organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy-3-meth­­oxy­benzaldehyde thio­semicarbazone

aDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão–SE, Brazil, and bInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: adriano@daad-alumni.de

(Received 21 October 2013; accepted 27 November 2013; online 30 November 2013)

In the title compound, C9H11N3S, there is an intra­molecular O—H⋯O hydrogen bond involving the OH group and the adjacent methoxy O atom. The mol­ecule is essentially planar, with the maximum deviation from the mean plane of the non-H atoms being 0.1127 (14) Å for the methyl C atom. In the crystal, mol­ecules are connected via centrosymmetric pairs of N—H⋯S and O—H⋯O hydrogen bonds into a two-dimensional network parallel to (10-3).

Related literature

For the in vitro anti­malarial and anti­tubercular activity of hy­droxy-meth­oxy­benzaldehyde thio­semicarbazone derivatives, see: Khanye et al. (2011[Khanye, S. D., Wan, B., Franzblau, S. G., Gut, J., Rosenthal, P. J., Smith, G. S. & Chibale, K. (2011). J. Organomet. Chem. 696, 3392-3396.]). For the first report of the synthesis, see: Freund & Schander (1902[Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602-2606.]). For the synthesis and crystal structure of an isomer of the title compound, see: Hao (2010[Hao, Y.-M. (2010). Acta Cryst. E66, o2211.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O2S

  • Mr = 225.27

  • Triclinic, [P \overline 1]

  • a = 4.5886 (5) Å

  • b = 8.5213 (11) Å

  • c = 13.9621 (15) Å

  • α = 75.898 (13)°

  • β = 87.669 (13)°

  • γ = 77.580 (14)°

  • V = 517.05 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 200 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.865, Tmax = 0.982

  • 5179 measured reflections

  • 2211 independent reflections

  • 1829 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.03

  • 2211 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 2.24 2.6934 (16) 114
O1—H1⋯O2i 0.84 2.27 2.9153 (15) 134
N2—H2A⋯S1ii 0.88 2.59 3.4319 (14) 161
N3—H3B⋯S1iii 0.88 2.59 3.4540 (15) 169
Symmetry codes: (i) -x-1, -y+1, -z; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+2, -z+1.

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiosemicarbazone derivatives have a wide range of pharmacological properties. For example, benzaldehyde-thiosemicarbazone derivatives show in vitro antimalarial and antitubercular activity (Khanye et al., 2011). As part of our study on the synthesis of thiosemicarbazone derivatives, we report herein the crystal structure of 4-hydroxy-3-methoxybenzaldehyde thiosemicarbazone. In the title compound (Fig. 1), in which the molecular structure matches the asymmetric unit, the maximal deviation from the least squares plane through all non-hydrogen atoms amount to 0.1127 (14) Å for C7. The molecule shows a trans conformation for the atoms about the C8—N1/N1—N2/N2—C9/ bonds. This conformation is also observed in the literature for an isomer of the title compound (Hao, 2010). The mean deviations from the least squares planes for the C1—C8/O1—O2 and C9/N1—N3/S1 fragments amount to 0.0733 (12) Å for C7 and 0.0188 (10) Å for N2, respectively, and the dihedral angle between the two planes is 5.08 (6)°.

The molecules are connected via centrosymmetric pairs of N—H···S and O—H···O hydrogen interactions, forming a two-dimensional H-bonded polymer. An O—H···O intramolecular H-interaction is also observed (Fig. 2 and Table 1). The molecules are arranged in layers, stacked along the a-axis direction through ππ-interactions, with the shortest C···C distance being 3.380 (23) Å [C8···C5iv, (iv): 1+x, y, z].

Related literature top

For the in vitro antimalarial and antitubercular activity of hydroxy-methoxybenzaldehyde thiosemicarbazone derivatives, see: Khanye et al. (2011). For the first report of the synthesis, see: Freund & Schander (1902). For the synthesis and crystal structure of an isomer of 4-hydroxy-3-methoxybenzaldehyde thiosemicarbazone, see: Hao (2010).

Experimental top

The starting materials were commercially available and were used without further purification. The 4-hydroxy-3-methoxybenzaldehyde thiosemicarbazone synthesis was adapted from a procedure reported previously (Freund & Schander, 1902). The hydrochloric acid catalyzed reaction of vanillin (8.83 mmol) and thiosemicarbazide (8.83 mmol) in ethanol (50 ml) was refluxed for 6 h. After cooling and filtering, the title compound was obtained. Crystals suitable for X-ray diffraction were obtained from the reaction mixture by the slow evaporation of solvent.

Refinement top

All H atoms were were positioned with idealized geometry (methyl and O—H H atoms allowed to rotate but not to tip) and were refined as isotropic with Uiso(H) = 1.2 or 1.5 Ueq(C, N and O) using a riding model with C—H = 0.95 Å for aromatic H atoms, C—H = 0.98 for methyl H atoms, N—H = 0.88 Å for amine and hydrazine H atoms and O—H = 0.84 Å for the O—H H atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 70% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with hydrogen bonds shown as dashed lines.
4-Hydroxy-3-methoxybenzaldehyde thiosemicarbazone top
Crystal data top
C9H11N3O2SZ = 2
Mr = 225.27F(000) = 236
Triclinic, P1Dx = 1.447 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.5886 (5) ÅCell parameters from 5179 reflections
b = 8.5213 (11) Åθ = 2.5–27.0°
c = 13.9621 (15) ŵ = 0.30 mm1
α = 75.898 (13)°T = 200 K
β = 87.669 (13)°Block, yellow
γ = 77.580 (14)°0.4 × 0.3 × 0.2 mm
V = 517.05 (10) Å3
Data collection top
Stoe IPDS-1
diffractometer
2211 independent reflections
Radiation source: fine-focus sealed tube, Stoe IPDS-11829 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ scansθmax = 27.0°, θmin = 2.5°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 55
Tmin = 0.865, Tmax = 0.982k = 1010
5179 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0666P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2211 reflectionsΔρmax = 0.32 e Å3
139 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.055 (15)
Crystal data top
C9H11N3O2Sγ = 77.580 (14)°
Mr = 225.27V = 517.05 (10) Å3
Triclinic, P1Z = 2
a = 4.5886 (5) ÅMo Kα radiation
b = 8.5213 (11) ŵ = 0.30 mm1
c = 13.9621 (15) ÅT = 200 K
α = 75.898 (13)°0.4 × 0.3 × 0.2 mm
β = 87.669 (13)°
Data collection top
Stoe IPDS-1
diffractometer
2211 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
1829 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.982Rint = 0.040
5179 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
2211 reflectionsΔρmin = 0.27 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1779 (3)0.65909 (18)0.22576 (11)0.0210 (3)
C20.0643 (3)0.81737 (19)0.16881 (12)0.0252 (3)
H20.12610.90960.18200.030*
C30.1384 (4)0.84153 (19)0.09296 (12)0.0255 (3)
H30.21630.95010.05460.031*
C40.2278 (3)0.70678 (19)0.07295 (11)0.0223 (3)
C50.1165 (3)0.54775 (17)0.12986 (11)0.0203 (3)
C60.0858 (3)0.52373 (18)0.20585 (11)0.0207 (3)
H60.16220.41520.24450.025*
O10.4253 (3)0.73483 (14)0.00291 (9)0.0306 (3)
H10.47730.64630.00340.046*
O20.2264 (3)0.42408 (13)0.10546 (8)0.0268 (3)
C70.1404 (4)0.2626 (2)0.16928 (14)0.0354 (4)
H7A0.07610.22380.16640.053*
H7B0.24140.18630.14810.053*
H7C0.19690.26710.23720.053*
C80.3893 (3)0.62554 (19)0.30740 (11)0.0218 (3)
H80.45650.51450.34390.026*
N10.4870 (3)0.74084 (16)0.33129 (9)0.0222 (3)
N20.6853 (3)0.68715 (15)0.40998 (10)0.0222 (3)
H2A0.74550.58050.43620.027*
C90.7865 (3)0.79732 (18)0.44648 (11)0.0218 (3)
N30.6948 (4)0.95590 (17)0.40253 (11)0.0344 (4)
H3A0.57200.98540.35140.041*
H3B0.75651.03180.42440.041*
S11.01872 (9)0.72984 (5)0.54636 (3)0.02745 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0178 (7)0.0265 (7)0.0203 (7)0.0054 (6)0.0038 (5)0.0074 (6)
C20.0253 (8)0.0239 (7)0.0286 (8)0.0074 (6)0.0071 (6)0.0074 (6)
C30.0270 (8)0.0216 (7)0.0265 (8)0.0051 (6)0.0080 (6)0.0015 (6)
C40.0207 (7)0.0270 (7)0.0193 (7)0.0040 (6)0.0073 (6)0.0054 (6)
C50.0203 (7)0.0223 (7)0.0208 (7)0.0055 (6)0.0027 (5)0.0085 (6)
C60.0203 (7)0.0229 (7)0.0193 (7)0.0041 (6)0.0040 (6)0.0054 (6)
O10.0350 (6)0.0285 (6)0.0283 (6)0.0066 (5)0.0196 (5)0.0035 (5)
O20.0334 (6)0.0224 (5)0.0266 (6)0.0065 (4)0.0144 (5)0.0064 (4)
C70.0458 (10)0.0233 (8)0.0377 (10)0.0093 (7)0.0219 (8)0.0031 (7)
C80.0192 (7)0.0261 (7)0.0212 (7)0.0049 (5)0.0050 (6)0.0070 (6)
N10.0197 (6)0.0278 (6)0.0204 (6)0.0038 (5)0.0070 (5)0.0078 (5)
N20.0232 (6)0.0224 (6)0.0224 (7)0.0045 (5)0.0095 (5)0.0068 (5)
C90.0210 (7)0.0247 (7)0.0217 (7)0.0060 (6)0.0020 (6)0.0080 (6)
N30.0470 (9)0.0227 (7)0.0346 (8)0.0065 (6)0.0228 (7)0.0059 (6)
S10.0345 (3)0.0250 (2)0.0248 (2)0.00760 (16)0.01444 (16)0.00630 (15)
Geometric parameters (Å, º) top
C1—C21.390 (2)O2—C71.428 (2)
C1—C61.401 (2)C7—H7A0.9800
C1—C81.4608 (19)C7—H7B0.9800
C2—C31.386 (2)C7—H7C0.9800
C2—H20.9500C8—N11.2801 (19)
C3—C41.390 (2)C8—H80.9500
C3—H30.9500N1—N21.3792 (17)
C4—O11.3643 (17)N2—C91.3404 (19)
C4—C51.393 (2)N2—H2A0.8800
C5—O21.3779 (17)C9—N31.324 (2)
C5—C61.386 (2)C9—S11.6962 (15)
C6—H60.9500N3—H3A0.8800
O1—H10.8400N3—H3B0.8800
C2—C1—C6119.42 (13)O2—C7—H7A109.5
C2—C1—C8123.13 (13)O2—C7—H7B109.5
C6—C1—C8117.45 (13)H7A—C7—H7B109.5
C3—C2—C1120.45 (13)O2—C7—H7C109.5
C3—C2—H2119.8H7A—C7—H7C109.5
C1—C2—H2119.8H7B—C7—H7C109.5
C2—C3—C4119.99 (14)N1—C8—C1122.15 (14)
C2—C3—H3120.0N1—C8—H8118.9
C4—C3—H3120.0C1—C8—H8118.9
O1—C4—C3118.45 (13)C8—N1—N2114.48 (12)
O1—C4—C5121.52 (13)C9—N2—N1120.04 (12)
C3—C4—C5120.02 (13)C9—N2—H2A120.0
O2—C5—C6124.88 (13)N1—N2—H2A120.0
O2—C5—C4115.17 (13)N3—C9—N2117.44 (14)
C6—C5—C4119.95 (13)N3—C9—S1123.06 (11)
C5—C6—C1120.17 (14)N2—C9—S1119.49 (11)
C5—C6—H6119.9C9—N3—H3A120.0
C1—C6—H6119.9C9—N3—H3B120.0
C4—O1—H1109.5H3A—N3—H3B120.0
C5—O2—C7116.19 (11)
C6—C1—C2—C30.1 (2)C2—C1—C6—C50.1 (2)
C8—C1—C2—C3179.27 (15)C8—C1—C6—C5179.45 (13)
C1—C2—C3—C40.5 (3)C6—C5—O2—C75.2 (2)
C2—C3—C4—O1179.32 (15)C4—C5—O2—C7173.55 (15)
C2—C3—C4—C50.8 (3)C2—C1—C8—N10.7 (2)
O1—C4—C5—O21.7 (2)C6—C1—C8—N1179.91 (14)
C3—C4—C5—O2178.21 (14)C1—C8—N1—N2179.89 (13)
O1—C4—C5—C6179.46 (14)C8—N1—N2—C9175.18 (14)
C3—C4—C5—C60.6 (2)N1—N2—C9—N31.7 (2)
O2—C5—C6—C1178.53 (14)N1—N2—C9—S1177.37 (11)
C4—C5—C6—C10.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.842.242.6934 (16)114
O1—H1···O2i0.842.272.9153 (15)134
N2—H2A···S1ii0.882.593.4319 (14)161
N3—H3B···S1iii0.882.593.4540 (15)169
Symmetry codes: (i) x1, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.842.242.6934 (16)113.9
O1—H1···O2i0.842.272.9153 (15)133.5
N2—H2A···S1ii0.882.593.4319 (14)160.8
N3—H3B···S1iii0.882.593.4540 (15)168.5
Symmetry codes: (i) x1, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+1.
 

Acknowledgements

We gratefully acknowledge financial support by the State of Schleswig–Holstein, Germany. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities. BRSF thanks CNPq/UFS for the award of a PIBIC scholarship and ABO acknowledges financial support through the FAPITEC/SE/FUNTEC/CNPq PPP 04/2011 program.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFreund, M. & Schander, A. (1902). Chem. Ber. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationHao, Y.-M. (2010). Acta Cryst. E66, o2211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhanye, S. D., Wan, B., Franzblau, S. G., Gut, J., Rosenthal, P. J., Smith, G. S. & Chibale, K. (2011). J. Organomet. Chem. 696, 3392–3396.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds