organic compounds
2,5-Dimethoxybenzonitrile
aFachbereich Chemie, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany, bDepartment of Chemical Engineering, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates, and cDepartment of Chemistry, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates
*Correspondence e-mail: thies@uaeu.ac.ae
In the title molecule, C9H9NO2, the non-H atoms are essentially coplanar with a maximum deviation of 0.027 (2) Å for the C atom of one of the methyl groups. In the crystal, the molecules are arranged into centrosymmetric pairs via pairs of C—H⋯O and C—H⋯N interactions whereas π–π stacking interactions between the benzene rings [centroid–centroid distance 3.91001 (15) Å] organize them into polymeric strands propagating along the a-axis direction. There is a step of 0.644 (2) Å between the two planar parts of the centrosymmetric pair. In neighboring strands related by the n-glide operation, the aromatic rings are tilted by 29.08 (2)°.
CCDC reference: 972097
Related literature
For the use of the title compound as a key reagent in the synthesis of pharmaceutically active heterocycles, see: Bergeron et al. (2006); Delgado et al. (1987). For another method of preparation of the title compound, see: Ushijima et al. (2012). For the crystal structures of aromatic see: Buschmann et al. (1995); Zabinski et al. (2007); Zanotti et al. (1980).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2013); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009); Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON.
Supporting information
CCDC reference: 972097
10.1107/S1600536813031309/gk2594sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813031309/gk2594Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813031309/gk2594Isup3.cml
To triphenylphosphine (870 mg, 3.3 mmol) in dry CH2Cl2 (10 ml) was added bromotrichloromethane (650 mg, 3.3 mmol), and the resulting mixture was stirred at rt for 20 min, during which the solution turned from yellow to red-brownish in color. Thereafter, 2,5-dimethoxybenzaldoxime (552 mg, 3.05 mmol) was added. The reaction mixture was kept under reflux for 25 min. Then, triphenylphosphine (870 mg, 3.3 mmol) was added, and the mixture stirred for 8 h at reflux. The cooled reaction mixture was concentrated in vacuo and subjected directly to
on silica gel (CH2Cl2 – hexane 5: 1) to give the title compound (195 mg, 39%) as colorless needles; m.p. 360 - 361 K (Lit. 354 - 358 K; Ushijima et al., 2012); nmax (KBr/cm-1) 2224 (CN), 1582, 1508, 1420, 1287, 1237, 1120, 1039, 879, 815, 753, 704, 488; dH (400 MHz, CDCl3) 3.77 (3H, s, OCH3), 3.87 (3H, s, OCH3), 6.89 (1H, d, 3J = 8.8 Hz), 7.04 (1H, d, 4J = 2.8 Hz), 7.07 (1H, dd, 3J = 8.8 Hz, 4J = 2.8 Hz); dC (100.5 MHz, CDCl3) 55.9 (OCH3), 56.4 (OCH3), 101.7 (Cquat), 112.6 (CH), 116.4 (Cquat), 117.5 (CH), 120.8 (CH), 153.1 (Cquat), 153.7 (Cquat); MS (EI, 70 eV) m/z (%) 163 (M+, 100).All carbon-bound hydrogen atoms were placed in calculated positions with C—H distances of 0.95 - 0.98 Å and refined as riding with Uiso(H) =xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009); Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C9H9NO2 | Dx = 1.373 Mg m−3 |
Mr = 163.17 | Melting point = 360–361 K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.7107 Å |
a = 3.91001 (15) Å | Cell parameters from 1290 reflections |
b = 11.3347 (4) Å | θ = 3.6–32.0° |
c = 17.8432 (6) Å | µ = 0.10 mm−1 |
β = 93.400 (3)° | T = 100 K |
V = 789.40 (5) Å3 | Block, colourless |
Z = 4 | 0.60 × 0.25 × 0.23 mm |
F(000) = 344 |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 1785 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 1374 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.026 |
Detector resolution: 10.4127 pixels mm-1 | θmax = 27.5°, θmin = 3.6° |
ω scans | h = −5→4 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −9→14 |
Tmin = 0.899, Tmax = 1.000 | l = −21→23 |
3225 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.048P)2 + 0.110P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1785 reflections | Δρmax = 0.21 e Å−3 |
111 parameters | Δρmin = −0.24 e Å−3 |
0 restraints |
C9H9NO2 | V = 789.40 (5) Å3 |
Mr = 163.17 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 3.91001 (15) Å | µ = 0.10 mm−1 |
b = 11.3347 (4) Å | T = 100 K |
c = 17.8432 (6) Å | 0.60 × 0.25 × 0.23 mm |
β = 93.400 (3)° |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 1785 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 1374 reflections with I > 2σ(I) |
Tmin = 0.899, Tmax = 1.000 | Rint = 0.026 |
3225 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.21 e Å−3 |
1785 reflections | Δρmin = −0.24 e Å−3 |
111 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.1608 (4) | 0.84580 (13) | 0.32618 (8) | 0.0170 (3) | |
C2 | 1.1137 (4) | 0.96337 (13) | 0.34798 (7) | 0.0170 (3) | |
C3 | 0.9434 (4) | 1.03957 (13) | 0.29791 (8) | 0.0178 (3) | |
C4 | 0.8238 (4) | 1.00071 (13) | 0.22693 (8) | 0.0180 (3) | |
C5 | 0.8723 (4) | 0.88435 (13) | 0.20555 (8) | 0.0166 (3) | |
C6 | 1.0425 (4) | 0.80699 (13) | 0.25538 (7) | 0.0178 (3) | |
C7 | 1.3310 (4) | 0.76401 (14) | 0.37753 (8) | 0.0193 (3) | |
C8 | 1.1889 (4) | 1.11088 (14) | 0.44323 (8) | 0.0214 (4) | |
C9 | 0.5943 (4) | 0.91476 (14) | 0.08362 (8) | 0.0227 (4) | |
H3 | 0.9077 | 1.1192 | 0.3120 | 0.021* | |
H4 | 0.7086 | 1.0541 | 0.1930 | 0.022* | |
H6 | 1.0782 | 0.7274 | 0.2410 | 0.021* | |
H8A | 1.2963 | 1.1668 | 0.4099 | 0.032* | |
H8B | 1.2895 | 1.1202 | 0.4945 | 0.032* | |
H8C | 0.9421 | 1.1264 | 0.4425 | 0.032* | |
H9A | 0.5317 | 0.8708 | 0.0375 | 0.034* | |
H9B | 0.7498 | 0.9793 | 0.0723 | 0.034* | |
H9C | 0.3872 | 0.9472 | 0.1041 | 0.034* | |
N1 | 1.4646 (4) | 0.69750 (12) | 0.41812 (7) | 0.0264 (3) | |
O1 | 1.2456 (3) | 0.99244 (9) | 0.41788 (5) | 0.0202 (3) | |
O2 | 0.7618 (3) | 0.83694 (9) | 0.13775 (5) | 0.0219 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0161 (7) | 0.0162 (8) | 0.0189 (7) | −0.0002 (6) | 0.0038 (5) | 0.0027 (6) |
C2 | 0.0161 (8) | 0.0185 (8) | 0.0165 (7) | −0.0017 (6) | 0.0025 (5) | 0.0012 (6) |
C3 | 0.0184 (8) | 0.0147 (7) | 0.0204 (7) | 0.0000 (6) | 0.0026 (6) | −0.0003 (6) |
C4 | 0.0178 (8) | 0.0170 (7) | 0.0194 (7) | 0.0008 (6) | 0.0024 (6) | 0.0039 (6) |
C5 | 0.0157 (7) | 0.0176 (8) | 0.0165 (7) | −0.0028 (6) | 0.0020 (5) | 0.0008 (6) |
C6 | 0.0169 (8) | 0.0164 (7) | 0.0206 (7) | −0.0007 (6) | 0.0041 (6) | −0.0001 (6) |
C7 | 0.0210 (8) | 0.0174 (8) | 0.0196 (7) | −0.0005 (7) | 0.0030 (6) | −0.0018 (6) |
C8 | 0.0260 (9) | 0.0184 (8) | 0.0196 (7) | 0.0012 (7) | −0.0007 (6) | −0.0027 (6) |
C9 | 0.0256 (9) | 0.0229 (8) | 0.0189 (7) | −0.0011 (7) | −0.0029 (6) | 0.0031 (6) |
N1 | 0.0334 (9) | 0.0212 (7) | 0.0243 (7) | 0.0046 (6) | −0.0004 (6) | 0.0003 (6) |
O1 | 0.0258 (6) | 0.0172 (6) | 0.0171 (5) | 0.0027 (5) | −0.0029 (4) | −0.0009 (4) |
O2 | 0.0281 (6) | 0.0196 (6) | 0.0174 (5) | 0.0000 (5) | −0.0033 (4) | 0.0002 (4) |
C2—C1 | 1.404 (2) | C8—H8C | 0.9800 |
C2—C3 | 1.384 (2) | C8—H8B | 0.9800 |
C3—C4 | 1.395 (2) | C8—H8A | 0.9800 |
C3—H3 | 0.9500 | C9—H9C | 0.9800 |
C4—H4 | 0.9500 | C9—H9B | 0.9800 |
C5—C4 | 1.389 (2) | C9—H9A | 0.9800 |
C5—C6 | 1.390 (2) | O1—C8 | 1.4381 (18) |
C6—C1 | 1.391 (2) | O1—C2 | 1.3616 (17) |
C6—H6 | 0.9500 | O2—C9 | 1.4370 (18) |
C7—N1 | 1.1492 (19) | O2—C5 | 1.3700 (17) |
C7—C1 | 1.439 (2) | ||
C1—C6—H6 | 119.9 | H8A—C8—H8B | 109.5 |
C2—C1—C7 | 119.92 (13) | H8B—C8—H8C | 109.5 |
C2—C3—C4 | 120.75 (14) | H9A—C9—H9C | 109.5 |
C2—C3—H3 | 119.6 | H9A—C9—H9B | 109.5 |
C2—O1—C8 | 117.18 (11) | H9B—C9—H9C | 109.5 |
C3—C4—H4 | 119.8 | N1—C7—C1 | 179.12 (16) |
C3—C2—C1 | 118.65 (13) | O1—C8—H8C | 109.5 |
C4—C3—H3 | 119.6 | O1—C8—H8B | 109.5 |
C4—C5—C6 | 119.42 (13) | O1—C8—H8A | 109.5 |
C5—C4—H4 | 119.8 | O1—C2—C1 | 115.77 (13) |
C5—C4—C3 | 120.35 (14) | O1—C2—C3 | 125.57 (14) |
C5—C6—C1 | 120.16 (14) | O2—C9—H9C | 109.5 |
C5—C6—H6 | 119.9 | O2—C9—H9B | 109.5 |
C5—O2—C9 | 117.39 (11) | O2—C9—H9A | 109.5 |
C6—C1—C7 | 119.42 (13) | O2—C5—C4 | 125.03 (13) |
C6—C1—C2 | 120.67 (14) | O2—C5—C6 | 115.55 (13) |
H8A—C8—H8C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···O1i | 0.98 | 2.65 | 3.428 (2) | 136 |
C8—H8B···N1i | 0.98 | 2.73 | 3.504 (2) | 136 |
C9—H9B···N1ii | 0.98 | 2.71 | 3.640 (2) | 158 |
Symmetry codes: (i) −x+3, −y+2, −z+1; (ii) −x+5/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···O1i | 0.98 | 2.65 | 3.428 (2) | 136 |
C8—H8B···N1i | 0.98 | 2.73 | 3.504 (2) | 136 |
C9—H9B···N1ii | 0.98 | 2.71 | 3.640 (2) | 158 |
Symmetry codes: (i) −x+3, −y+2, −z+1; (ii) −x+5/2, y+1/2, −z+1/2. |
References
Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Bergeron, R. J., Wiegand, J., McManis, J. S. & Bharti, N. (2006). J. Med. Chem. 49, 7032–7043. Web of Science CrossRef PubMed CAS Google Scholar
Buschmann, W. E., Arif, A. M. & Miller, J. S. (1995). J. Chem. Soc. Chem. Commun. pp. 2343–2344. CrossRef Web of Science Google Scholar
Delgado, A., Mauleon, D., Rosell, G., Salas, M. L. & Najar, J. (1987). Anal. Quim. Ser. C, 83, 90–95. CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ushijima, S., Moriyama, K. & Togo, H. (2012). Tetrahedron, 68, 4588–4595. Web of Science CrossRef CAS Google Scholar
Zabinski, J., Wolska, I. & Maciejewska, D. (2007). J. Mol. Struct. 833, 74–81. Web of Science CSD CrossRef CAS Google Scholar
Zanotti, G., Bardi, R. & Del Pra, A. (1980). Acta Cryst. B36, 168–171. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The aromatic ring (C1—C6) of the title compound is almost coplanar with non-H atoms of all substituents, with torsion angles of 3.2 (2)°, 2.5 (2)° and 178.7 (1)° for the methoxy group (C3—C2—O1—C8), for the methoxy group (C4—C5—O2—C9) and for the nitrile group (C5—C6—C1—C7), respectively. With the length of 1.1492 (19) Å, the triple bond of the nitrile group (C≡N) is at the higher end of the acceptable range of cyano bond lengths (Buschmann et al., 1995; Zanotti et al., 1980), but longer than in comparable alkoxy-substituted benzonitriles (Zabinski et al., 2007). The molecules of the title compound arrange themselves in pairs through C8–H8B···O1 and C8–H8B···N1 interactions (Table 1, Fig. 2). In one pair, the average plane of the aromatic ring (C1—C6) of one molecule has an off-set of 0.644 (2) Å to the respective plane in the other molecule. The stacked centrosymmetric dimers form strands propagating along the a axis. Each pair in one strand forms four close contacts C9—H9B···N1 (Table 1) with four pairs of the four neighboring strands (Figure 3). The average plane of the aromatic ring (C1—C6) of a molecule in one strand forms an angle of 29.08 (2)° with the respective average plane of another molecule in the neighboring strand, with the molecules linked by C9—H9B···N1 close contact.