metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N,N′,N′-Tetra­methyl­ethylene­di­ammonium tetra­chlorido­zincate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, bDepartment of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia, cDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, dDepartment of Chemistry, Government College College University, Lahore 54000, Pakistan, and eDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan
*Correspondence e-mail: saeed_a786@hotmail.com

(Received 11 September 2013; accepted 30 October 2013; online 6 November 2013)

The asymmetric unit of the title compound, (C6H18N2)[ZnCl4], consists of one tetra­chlorido­zincate anion and two half-N,N,NN′-tetra­methyl­ethylenedi­ammonium cations. Each of the two di­ammonium cations is located about an inversion center and one of them is disordered over two sets of sites in a 0.780 (17):0.220 (17) ratio. The ZnII atom has a slightly distorted tetra­hedral coordination environment. The cations and anions are connected via N—H⋯Cl hydrogen bonds into chains extending along [0-11].

Related literature

For background to organic–inorganic hybrid materials, see: Al-Ktaifani & Rukiah (2011[Al-Ktaifani, M. M. & Rukiah, M. K. (2011). Chem. Pap. 65, 469-476.]). For the isotypic tetra­chlorido­cobaltate(II) salt, see: Baughman et al. (2011[Baughman, R. G., Shane, R. S. & McCormick, J. M. (2011). Acta Cryst. E67, m1.]). For other related structures and discussion of geometrical features, see: Yin & Wu (2010[Yin, M. & Wu, S.-T. (2010). Acta Cryst. E66, m515.]); Zhao & Qu (2010[Zhao, M. M. & Qu, Z. R. (2010). Acta Cryst. C66, m188-m190.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H18N2)[ZnCl4]

  • Mr = 325.42

  • Triclinic, [P \overline 1]

  • a = 6.893 (4) Å

  • b = 8.257 (6) Å

  • c = 13.33 (1) Å

  • α = 72.78 (3)°

  • β = 87.44 (3)°

  • γ = 69.42 (3)°

  • V = 676.9 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.57 mm−1

  • T = 293 K

  • 0.95 × 0.44 × 0.08 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: analytical (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.194, Tmax = 0.821

  • 9440 measured reflections

  • 2466 independent reflections

  • 1806 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.075

  • S = 1.05

  • 2466 reflections

  • 154 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯Cl1 0.91 2.30 3.157 (3) 158
N1—H1N⋯Cl3i 0.85 (4) 2.44 (4) 3.227 (4) 155 (3)
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The organic-inorganic hybrid salts consisting of organic cation and polyhalometal counter anions have received considerable attention because of their potential applications in analytical, material and supramolecular chemistry (Al-Ktaifani et al., 2011). In this work, we report the crystal structure of one such compound. The title compound was obtained unexpectedly during an attempt to synthesize a mixed-ligand zinc(II) complex of N,N,N'N'-tetramethylethylenediamine and 2-mercaptosuccinic acid. The crystal structure of the title hybrid material is shown in Fig. 1. The structure is ionic and the asymmetric unit consists of one tetrachloridozincate anion and two halves of tetramethylethylenediammonium cations, located on inversion centers. The Zn atom, coordinated by four chloride anions, shows a distorted tetrahedral environment (Fig. 1). The bond angles around zinc vary from 105.93 (7)° to 115.80 (7)°. The compound is isostructural with its cobalt analogue (Baughman et al., 2011). In the crystal,the cations and anions are linked by N—H···Cl hydrogen bonds into chains propagating along the [011] direction (Fig. 2).

Related literature top

For background to organic–inorganic hybrid materials, see: Al-Ktaifani & Rukiah (2011). For the isotypic tetrachloridocobaltate(II) salt, see: Baughman et al. (2011). For other related structures and discussion of geometrical features, see: Yin & Wu (2010); Zhao & Qu (2010).

