |
O3—Zn1—O1—Ca1 | 26.60 (5) | N1—C1—C2—C11 | 179.41 (13) |
O5—Zn1—O1—Ca1 | −74.63 (4) | C1—C2—C3—C4 | 1.7 (2) |
N1—Zn1—O1—Ca1 | 179.04 (5) | C11—C2—C3—C4 | −178.52 (14) |
N2—Zn1—O1—Ca1 | 114.10 (4) | C2—C3—C4—C5 | −1.1 (2) |
O4i—Ca1—O1—C13 | −12.60 (15) | C1—N1—C5—C4 | 1.28 (18) |
O4—Ca1—O1—C13 | 167.40 (15) | Zn1—N1—C5—C4 | −172.25 (9) |
O6i—Ca1—O1—C13 | 74.37 (15) | C1—N1—C5—C6 | −179.45 (11) |
O6—Ca1—O1—C13 | −105.63 (15) | Zn1—N1—C5—C6 | 7.02 (13) |
O4i—Ca1—O1—Zn1 | 142.08 (4) | C3—C4—C5—N1 | −0.37 (19) |
O4—Ca1—O1—Zn1 | −37.92 (4) | C3—C4—C5—C6 | −179.58 (11) |
O6i—Ca1—O1—Zn1 | −130.95 (4) | C10—N2—C6—C7 | 0.24 (17) |
O6—Ca1—O1—Zn1 | 49.05 (4) | Zn1—N2—C6—C7 | 175.22 (9) |
O5—Zn1—O3—C15 | 103.30 (9) | C10—N2—C6—C5 | −179.08 (10) |
O1—Zn1—O3—C15 | 2.69 (10) | Zn1—N2—C6—C5 | −4.10 (13) |
N1—Zn1—O3—C15 | −159.58 (9) | N1—C5—C6—N2 | −1.71 (15) |
N2—Zn1—O3—C15 | −83.12 (9) | C4—C5—C6—N2 | 177.54 (11) |
O6i—Ca1—O4—C15 | 165.69 (13) | N1—C5—C6—C7 | 178.99 (11) |
O6—Ca1—O4—C15 | −14.31 (13) | C4—C5—C6—C7 | −1.76 (19) |
O1—Ca1—O4—C15 | 68.13 (13) | N2—C6—C7—C8 | −1.36 (18) |
O1i—Ca1—O4—C15 | −111.87 (13) | C5—C6—C7—C8 | 177.90 (12) |
O3—Zn1—O5—C17 | −68.30 (10) | C6—C7—C8—C9 | 1.38 (19) |
O1—Zn1—O5—C17 | 53.08 (10) | C7—C8—C9—C10 | −0.33 (19) |
N1—Zn1—O5—C17 | −166.04 (10) | C7—C8—C9—C12 | −178.98 (12) |
O4i—Ca1—O6—C17 | −89.17 (14) | C6—N2—C10—C9 | 0.90 (18) |
O4—Ca1—O6—C17 | 90.83 (14) | Zn1—N2—C10—C9 | −173.54 (9) |
O1—Ca1—O6—C17 | 3.67 (14) | C8—C9—C10—N2 | −0.85 (18) |
O1i—Ca1—O6—C17 | −176.33 (14) | C12—C9—C10—N2 | 177.85 (12) |
O3—Zn1—N1—C1 | −92.32 (10) | Zn1—O1—C13—O2 | −8.12 (14) |
O5—Zn1—N1—C1 | 5.29 (10) | Ca1—O1—C13—O2 | 146.45 (12) |
O1—Zn1—N1—C1 | 111.43 (10) | Zn1—O1—C13—C14 | 170.85 (9) |
N2—Zn1—N1—C1 | 179.79 (11) | Ca1—O1—C13—C14 | −34.6 (2) |
O3—Zn1—N1—C5 | 80.97 (9) | Ca1—O4—C15—O3 | −47.00 (19) |
O5—Zn1—N1—C5 | 178.58 (9) | Ca1—O4—C15—C16 | 132.51 (12) |
O1—Zn1—N1—C5 | −75.27 (11) | Zn1—O3—C15—O4 | −0.07 (17) |
N2—Zn1—N1—C5 | −6.91 (8) | Zn1—O3—C15—C16 | −179.59 (9) |
O3—Zn1—N2—C10 | 83.33 (10) | Ca1—O6—C17—O5 | −35.1 (2) |
O1—Zn1—N2—C10 | −36.95 (10) | Ca1—O6—C17—C18 | 145.71 (11) |
N1—Zn1—N2—C10 | −179.46 (10) | Zn1—O5—C17—O6 | −0.38 (18) |
O3—Zn1—N2—C6 | −91.33 (9) | Zn1—O5—C17—C18 | 178.85 (8) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [CaZn2(C2H3O2)6(C12H12N2)2] |
Mr | 893.56 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 8.3356 (10), 8.841 (1), 13.696 (2) |
α, β, γ (°) | 74.103 (7), 83.263 (6), 83.560 (7) |
V (Å3) | 960.6 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.45 |
Crystal size (mm) | 0.34 × 0.32 × 0.27 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.639, 0.699 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16096, 8962, 7497 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.841 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.086, 1.05 |
No. of reflections | 8962 |
No. of parameters | 256 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.78 |
Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).
Acknowledgements
The National Science Foundation is acknowledged for a CAREER award (CHE-1056927) to MAH. The NMR core facility at Jackson State University is supported by the National Institutes of Health (G12RR013459). Purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Herold, S. & Lippard, S. J. (1997). Inorg. Chem. 36, 50–58. CSD CrossRef CAS Web of Science Google Scholar
Hossain, M. A., Saeed, M. A., Grynova, G., Powell, D. R. & Leszczynski, J. (2010). CrystEngComm, 12, 4042–4044. Web of Science CSD CrossRef CAS Google Scholar
Mendy, J. S., Saeed, M. A., Fronczek, F. R., Powell, D. R. & Hossain, M. A. (2010). Inorg. Chem. 49, 7223–7225. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. Web of Science CrossRef CAS Google Scholar
Saeed, M. A., Powell, D. R. & Hossain, M. A. (2010). Tetrahedron Lett. 51, 4904–4907. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Voegtli, W. C., Khidekel, N., Baldwin, J., Ley, B. A., Bollinger, J. M. & Rosenzweig, A. C. (2000). J. Am. Chem. Soc. 122, 3255–3261. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Multimetallic coordination complexes have many practical applications in a number of areas including molecular magnetism, crystal engineering, catalysis, gas storage, ion exchange, nonlinear optics, and biomimetic materials (Rao et al., 2004). In general, multimetallic complexes invoves azido, cyano, isocyanate, isothiocyanate, hydroxo, oxo and carboxylate ions (Herold & Lippard, 1997). Multimetallic complexation is also important in many biological systems; for example, in metalloenzymes where carboxylate ions serve as bidentate ligands showing three different coordination modes: syn-syn, syn-anti and anti-anti (Voegtli et al., 2000). However, as compared to traditional mononuclear metal complexes, the chemistry of multimetallic complexes with well established structures is much under developed. In our continuing interests in dinuclear metal complexes (Saeed et al., 2010; Mendy, et al., 2010) for anion binding, we attempted to obtain zinc complex of mixed ligands with 4,4'dimethyl-2,2'-bipyridine and hexa N-substituted (p-cyano benzamido) para xylyl based octa-aza cryptand. However, single-crystal structure analysis reveals the formation of the title compound. The source of calcium could be a contaminant from the reagents used for this reaction. Herein, we present a structural characterization of 4,4'-dimethyl-2,2'-bipyridine coordinated heterotrinuclear ZnII—CaII—ZnII hexa-carboxylate complex.
The heteronuclear complex is crystallized in triclinic P-1 space group, with one calcium ion, two zinc ions, six acetate and two 4,4'-dimethyl-2,2'-bipyridine groups. As can be seen in Figure 1, one calcium ion is located at the center surrounded by two zinc ions and six acetate ions. Two zinc ions from opposite sides are linearly coordinated with the central calcium ion forming trinuclear ZnII–CaII–ZnII backbone, while six acetate ions are coordinated with six Ca–O bonds. In addition, each zinc is hexacoordinated with two N atoms from one bipyridine and four O atoms from four six acetates, forming a centrosymmetric complex. In the complex, four acetates serve as bidentate ligands to coordinate with both calcium and zinc ions, while each of other two serves as a monodentate ligand for a single zinc ion. Both CaII and ZnII ions are connected by two pairs of carboxylate ligands in syn±syn, and syn±anti bridging modes (Voegtli et al., 2000). Another pair of carboxylates is coordinated with one CaII ion and two ZnII via (O,O') bridges. The distorted square pyramidal geometry around the ZnII ion is completed by the coordination of N atoms of 4,4'-dimethyl-2,2'-bipyridine.