metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m631-m632

{2,2′-[Ethane-1,2-diylbis(nitrilo­methan­yl­yl­­idene)]diphenolato}(iso­propano­lato)aluminium di­chloro­methane hemisolvate

aDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation, and bInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: churakov@igic.ras.ru

(Received 18 October 2013; accepted 28 October 2013; online 6 November 2013)

In the title compound, [Al(C16H14N2O2)(C3H7O)]·0.5CH2Cl2, the salen complex is monomeric and the dichlormethane solvent mol­ecule lies on a crystallographic twofold axis. The central Al atom is fivefold coordinated and possesses a square-based pyramidal environment. The Al—OAlk(iprop­yl) bond [1.7404 (14) Å] is much shorter than the Al—OAr(salen) bond lengths [1.7974 (15) and 1.8094 (14) Å]. The iso­propyl­oxo group forms an intra­molecular C—H⋯N hydrogen bond. In the crystal, the complex mol­ecules are linked by weak C—H⋯O inter­actions.

Related literature

For general background to the chemistry affording aluminium complexes based on salen-type ligands, see: Matsumoto et al. (2007[Matsumoto, K., Saito, B. & Katsuki, T. (2007). Chem. Commun. pp. 3619-3627.]); Gurian et al. (1991[Gurian, P. L., Cheatham, L. K., Zillerb, J. W. & Barron, A. R. (1991). J. Chem. Soc. Dalton Trans. pp. 1449-1456.]); Atwood et al. (1997[Atwood, D. A., Jegier, J. A. & Rutherford, D. (1997). Bull. Chem. Soc. Jpn, 70, 2093-2100.]); Muñoz-Hernandez et al. (2000[Muñoz-Hernandez, M.-A., Keizer, T. S., Parkin, S., Zhang, Y. & Atwood, D. A. (2000). J. Chem. Crystallogr. 30, 219-222.]). For our previous work on main group element complexes with polydentate N,O-ligands, see: Karlov & Zaitseva (2001[Karlov, S. S. & Zaitseva, G. S. (2001). Chem. Heterocycl. Compd, 37, 1325-1357.]). For structures of related monomeric Al-salen complexes, see: Darensburg & Billodeaux (2005[Darensburg, D. J. & Billodeaux, D. R. (2005). Inorg. Chem. 44, 1433-1442.]); Gurian et al. (1991[Gurian, P. L., Cheatham, L. K., Zillerb, J. W. & Barron, A. R. (1991). J. Chem. Soc. Dalton Trans. pp. 1449-1456.]); Pang et al. (2008[Pang, X., Du, H., Chen, X., Wand, X. & Jing, X. (2008). Chem. Eur. J. 14, 3126-3136.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Al(C16H14N2O2)(C3H7O)]·0.5CH2Cl2

  • Mr = 394.82

  • Orthorhombic, F d d 2

  • a = 24.427 (3) Å

  • b = 30.875 (4) Å

  • c = 10.0956 (13) Å

  • V = 7614.0 (16) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 173 K

  • 0.25 × 0.15 × 0.04 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.989

  • 13794 measured reflections

  • 4069 independent reflections

  • 3687 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.081

  • S = 1.04

  • 4069 reflections

  • 242 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1872 Friedel pairs

  • Absolute structure parameter: −0.09 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯N1 1.00 2.64 3.204 (3) 116
C18—H18A⋯O3i 0.99 2.55 3.508 (2) 163
C4—H4⋯O1ii 0.96 2.33 3.2539 (18) 160
Symmetry codes: (i) [x+{\script{1\over 4}}, -y+{\script{3\over 4}}, z-{\script{1\over 4}}]; (ii) [-x+{\script{7\over 4}}, y+{\script{1\over 4}}, z-{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a part of our investigation on chemistry of main group elements complexes based on tetradentate ligands (Karlov & Zaitseva, 2001) we obtained and studied the structure of the salen title compound [(salen)AlO-iPr]. The aluminium complex is monomeric (Fig. 1) with a fivefold coordinated Al centre. Its coordination geometry is close to square-based pyramidal with the salen ligand occupying the basal plane and the isopropyloxo group in axial position. It was shown, that the closely related methyloxo compound with an unsubstituted salen ligand [(MeO)(salen)Al]2 is dimeric with two bridging µ2-alkyloxo ligands (Gurian et al. (1991)). In contrast, a similar compound with bulky trimethylphenoxo substituent (2,4,6-Me3C6H2O)(salen)Al exhibited monomeric nature (Atwood et al. (1997)). Also all Al compounds with substituted salen ligands, like widely studied complexes of bulky (tBu)4salen, are monomeric according to CSD data (Allen, 2002), surely due to the steric hindrances. Thus, it may be assumed that the nuclearity of aluminium complexes with an unsubstituted salen ligand depends on the size of the additional alkyloxo group.

The central metal atom is displaced from the basal N,N,O,O plane by 0.4874 (9) Å. Unexpectedly, the Al-O(3)Alk distance (1.7404 (14) Å) is much shorter than Al-OAr bond lengths from the salen ligand (1.7974 (15) and 1.8094 (14) Å). On the other hand, the Al—O(3)—C(1) angle is quite large with 130.54 (12) °. These values indicate the noticeable degree of π- donation from the apical alkyloxo ligand towards the aluminium centre. The same features were previously found in the structure of the closely related monomeric ethyloxo complex (EtO)(salen(tBu)4)Al (Muñoz-Hernandez et al. (2000)).

The isopropyloxo group forms an intramolecular hydrogen bond C1—H1A···N1 with H···N with 2.64 Å and C—H···N 116.0 (1)° that is connected with the mutual ecliptic arrangement of N1—Al1 and O3—C1 bonds.

In the crystal packing, the Al-complexes are linked by weak C18—H18A···O3 hydrogen bonds (C···O 3.508 (2) Å, C—H···O 162.9 (1)°). The asymmetric unit contains a solvent dichlormethane molecule that lies on a crystallographic 2-fold axis and forms C4—H4···O1 hydrogen bonds with C···O separations of 3.2539 (18) Å.

Related literature top

For general background to the chemistry affording aluminium complexes based on salen-type ligands, see: Matsumoto et al. (2007); Gurian et al. (1991); Atwood et al. (1997); Muñoz-Hernandez et al. (2000). For our previous work on main group element complexes with polydentate N,O-ligands, see: Karlov & Zaitseva (2001). For structures of related monomeric Al-salen complexes, see: Darensburg & Billodeaux (2005); Gurian et al. (1991); Pang et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound was obtained from reaction of equimolar amounts of Al(O-iPr)3 and salen in toluene at reflux as a solid.

1H NMR (CDCl3): δ 8.24 (s, 2H, N=CH), 7.40–7.33 (m, 2H, aromatic H atoms), 7.16–7.07 (m, 4H, aromatic H atoms), 6.73–6.67 (m, 2H, aromatic H atoms), 4.12–4.02 (m, 2H, NCH2), 3.75 (sept, J = 6.1 Hz, 1H, OCH), 3.65–3.58 (m, 2H, NCH2), 0.91 d (d, J = 6.1 Hz, 6H, OCHMe2) p.p.m..

13C NMR (CDCl3): δ 168.97 (N=CH), 165.78, 135.46, 132.99, 122.26, 118.74, 116.55 (aromatic carbons), 62.80 (OCH), 54.44 (NCH2), 27.33 (OCHMe2) p.p.m..

Refinement top

All hydrogen atoms were placed in calculated positions and refined using a riding model with C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for methyne group; C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene groups; C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl groups; C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Anisotropic displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (A) 2-x, 1-y, z]
{2,2'-[Ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolato}(isopropanolato)aluminium dichloromethane hemisolvate top
Crystal data top
[Al(C16H14N2O2)(C3H7O)]·0.5CH2Cl2F(000) = 3312
Mr = 394.82Dx = 1.378 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 4106 reflections
a = 24.427 (3) Åθ = 2.3–25.6°
b = 30.875 (4) ŵ = 0.27 mm1
c = 10.0956 (13) ÅT = 173 K
V = 7614.0 (16) Å3Plate, colourless
Z = 160.25 × 0.15 × 0.04 mm
Data collection top
Bruker SMART APEXII
diffractometer
4069 independent reflections
Radiation source: fine-focus sealed tube3687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3131
Tmin = 0.936, Tmax = 0.989k = 3939
13794 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0417P)2 + 4.145P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4069 reflectionsΔρmax = 0.32 e Å3
242 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983), 1872 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (7)
Crystal data top
[Al(C16H14N2O2)(C3H7O)]·0.5CH2Cl2V = 7614.0 (16) Å3
Mr = 394.82Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 24.427 (3) ŵ = 0.27 mm1
b = 30.875 (4) ÅT = 173 K
c = 10.0956 (13) Å0.25 × 0.15 × 0.04 mm
Data collection top
Bruker SMART APEXII
diffractometer
4069 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3687 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.989Rint = 0.032
13794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.32 e Å3
S = 1.04Δρmin = 0.32 e Å3
4069 reflectionsAbsolute structure: Flack (1983), 1872 Friedel pairs
242 parametersAbsolute structure parameter: 0.09 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.80543 (2)0.339391 (17)0.48762 (6)0.02073 (13)
O10.83307 (5)0.32093 (4)0.64267 (15)0.0274 (3)
O20.74619 (5)0.30520 (4)0.51299 (14)0.0244 (3)
O30.77795 (5)0.39121 (4)0.50117 (16)0.0280 (3)
N10.88207 (6)0.35385 (5)0.42972 (17)0.0233 (4)
N20.80155 (6)0.32532 (5)0.29380 (17)0.0237 (4)
C10.80382 (8)0.43157 (6)0.5214 (2)0.0265 (4)
H1A0.84010.43110.47560.032*
C20.76904 (10)0.46682 (7)0.4601 (3)0.0408 (6)
H2A0.76470.46120.36510.061*
H2B0.78690.49490.47300.061*
H2C0.73300.46710.50250.061*
C30.81316 (11)0.44040 (8)0.6673 (3)0.0438 (6)
H3A0.83340.41620.70660.066*
H3B0.77780.44350.71200.066*
H3C0.83430.46720.67740.066*
C110.88005 (8)0.32767 (6)0.7048 (2)0.0247 (4)
C120.88427 (9)0.31743 (7)0.8386 (2)0.0332 (5)
H120.85330.30630.88420.040*
C130.93293 (9)0.32316 (7)0.9064 (3)0.0366 (5)
H130.93490.31610.99780.044*
C140.97909 (9)0.33922 (7)0.8422 (3)0.0350 (5)
H141.01250.34260.88900.042*
C150.97586 (9)0.35001 (7)0.7114 (3)0.0328 (5)
H151.00730.36120.66780.039*
C160.92665 (8)0.34479 (6)0.6396 (2)0.0261 (4)
C170.92542 (8)0.35630 (6)0.5013 (2)0.0270 (4)
H170.95830.36620.46100.032*
C180.88543 (8)0.36551 (7)0.2887 (2)0.0275 (5)
H18A0.92390.36440.25780.033*
H18B0.87110.39510.27420.033*
C210.70533 (7)0.29526 (6)0.4337 (2)0.0212 (4)
C220.65738 (8)0.27644 (6)0.4864 (2)0.0260 (4)
H220.65600.26860.57730.031*
C230.61261 (8)0.26946 (6)0.4067 (2)0.0304 (5)
H230.58050.25710.44420.036*
C240.61294 (9)0.27991 (7)0.2725 (2)0.0356 (5)
H240.58090.27670.22000.043*
C250.66070 (9)0.29500 (7)0.2186 (2)0.0346 (5)
H250.66220.30080.12620.041*
C260.70752 (8)0.30217 (6)0.2965 (2)0.0270 (4)
C270.75757 (8)0.31427 (6)0.2327 (2)0.0269 (4)
H270.75830.31410.13870.032*
C280.85114 (8)0.33286 (7)0.2152 (2)0.0293 (4)
H28A0.84130.34410.12640.035*
H28B0.87170.30550.20380.035*
Cl10.96134 (3)0.46418 (3)0.61765 (8)0.0636 (2)
C41.00000.50000.5209 (3)0.0304 (7)
H40.97580.51630.46500.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0173 (2)0.0212 (3)0.0238 (3)0.0013 (2)0.0013 (2)0.0001 (2)
O10.0219 (7)0.0353 (8)0.0249 (8)0.0063 (6)0.0031 (6)0.0037 (6)
O20.0216 (6)0.0264 (6)0.0252 (8)0.0046 (5)0.0003 (6)0.0029 (6)
O30.0210 (6)0.0211 (6)0.0418 (9)0.0013 (5)0.0022 (7)0.0033 (7)
N10.0209 (8)0.0223 (8)0.0266 (9)0.0007 (6)0.0031 (7)0.0016 (7)
N20.0232 (8)0.0241 (8)0.0238 (9)0.0005 (6)0.0037 (7)0.0019 (7)
C10.0222 (9)0.0229 (9)0.0344 (12)0.0023 (7)0.0027 (9)0.0023 (8)
C20.0459 (13)0.0263 (10)0.0502 (17)0.0013 (9)0.0088 (12)0.0008 (10)
C30.0522 (15)0.0374 (12)0.0416 (15)0.0125 (11)0.0065 (12)0.0009 (11)
C110.0232 (9)0.0233 (9)0.0276 (12)0.0007 (8)0.0031 (8)0.0012 (8)
C120.0300 (11)0.0373 (12)0.0321 (13)0.0002 (9)0.0016 (9)0.0001 (10)
C130.0365 (12)0.0431 (13)0.0301 (13)0.0050 (10)0.0075 (10)0.0040 (10)
C140.0272 (11)0.0368 (12)0.0409 (14)0.0030 (9)0.0107 (10)0.0084 (10)
C150.0227 (9)0.0293 (10)0.0464 (15)0.0009 (8)0.0030 (9)0.0045 (10)
C160.0225 (9)0.0226 (9)0.0332 (12)0.0004 (7)0.0024 (9)0.0028 (8)
C170.0200 (9)0.0221 (9)0.0390 (13)0.0003 (7)0.0039 (9)0.0003 (9)
C180.0214 (10)0.0280 (10)0.0330 (12)0.0003 (8)0.0063 (9)0.0068 (9)
C210.0205 (9)0.0157 (8)0.0275 (10)0.0022 (7)0.0015 (8)0.0005 (7)
C220.0271 (10)0.0207 (9)0.0302 (11)0.0002 (7)0.0022 (10)0.0006 (9)
C230.0222 (10)0.0257 (10)0.0433 (14)0.0029 (8)0.0033 (10)0.0030 (9)
C240.0243 (10)0.0413 (12)0.0411 (14)0.0034 (9)0.0088 (10)0.0027 (10)
C250.0309 (11)0.0429 (12)0.0299 (12)0.0047 (9)0.0059 (10)0.0020 (10)
C260.0268 (10)0.0268 (10)0.0273 (12)0.0015 (8)0.0016 (9)0.0002 (8)
C270.0280 (10)0.0300 (10)0.0228 (11)0.0008 (8)0.0009 (9)0.0001 (9)
C280.0272 (10)0.0327 (10)0.0280 (12)0.0020 (8)0.0064 (9)0.0044 (9)
Cl10.0662 (4)0.0686 (4)0.0559 (5)0.0116 (4)0.0136 (4)0.0262 (4)
C40.0347 (16)0.0328 (15)0.0236 (16)0.0003 (12)0.0000.000
Geometric parameters (Å, º) top
Al1—O31.7404 (14)C14—C151.363 (4)
Al1—O11.7974 (15)C14—H140.9500
Al1—O21.8094 (14)C15—C161.413 (3)
Al1—N22.0066 (18)C15—H150.9500
Al1—N12.0115 (17)C16—C171.442 (3)
O1—C111.324 (2)C17—H170.9500
O2—C211.315 (2)C18—C281.506 (3)
O3—C11.412 (2)C18—H18A0.9900
N1—C171.284 (3)C18—H18B0.9900
N1—C181.471 (3)C21—C261.403 (3)
N2—C271.285 (3)C21—C221.412 (3)
N2—C281.467 (2)C22—C231.375 (3)
C1—C21.513 (3)C22—H220.9500
C1—C31.515 (3)C23—C241.392 (3)
C1—H1A1.0000C23—H230.9500
C2—H2A0.9800C24—C251.369 (3)
C2—H2B0.9800C24—H240.9500
C2—H2C0.9800C25—C261.406 (3)
C3—H3A0.9800C25—H250.9500
C3—H3B0.9800C26—C271.431 (3)
C3—H3C0.9800C27—H270.9500
C11—C121.392 (3)C28—H28A0.9900
C11—C161.417 (3)C28—H28B0.9900
C12—C131.383 (3)Cl1—C41.7521 (19)
C12—H120.9500C4—Cl1i1.7520 (19)
C13—C141.392 (3)C4—H40.9600
C13—H130.9500
O3—Al1—O1111.59 (8)C15—C14—H14120.3
O3—Al1—O2102.52 (7)C13—C14—H14120.3
O1—Al1—O289.55 (7)C14—C15—C16121.2 (2)
O3—Al1—N2104.92 (8)C14—C15—H15119.4
O1—Al1—N2142.97 (7)C16—C15—H15119.4
O2—Al1—N288.51 (7)C15—C16—C11119.2 (2)
O3—Al1—N1100.24 (7)C15—C16—C17119.13 (19)
O1—Al1—N188.50 (7)C11—C16—C17121.66 (18)
O2—Al1—N1156.20 (7)N1—C17—C16123.21 (18)
N2—Al1—N178.96 (7)N1—C17—H17118.4
C11—O1—Al1133.47 (13)C16—C17—H17118.4
C21—O2—Al1131.06 (13)N1—C18—C28106.40 (16)
C1—O3—Al1130.54 (12)N1—C18—H18A110.4
C17—N1—C18118.95 (17)C28—C18—H18A110.4
C17—N1—Al1128.11 (15)N1—C18—H18B110.4
C18—N1—Al1112.80 (13)C28—C18—H18B110.4
C27—N2—C28118.22 (18)H18A—C18—H18B108.6
C27—N2—Al1124.39 (15)O2—C21—C26122.43 (17)
C28—N2—Al1117.03 (13)O2—C21—C22119.78 (18)
O3—C1—C2108.93 (17)C26—C21—C22117.78 (18)
O3—C1—C3111.52 (18)C23—C22—C21120.3 (2)
C2—C1—C3110.63 (19)C23—C22—H22119.9
O3—C1—H1A108.6C21—C22—H22119.9
C2—C1—H1A108.6C22—C23—C24121.9 (2)
C3—C1—H1A108.6C22—C23—H23119.0
C1—C2—H2A109.5C24—C23—H23119.0
C1—C2—H2B109.5C25—C24—C23118.1 (2)
H2A—C2—H2B109.5C25—C24—H24121.0
C1—C2—H2C109.5C23—C24—H24121.0
H2A—C2—H2C109.5C24—C25—C26121.6 (2)
H2B—C2—H2C109.5C24—C25—H25119.2
C1—C3—H3A109.5C26—C25—H25119.2
C1—C3—H3B109.5C21—C26—C25119.85 (19)
H3A—C3—H3B109.5C21—C26—C27121.08 (19)
C1—C3—H3C109.5C25—C26—C27119.0 (2)
H3A—C3—H3C109.5N2—C27—C26124.6 (2)
H3B—C3—H3C109.5N2—C27—H27117.7
O1—C11—C12119.22 (19)C26—C27—H27117.7
O1—C11—C16122.36 (19)N2—C28—C18107.38 (17)
C12—C11—C16118.41 (19)N2—C28—H28A110.2
C13—C12—C11121.0 (2)C18—C28—H28A110.2
C13—C12—H12119.5N2—C28—H28B110.2
C11—C12—H12119.5C18—C28—H28B110.2
C12—C13—C14120.8 (2)H28A—C28—H28B108.5
C12—C13—H13119.6Cl1i—C4—Cl1112.20 (18)
C14—C13—H13119.6Cl1i—C4—H4109.3
C15—C14—C13119.4 (2)Cl1—C4—H4109.0
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N11.002.643.204 (3)116
C18—H18A···O3ii0.992.553.508 (2)163
C4—H4···O1iii0.962.333.2539 (18)160
Symmetry codes: (ii) x+1/4, y+3/4, z1/4; (iii) x+7/4, y+1/4, z1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N11.002.643.204 (3)115.9
C18—H18A···O3i0.992.553.508 (2)163.0
C4—H4···O1ii0.962.333.2539 (18)160.4
Symmetry codes: (i) x+1/4, y+3/4, z1/4; (ii) x+7/4, y+1/4, z1/4.
 

Acknowledgements

This work was partially supported by the RFBR (12–03–00206_a) and a grant from the President of the Russian Federation to support the research of young Russian scientists and doctors (MD-3634.2012.3).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAtwood, D. A., Jegier, J. A. & Rutherford, D. (1997). Bull. Chem. Soc. Jpn, 70, 2093–2100.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarensburg, D. J. & Billodeaux, D. R. (2005). Inorg. Chem. 44, 1433–1442.  Web of Science PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGurian, P. L., Cheatham, L. K., Zillerb, J. W. & Barron, A. R. (1991). J. Chem. Soc. Dalton Trans. pp. 1449–1456.  CSD CrossRef Web of Science Google Scholar
First citationKarlov, S. S. & Zaitseva, G. S. (2001). Chem. Heterocycl. Compd, 37, 1325–1357.  CrossRef CAS Google Scholar
First citationMatsumoto, K., Saito, B. & Katsuki, T. (2007). Chem. Commun. pp. 3619–3627.  Web of Science CrossRef Google Scholar
First citationMuñoz-Hernandez, M.-A., Keizer, T. S., Parkin, S., Zhang, Y. & Atwood, D. A. (2000). J. Chem. Crystallogr. 30, 219–222.  Google Scholar
First citationPang, X., Du, H., Chen, X., Wand, X. & Jing, X. (2008). Chem. Eur. J. 14, 3126–3136.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m631-m632
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds