metal-organic compounds
[μ2-N2,N2′-Bis(3-methoxy-2-oxidobenzylidene)benzene-1,3-dicarbohydrazidato]bis[pyridinecopper(II)]
aCollege of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
*Correspondence e-mail: xzj@hqu.edu.cn
In the centrosymmetric dinuclear title complex, [Cu2(C24H18N4O6)(C5H5N)2], the CuII ions is tetracoordinated by two O-atoms and one N-donor of the bridging terephthalohydrazonate ligand and by one pyridine N atom, resulting in a nearly square-planar N2O2 coordination geometry with the CuII ion 0.044 (2) Å out of the mean plane (r.m.s. deviation of 0.0675 Å) of the coordinating atoms.
CCDC reference: 970316
Related literature
For the structural coordination chemistry and potential applications in luminescence, redox activity and magnetism of bifunctional organic ligands and their complexes, see: He et al. (2004); Qiao et al. (2007); Yin et al. (2008); Zhu et al. (2010); Lin et al. (2012). For the crystal structures of dinuclear copper(II) complexes with a similar coordination geometry, see: Banerjee et al. (2009); Shulgin et al. (2011); Mistri et al. (2013). For the synthesis of N,N′-bis(3-methoxy-2-oxybenzylidene)terephthalohydrazone, see: Yin et al. (2008).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 970316
10.1107/S1600536813030286/fj2648sup1.cif
contains datablocks I, a. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813030286/fj2648Isup2.hkl
Reagents and solvents were used as obtained without further purification. N,N'-bis(3-methoxy-2-oxybenzylidene)terephthalohydrazone (H4L) was synthesized according to the literature methods (Yin et al., 2008). H4L (0.0462 g, 0.1 mmol) and copper(II) chloride dihydrate (0.0342 g, 0.2 mmol) were dissolved in a mixed solution of 10 ml CH3OH and 5 ml DMF. The mixture was stirred for 10 minutes at room temperature and then 5 ml pyridine was slowly added. The reaction mixture was further stirred for 4 h. After being obtained by filtration, the dark green filtrate was allowed to stand at room temperature for 15 days. The dark green prism crystals of the title complex were obtained by slow evaporation.
All H atoms were positioned geometrically and refined using a riding model [C—H=0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms,C—H=0.96 Å and Uiso(H) = 1.5Ueq(c) for methyl H atoms].
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title complex, showing 50% probability displacement ellipsoids and the atom numbering scheme. |
[Cu2(C24H18N4O6)(C5H5N)2] | F(000) = 760 |
Mr = 743.70 | Dx = 1.632 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2yn | Cell parameters from 2658 reflections |
a = 4.8474 (2) Å | θ = 3.6–66.5° |
b = 15.2776 (6) Å | µ = 2.23 mm−1 |
c = 20.5546 (6) Å | T = 153 K |
β = 96.113 (4)° | Prism, dark green |
V = 1513.55 (10) Å3 | 0.45 × 0.32 × 0.22 mm |
Z = 2 |
Agilent Gemini S Ultra diffractometer | 2658 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 2113 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.029 |
Detector resolution: 15.9149 pixels mm-1 | θmax = 66.5°, θmin = 3.6° |
ω scans | h = −3→5 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −17→17 |
Tmin = 0.447, Tmax = 0.615 | l = −24→24 |
5837 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0637P)2 + 0.5957P] where P = (Fo2 + 2Fc2)/3 |
2658 reflections | (Δ/σ)max < 0.001 |
218 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
[Cu2(C24H18N4O6)(C5H5N)2] | V = 1513.55 (10) Å3 |
Mr = 743.70 | Z = 2 |
Monoclinic, P21/n | Cu Kα radiation |
a = 4.8474 (2) Å | µ = 2.23 mm−1 |
b = 15.2776 (6) Å | T = 153 K |
c = 20.5546 (6) Å | 0.45 × 0.32 × 0.22 mm |
β = 96.113 (4)° |
Agilent Gemini S Ultra diffractometer | 2658 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 2113 reflections with I > 2σ(I) |
Tmin = 0.447, Tmax = 0.615 | Rint = 0.029 |
5837 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.38 e Å−3 |
2658 reflections | Δρmin = −0.35 e Å−3 |
218 parameters |
Experimental. CrysAlis PRO, Agilent Technologies, Version 1.171.36.21 (release 14–08-2012 CrysAlis171. NET) (compiled Sep 14 2012,17:21:16) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.10363 (10) | 0.25720 (3) | 0.16238 (2) | 0.0517 (2) | |
N1 | 0.0548 (6) | 0.3121 (2) | 0.03092 (13) | 0.0562 (7) | |
N2 | −0.0561 (6) | 0.25260 (18) | 0.07303 (14) | 0.0508 (7) | |
N3 | 0.2965 (6) | 0.26684 (19) | 0.25349 (14) | 0.0511 (7) | |
O1 | 0.3097 (5) | 0.35162 (17) | 0.12788 (10) | 0.0565 (6) | |
O2 | −0.1445 (5) | 0.17419 (17) | 0.19006 (11) | 0.0602 (6) | |
O3 | −0.4238 (6) | 0.0629 (2) | 0.25128 (12) | 0.0706 (8) | |
C1 | 0.2389 (7) | 0.3600 (2) | 0.06565 (16) | 0.0511 (8) | |
C2 | 0.3731 (7) | 0.4314 (2) | 0.03120 (16) | 0.0528 (8) | |
C3 | 0.3252 (9) | 0.4435 (3) | −0.03547 (17) | 0.0730 (12) | |
H3A | 0.2067 | 0.4054 | −0.0603 | 0.088* | |
C4 | 0.5515 (9) | 0.4894 (3) | 0.06609 (18) | 0.0733 (12) | |
H4A | 0.5884 | 0.4828 | 0.1112 | 0.088* | |
C5 | −0.2521 (8) | 0.2022 (3) | 0.04869 (17) | 0.0578 (9) | |
H5A | −0.3074 | 0.2070 | 0.0041 | 0.069* | |
C6 | −0.3922 (7) | 0.1392 (2) | 0.08483 (17) | 0.0541 (8) | |
C7 | −0.3333 (7) | 0.1298 (2) | 0.15349 (17) | 0.0530 (8) | |
C8 | −0.4884 (8) | 0.0671 (3) | 0.18484 (18) | 0.0564 (9) | |
C9 | −0.6886 (8) | 0.0168 (3) | 0.1499 (2) | 0.0666 (10) | |
H9A | −0.7900 | −0.0235 | 0.1715 | 0.080* | |
C10 | −0.7394 (8) | 0.0262 (3) | 0.0824 (2) | 0.0684 (11) | |
H10A | −0.8718 | −0.0088 | 0.0589 | 0.082* | |
C11 | −0.5966 (8) | 0.0862 (3) | 0.05070 (19) | 0.0643 (10) | |
H11A | −0.6343 | 0.0924 | 0.0056 | 0.077* | |
C12 | −0.5910 (10) | 0.0070 (3) | 0.2862 (2) | 0.0793 (13) | |
H12A | −0.5422 | 0.0145 | 0.3324 | 0.119* | |
H12B | −0.5606 | −0.0528 | 0.2745 | 0.119* | |
H12C | −0.7830 | 0.0216 | 0.2753 | 0.119* | |
C13 | 0.5123 (8) | 0.3210 (2) | 0.26756 (17) | 0.0571 (9) | |
H13A | 0.5736 | 0.3542 | 0.2340 | 0.069* | |
C14 | 0.6461 (8) | 0.3293 (3) | 0.32932 (19) | 0.0648 (10) | |
H14A | 0.7951 | 0.3675 | 0.3373 | 0.078* | |
C15 | 0.5587 (9) | 0.2807 (3) | 0.37955 (19) | 0.0665 (10) | |
H15A | 0.6463 | 0.2857 | 0.4219 | 0.080* | |
C16 | 0.3409 (9) | 0.2250 (3) | 0.36585 (18) | 0.0651 (10) | |
H16A | 0.2792 | 0.1908 | 0.3988 | 0.078* | |
C17 | 0.2124 (8) | 0.2198 (3) | 0.30282 (17) | 0.0583 (9) | |
H17A | 0.0619 | 0.1823 | 0.2942 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0608 (3) | 0.0568 (3) | 0.0367 (3) | −0.0049 (2) | 0.0017 (2) | 0.0011 (2) |
N1 | 0.0682 (18) | 0.0619 (18) | 0.0379 (14) | −0.0119 (15) | 0.0030 (13) | 0.0058 (14) |
N2 | 0.0598 (16) | 0.0557 (17) | 0.0365 (14) | −0.0046 (14) | 0.0035 (12) | 0.0003 (12) |
N3 | 0.0583 (16) | 0.0568 (17) | 0.0377 (14) | 0.0027 (14) | 0.0026 (12) | 0.0013 (13) |
O1 | 0.0745 (15) | 0.0598 (14) | 0.0348 (11) | −0.0132 (12) | 0.0035 (10) | 0.0020 (10) |
O2 | 0.0668 (15) | 0.0699 (16) | 0.0429 (12) | −0.0143 (13) | 0.0011 (11) | 0.0015 (12) |
O3 | 0.0825 (18) | 0.0779 (18) | 0.0502 (14) | −0.0214 (15) | 0.0014 (13) | 0.0066 (13) |
C1 | 0.061 (2) | 0.0542 (19) | 0.0382 (16) | 0.0007 (16) | 0.0072 (14) | 0.0010 (15) |
C2 | 0.064 (2) | 0.0564 (19) | 0.0377 (16) | −0.0036 (17) | 0.0056 (14) | 0.0031 (15) |
C3 | 0.093 (3) | 0.084 (3) | 0.0399 (18) | −0.037 (2) | −0.0064 (18) | 0.0040 (19) |
C4 | 0.098 (3) | 0.084 (3) | 0.0352 (17) | −0.032 (2) | −0.0025 (18) | 0.0083 (19) |
C5 | 0.065 (2) | 0.069 (2) | 0.0384 (17) | −0.0003 (19) | 0.0012 (15) | 0.0005 (17) |
C6 | 0.0566 (19) | 0.056 (2) | 0.0488 (19) | 0.0008 (16) | 0.0015 (15) | −0.0029 (16) |
C7 | 0.0555 (18) | 0.055 (2) | 0.0479 (18) | −0.0001 (16) | 0.0034 (15) | −0.0024 (16) |
C8 | 0.061 (2) | 0.055 (2) | 0.053 (2) | −0.0017 (17) | 0.0044 (16) | −0.0002 (17) |
C9 | 0.063 (2) | 0.066 (2) | 0.070 (3) | −0.0103 (19) | 0.0030 (19) | 0.003 (2) |
C10 | 0.066 (2) | 0.069 (2) | 0.067 (3) | −0.013 (2) | −0.0083 (19) | −0.004 (2) |
C11 | 0.067 (2) | 0.068 (2) | 0.054 (2) | −0.004 (2) | −0.0074 (17) | −0.0025 (19) |
C12 | 0.099 (3) | 0.077 (3) | 0.061 (2) | −0.025 (3) | 0.008 (2) | 0.011 (2) |
C13 | 0.062 (2) | 0.059 (2) | 0.0490 (19) | −0.0002 (18) | 0.0022 (16) | 0.0064 (17) |
C14 | 0.062 (2) | 0.068 (2) | 0.062 (2) | −0.0012 (19) | −0.0088 (18) | −0.005 (2) |
C15 | 0.074 (2) | 0.080 (3) | 0.0429 (19) | 0.009 (2) | −0.0090 (17) | −0.0009 (19) |
C16 | 0.080 (3) | 0.073 (3) | 0.0418 (19) | 0.001 (2) | 0.0011 (18) | 0.0078 (18) |
C17 | 0.067 (2) | 0.063 (2) | 0.0446 (19) | −0.0036 (18) | 0.0009 (16) | 0.0065 (17) |
Cu1—O2 | 1.877 (3) | C6—C11 | 1.407 (5) |
Cu1—N2 | 1.917 (3) | C6—C7 | 1.417 (5) |
Cu1—O1 | 1.932 (2) | C7—C8 | 1.414 (5) |
Cu1—N3 | 2.007 (3) | C8—C9 | 1.379 (5) |
N1—C1 | 1.307 (5) | C9—C10 | 1.389 (5) |
N1—N2 | 1.401 (4) | C9—H9A | 0.9300 |
N2—C5 | 1.282 (5) | C10—C11 | 1.357 (5) |
N3—C13 | 1.341 (5) | C10—H10A | 0.9300 |
N3—C17 | 1.341 (5) | C11—H11A | 0.9300 |
O1—C1 | 1.295 (4) | C12—H12A | 0.9600 |
O2—C7 | 1.310 (4) | C12—H12B | 0.9600 |
O3—C8 | 1.370 (4) | C12—H12C | 0.9600 |
O3—C12 | 1.423 (4) | C13—C14 | 1.368 (5) |
C1—C2 | 1.487 (5) | C13—H13A | 0.9300 |
C2—C3 | 1.378 (5) | C14—C15 | 1.375 (6) |
C2—C4 | 1.384 (5) | C14—H14A | 0.9300 |
C3—C4i | 1.373 (5) | C15—C16 | 1.361 (6) |
C3—H3A | 0.9300 | C15—H15A | 0.9300 |
C4—C3i | 1.373 (5) | C16—C17 | 1.379 (5) |
C4—H4A | 0.9300 | C16—H16A | 0.9300 |
C5—C6 | 1.431 (5) | C17—H17A | 0.9300 |
C5—H5A | 0.9300 | ||
O2—Cu1—N2 | 93.38 (11) | O2—C7—C6 | 125.0 (3) |
O2—Cu1—O1 | 171.34 (11) | C8—C7—C6 | 117.5 (3) |
N2—Cu1—O1 | 81.23 (11) | O3—C8—C9 | 124.6 (4) |
O2—Cu1—N3 | 90.95 (11) | O3—C8—C7 | 114.2 (3) |
N2—Cu1—N3 | 175.52 (12) | C9—C8—C7 | 121.2 (3) |
O1—Cu1—N3 | 94.59 (11) | C8—C9—C10 | 120.2 (4) |
C1—N1—N2 | 108.1 (3) | C8—C9—H9A | 119.9 |
C5—N2—N1 | 117.7 (3) | C10—C9—H9A | 119.9 |
C5—N2—Cu1 | 127.1 (3) | C11—C10—C9 | 120.3 (4) |
N1—N2—Cu1 | 115.2 (2) | C11—C10—H10A | 119.9 |
C13—N3—C17 | 117.4 (3) | C9—C10—H10A | 119.9 |
C13—N3—Cu1 | 121.4 (2) | C10—C11—C6 | 121.1 (4) |
C17—N3—Cu1 | 121.2 (3) | C10—C11—H11A | 119.4 |
C1—O1—Cu1 | 110.1 (2) | C6—C11—H11A | 119.4 |
C7—O2—Cu1 | 127.4 (2) | O3—C12—H12A | 109.5 |
C8—O3—C12 | 116.7 (3) | O3—C12—H12B | 109.5 |
O1—C1—N1 | 125.3 (3) | H12A—C12—H12B | 109.5 |
O1—C1—C2 | 117.4 (3) | O3—C12—H12C | 109.5 |
N1—C1—C2 | 117.3 (3) | H12A—C12—H12C | 109.5 |
C3—C2—C4 | 117.3 (3) | H12B—C12—H12C | 109.5 |
C3—C2—C1 | 122.4 (3) | N3—C13—C14 | 122.6 (4) |
C4—C2—C1 | 120.2 (3) | N3—C13—H13A | 118.7 |
C4i—C3—C2 | 121.4 (4) | C14—C13—H13A | 118.7 |
C4i—C3—H3A | 119.3 | C13—C14—C15 | 119.5 (4) |
C2—C3—H3A | 119.3 | C13—C14—H14A | 120.2 |
C3i—C4—C2 | 121.3 (3) | C15—C14—H14A | 120.2 |
C3i—C4—H4A | 119.4 | C16—C15—C14 | 118.4 (4) |
C2—C4—H4A | 119.4 | C16—C15—H15A | 120.8 |
N2—C5—C6 | 125.1 (3) | C14—C15—H15A | 120.8 |
N2—C5—H5A | 117.5 | C15—C16—C17 | 119.6 (4) |
C6—C5—H5A | 117.5 | C15—C16—H16A | 120.2 |
C11—C6—C7 | 119.6 (4) | C17—C16—H16A | 120.2 |
C11—C6—C5 | 118.4 (3) | N3—C17—C16 | 122.4 (4) |
C7—C6—C5 | 121.9 (3) | N3—C17—H17A | 118.8 |
O2—C7—C8 | 117.5 (3) | C16—C17—H17A | 118.8 |
C1—N1—N2—C5 | 176.5 (3) | N2—C5—C6—C11 | −177.6 (4) |
C1—N1—N2—Cu1 | −2.8 (4) | N2—C5—C6—C7 | 3.2 (6) |
O2—Cu1—N2—C5 | −3.7 (3) | Cu1—O2—C7—C8 | 176.9 (3) |
O1—Cu1—N2—C5 | −176.9 (3) | Cu1—O2—C7—C6 | −2.6 (5) |
O2—Cu1—N2—N1 | 175.5 (2) | C11—C6—C7—O2 | 178.7 (4) |
O1—Cu1—N2—N1 | 2.4 (2) | C5—C6—C7—O2 | −2.2 (6) |
O2—Cu1—N3—C13 | −179.7 (3) | C11—C6—C7—C8 | −0.8 (5) |
O1—Cu1—N3—C13 | −6.4 (3) | C5—C6—C7—C8 | 178.4 (3) |
O2—Cu1—N3—C17 | −0.3 (3) | C12—O3—C8—C9 | −4.8 (6) |
O1—Cu1—N3—C17 | 173.0 (3) | C12—O3—C8—C7 | 174.2 (3) |
N2—Cu1—O1—C1 | −1.4 (2) | O2—C7—C8—O3 | 1.7 (5) |
N3—Cu1—O1—C1 | 177.0 (2) | C6—C7—C8—O3 | −178.8 (3) |
N2—Cu1—O2—C7 | 4.7 (3) | O2—C7—C8—C9 | −179.2 (4) |
N3—Cu1—O2—C7 | −174.2 (3) | C6—C7—C8—C9 | 0.3 (6) |
Cu1—O1—C1—N1 | 0.1 (5) | O3—C8—C9—C10 | 179.8 (4) |
Cu1—O1—C1—C2 | 178.6 (2) | C7—C8—C9—C10 | 0.8 (6) |
N2—N1—C1—O1 | 1.8 (5) | C8—C9—C10—C11 | −1.4 (6) |
N2—N1—C1—C2 | −176.8 (3) | C9—C10—C11—C6 | 0.9 (6) |
O1—C1—C2—C3 | 176.4 (4) | C7—C6—C11—C10 | 0.2 (6) |
N1—C1—C2—C3 | −4.9 (6) | C5—C6—C11—C10 | −179.0 (4) |
O1—C1—C2—C4 | −4.3 (5) | C17—N3—C13—C14 | 0.0 (6) |
N1—C1—C2—C4 | 174.3 (4) | Cu1—N3—C13—C14 | 179.5 (3) |
C4—C2—C3—C4i | −0.2 (8) | N3—C13—C14—C15 | 0.1 (6) |
C1—C2—C3—C4i | 179.1 (4) | C13—C14—C15—C16 | 0.4 (6) |
C3—C2—C4—C3i | 0.2 (8) | C14—C15—C16—C17 | −0.9 (6) |
C1—C2—C4—C3i | −179.1 (4) | C13—N3—C17—C16 | −0.6 (6) |
N1—N2—C5—C6 | −178.7 (3) | Cu1—N3—C17—C16 | 180.0 (3) |
Cu1—N2—C5—C6 | 0.6 (6) | C15—C16—C17—N3 | 1.0 (6) |
Symmetry code: (i) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C24H18N4O6)(C5H5N)2] |
Mr | 743.70 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 153 |
a, b, c (Å) | 4.8474 (2), 15.2776 (6), 20.5546 (6) |
β (°) | 96.113 (4) |
V (Å3) | 1513.55 (10) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 2.23 |
Crystal size (mm) | 0.45 × 0.32 × 0.22 |
Data collection | |
Diffractometer | Agilent Gemini S Ultra diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.447, 0.615 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5837, 2658, 2113 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.133, 1.06 |
No. of reflections | 2658 |
No. of parameters | 218 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.35 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Acknowledgements
This project was supported financially by the Natural Science Foundation of Fujian Province of China (No. D1310010).
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Banerjee, S., Mondal, S., Sen, S., Das, S., Hughes, D. L., Rizzoli, C., Desplanches, C., Mandal, C. & Mitra, S. (2009). Dalton Trans. 34, 6849–6860. Web of Science CSD CrossRef PubMed Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
He, Z., He, C., Wang, Z.-M., Gao, E.-Q., Liu, Y. & Yan, C.-H. (2004). Dalton Trans. pp. 502–504. Web of Science CSD CrossRef Google Scholar
Lin, P. H., Korobkov, I., Burchell, T. J. & Murugesu, M. (2012). Dalton Trans. 41, 13649–13655. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mistri, S., Zangrando, E. & Manna, S. C. (2013). Polyhedron, 49, 252–258. Web of Science CSD CrossRef CAS Google Scholar
Qiao, Y., Yin, H. & Cui, J. (2007). Acta Cryst. E63, o4819. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shulgin, E. F., Trush, Y. V., Konnik, O. V., Rusanov, E. B., Zub, V. Y. & Minin, V. V. (2011). Zh. Neorg. Khim. 56, 755–756. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yin, H.-D., Cui, J.-C. & Qiao, Y.-L. (2008). Polyhedron, 27, 2157–2166. Web of Science CSD CrossRef CAS Google Scholar
Zhu, X., He, C., Dong, D.-P., Liu, Y. & Duan, C.-Y. (2010). Dalton Trans. 39, 10051–10055. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Bifunctional organic ligand and their complexes have attracted increasing interest in recent years, due to their potential applications in luminescence, redox activity, magnetism and diversities of coordination (He et al., 2004; Qiao et al., 2007; Yin et al., 2008; Zhu et al., 2010; Lin et al., 2012). Relatively speaking, only a few crystal structures of arylaldehyde terephthalohydrazone complexes have been reported (He et al., 2004; Yin et al.,2008; Lin et al., 2012). Herein, we report the synthesis and structure of copper complex with N,N'-bis(3-methoxy-2-oxybenzylidene)terephthalohydrazone.
As show in Fig 1, we can see that the title complex contain dinuclear copper(II) skeletons showing a trans conformation (centrosymmetry). That is, one half of the dinuclear copper(II) complex constitutes the crystallographic asymmetric unit and the other half is produced by an inversion centre. In the title complex, Cu1(II) ion is coordinated by carbonyl atom O1, hydrazine atom N2 and phenol atom O2 from the moieties of the ligand H4L, which is hexadentate ligand that function as tetrabasic in the enol form, and N3 atom from coordinated pyridine molecule, obtaining a nearly square-planar N2O2 geometry (r.m.s deviation =0.0675 Å). The CuII atom is shifted 0.044 (2) Å out of the square-plane. One five-membered chelate ring (ring M1) and one six-membered chelate ring (ring M2) are formed by the moieties of the ligand L4- and Cu1 atom. The ring M1 is composed of Cu1, N2, N1, C1 and O1 with r.m.s deviation of 0.0123 Å,The ring M2 of Cu1, N2, C5, C6, C7 and O2 with r.m.s deviation of 0.0238 Å. All two chelate rings are planar. The bond lengths of Cu—N and Cu—O in the title complex are similar to those in other dinuclear copper(II) complexes (Banerjee et al., 2009; Shulgin et al., 2011; Mistri et al., 2013). The whole L4- ligand is a nearly planar (r.m.s deviation=0.0805 Å), the dihedral angle between the two benzene rings is 7.29 (29)°.