Experimental top

The title complex was prepared by adding 0.12 g (1.0 mmol) of N,N,N'N'-tetramethylethylenediamine in 10 ml methanol to an aqueous solution (5 ml) of 0.14 g (1.0 mmol) zinc chloride. The slightly turbid solution was stirred for 15 minutes. Then a solution of 0.16 g (1.0 mmol) 2-mercaptosuccinic acid in 15 ml was added. The mixture was stirred for 30 minutes along with heating. The white mixture obtained was filtered and the filtrate was kept at room temperature for crystallization. As a result, white crystalline product was obtained, that was washed with methanol.

Refinement top

The H1N atom of one of the symmetry independent cations was located on a difference Fourier map and freely refined. All other H atoms were placed in calculated positions with a C—H distance of 0.96 Å (Uiso(H) = 1.5Ueq(C)) for methyl groups, 0.97 Å (Uiso(H) = 1.2Ueq(C)) for methylene groups and N—H distance of 0.91 Å (Uiso(H) = 1.2Ueq(H)) for the other NH group. One of the diammonium cations the atoms C1, C2 and C3 are disordered over two positions, with the occupancy of the major position of 0.780 (17). During the refinement process restraints were imposed on C—N bond distances in the disordered cation.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atomic numbering scheme [symmetry codes: (i) 1 - x,2 - y,1 - z; (ii) 1 - x,1 - y,1 - z; (iii) x,y,1 + z]. Displacement ellipsoids are drawn at the 30% probability level. For clarity, only N-H group H atoms are shown.
[Figure 2] Fig. 2. Packing diagram of the title compound showing the hydrogen-bonding interactions.
N,N,N',N'-Tetramethylethylenediammonium tetrachloridozincate top
Crystal data top
(C6H18N2)[ZnCl4]Z = 2
Mr = 325.42F(000) = 332
Triclinic, P1Dx = 1.596 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.893 (4) ÅCell parameters from 162 reflections
b = 8.257 (6) Åθ = 3.2–25.6°
c = 13.33 (1) ŵ = 2.57 mm1
α = 72.78 (3)°T = 293 K
β = 87.44 (3)°Needle, colorless
γ = 69.42 (3)°0.95 × 0.44 × 0.08 mm
V = 676.9 (8) Å3
Data collection top
Bruker SMART APEX area-detector
diffractometer
2466 independent reflections
Radiation source: fine-focus sealed tube1806 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 25.6°, θmin = 3.2°
Absorption correction: analytical
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.194, Tmax = 0.821k = 99
9440 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.066P]
where P = (Fo2 + 2Fc2)/3
2466 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.40 e Å3
6 restraintsΔρmin = 0.54 e Å3
Crystal data top
(C6H18N2)[ZnCl4]γ = 69.42 (3)°
Mr = 325.42V = 676.9 (8) Å3
Triclinic, P1Z = 2
a = 6.893 (4) ÅMo Kα radiation
b = 8.257 (6) ŵ = 2.57 mm1
c = 13.33 (1) ÅT = 293 K
α = 72.78 (3)°0.95 × 0.44 × 0.08 mm
β = 87.44 (3)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
2466 independent reflections
Absorption correction: analytical
(SADABS; Sheldrick, 1996)
1806 reflections with I > 2σ(I)
Tmin = 0.194, Tmax = 0.821Rint = 0.041
9440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0316 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.40 e Å3
2466 reflectionsΔρmin = 0.54 e Å3
154 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.08487 (5)0.89099 (5)0.74635 (3)0.03316 (14)
Cl10.28956 (12)0.66541 (11)0.67979 (6)0.0410 (2)
Cl20.07173 (14)0.75755 (15)0.87904 (8)0.0654 (3)
Cl30.30346 (14)0.98281 (13)0.81654 (7)0.0518 (3)
Cl40.12777 (13)1.13302 (12)0.62136 (8)0.0541 (3)
N20.6233 (4)0.7466 (3)0.5224 (2)0.0339 (6)
H2N0.50800.72740.55100.041*
C10.178 (2)0.727 (2)0.1182 (13)0.080 (4)0.780 (17)
H1A0.22880.65920.18980.120*0.780 (17)
H1B0.07750.68460.09740.120*0.780 (17)
H1C0.11460.85310.11230.120*0.780 (17)
N10.3533 (4)0.7001 (4)0.0490 (2)0.0433 (8)0.50
H1N0.301 (6)0.773 (5)0.011 (3)0.067 (13)*
C20.4241 (11)0.5105 (4)0.0424 (4)0.0374 (19)0.780 (17)
H2A0.30530.48320.02640.045*0.780 (17)
H2B0.49010.42580.10960.045*0.780 (17)
C30.5165 (17)0.756 (2)0.0811 (17)0.064 (3)0.780 (17)
H3A0.45470.87590.08810.096*0.780 (17)
H3B0.61670.75630.02870.096*0.780 (17)
H3C0.58410.67280.14730.096*0.780 (17)
C1'0.210 (7)0.655 (7)0.129 (4)0.081 (15)0.220 (17)
H1'10.09770.76350.12990.121*0.220 (17)
H1'20.28350.59810.19720.121*0.220 (17)
H1'30.15540.57290.11240.121*0.220 (17)
N1'0.3533 (4)0.7001 (4)0.0490 (2)0.0433 (8)0.50
C2'0.534 (3)0.545 (2)0.0335 (14)0.041 (7)0.220 (17)
H2'10.59180.45790.10130.049*0.220 (17)
H2'20.64070.58940.00010.049*0.220 (17)
C3'0.454 (8)0.799 (10)0.092 (7)0.087 (18)0.220 (17)
H3'10.34890.90060.10690.130*0.220 (17)
H3'20.54220.84160.04180.130*0.220 (17)
H3'30.53490.71940.15600.130*0.220 (17)
C40.7855 (5)0.6795 (5)0.6093 (3)0.0564 (11)
H4A0.82100.55100.64010.085*
H4B0.73370.73930.66190.085*
H4C0.90660.70460.58230.085*
C50.6891 (5)0.6428 (5)0.4463 (3)0.0529 (10)
H5A0.80310.66900.41010.079*
H5B0.57520.67640.39630.079*
H5C0.73180.51550.48290.079*
C60.5632 (5)0.9456 (4)0.4667 (3)0.0393 (8)
H6A0.68740.97530.44990.047*
H6B0.48400.97560.40120.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0325 (2)0.0332 (2)0.0319 (2)0.00986 (16)0.00269 (15)0.00935 (18)
Cl10.0448 (5)0.0389 (5)0.0395 (5)0.0121 (4)0.0087 (4)0.0165 (4)
Cl20.0617 (6)0.0736 (7)0.0589 (7)0.0331 (5)0.0258 (5)0.0092 (6)
Cl30.0660 (6)0.0532 (6)0.0450 (6)0.0335 (5)0.0084 (4)0.0108 (5)
Cl40.0452 (5)0.0446 (6)0.0555 (6)0.0068 (4)0.0114 (4)0.0002 (5)
N20.0295 (13)0.0262 (15)0.0493 (18)0.0108 (11)0.0103 (12)0.0161 (14)
C10.075 (5)0.091 (8)0.068 (6)0.017 (6)0.025 (4)0.033 (6)
N10.0572 (19)0.0316 (18)0.0320 (18)0.0055 (14)0.0015 (15)0.0083 (16)
C20.041 (3)0.030 (3)0.045 (3)0.017 (2)0.004 (3)0.012 (2)
C30.096 (8)0.055 (5)0.054 (6)0.042 (6)0.003 (6)0.016 (4)
C1'0.06 (2)0.13 (5)0.08 (3)0.05 (2)0.025 (19)0.06 (3)
N1'0.0572 (19)0.0316 (18)0.0320 (18)0.0055 (14)0.0015 (15)0.0083 (16)
C2'0.059 (13)0.029 (10)0.039 (12)0.015 (9)0.018 (10)0.014 (9)
C3'0.08 (2)0.12 (5)0.08 (3)0.07 (3)0.01 (3)0.02 (3)
C40.054 (2)0.049 (2)0.054 (3)0.0059 (18)0.0111 (19)0.011 (2)
C50.050 (2)0.045 (2)0.067 (3)0.0097 (18)0.0089 (19)0.033 (2)
C60.0411 (18)0.0296 (19)0.046 (2)0.0115 (14)0.0103 (15)0.0118 (17)
Geometric parameters (Å, º) top
Zn1—Cl22.2404 (15)C3—H3C0.9600
Zn1—Cl32.2516 (13)C1'—H1'10.9600
Zn1—Cl42.2596 (17)C1'—H1'20.9600
Zn1—Cl12.2949 (16)C1'—H1'30.9600
N2—C51.472 (4)C2'—C2'i1.50 (5)
N2—C41.483 (4)C2'—H2'10.9700
N2—C61.500 (4)C2'—H2'20.9700
N2—H2N0.9100C3'—H3'10.9600
C1—N11.481 (2)C3'—H3'20.9600
C1—H1A0.9600C3'—H3'30.9600
C1—H1B0.9600C4—H4A0.9600
C1—H1C0.9600C4—H4B0.9600
N1—C31.480 (2)C4—H4C0.9600
N1—C21.496 (2)C5—H5A0.9600
N1—H1N0.85 (4)C5—H5B0.9600
C2—C2i1.511 (13)C5—H5C0.9600
C2—H2A0.9700C6—C6ii1.486 (6)
C2—H2B0.9700C6—H6A0.9700
C3—H3A0.9600C6—H6B0.9700
C3—H3B0.9600
Cl2—Zn1—Cl3107.45 (6)C2i—C2—H2A109.7
Cl2—Zn1—Cl4115.80 (6)N1—C2—H2B109.7
Cl3—Zn1—Cl4108.07 (6)C2i—C2—H2B109.7
Cl2—Zn1—Cl1105.93 (7)H2A—C2—H2B108.2
Cl3—Zn1—Cl1106.21 (6)H1'1—C1'—H1'2109.5
Cl4—Zn1—Cl1112.86 (7)H1'1—C1'—H1'3109.5
C5—N2—C4110.7 (3)H1'2—C1'—H1'3109.5
C5—N2—C6110.0 (3)C2'i—C2'—H2'1109.6
C4—N2—C6113.4 (3)C2'i—C2'—H2'2109.6
C5—N2—H2N107.5H2'1—C2'—H2'2108.1
C4—N2—H2N107.5H3'1—C3'—H3'2109.5
C6—N2—H2N107.5H3'1—C3'—H3'3109.5
C3—N1—C1111.3 (11)H3'2—C3'—H3'3109.5
C3—N1—C2115.7 (6)C6ii—C6—N2110.7 (3)
C1—N1—C2108.9 (7)C6ii—C6—H6A109.5
C3—N1—H1N107 (3)N2—C6—H6A109.5
C1—N1—H1N105 (3)C6ii—C6—H6B109.5
C2—N1—H1N108 (3)N2—C6—H6B109.5
N1—C2—C2i110.0 (5)H6A—C6—H6B108.1
N1—C2—H2A109.7
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl10.912.303.157 (3)158
N1—H1N···Cl3iii0.85 (4)2.44 (4)3.227 (4)155 (3)
Symmetry code: (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl10.912.303.157 (3)158
N1—H1N···Cl3i0.85 (4)2.44 (4)3.227 (4)155 (3)
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors gratefully acknowledge Government College University Lahore, Pakistan, for providing the X-ray facility.

References

First citationAl-Ktaifani, M. M. & Rukiah, M. K. (2011). Chem. Pap. 65, 469–476.  CAS Google Scholar
First citationBaughman, R. G., Shane, R. S. & McCormick, J. M. (2011). Acta Cryst. E67, m1.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, M. & Wu, S.-T. (2010). Acta Cryst. E66, m515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, M. M. & Qu, Z. R. (2010). Acta Cryst. C66, m188–m190.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds