organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1813-o1814

3-(Adamantan-1-yl)-1-[(4-benzyl­piperazin-1-yl)meth­yl]-4-ethyl-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hfun.c@ksu.edu.sa

(Received 12 November 2013; accepted 12 November 2013; online 23 November 2013)

In the title compound, C26H37N5S, the piperazine ring adopts a chair conformation with the exocyclic N—C bonds in pseudo-equatorial orientations. The piperazine ring (all atoms) subtends dihedral angles of 79.47 (9) and 73.07 (9)° with the triazole and benzene rings, respectively, resulting in an approximate U-shape for the mol­ecule. No significant inter­molecular inter­actions are observed in the crystal.

Related literature

For the pharmacological properties of adamantane derivatives and adamantyl-1,2,4-triazoles, see: Vernier et al. (1969[Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642-665.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.], 2013[El-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, A. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96-102.]); Al-Deeb et al. (2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40-47.]); Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.], 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]). For related adamantyl-1,2,4-triazole structures, see: Al-Tamimi et al. (2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.]); Al-Abdullah et al. (2012[Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. A. & Ng, S. W. (2012). Acta Cryst. E68, o531.]); El-Emam et al. (2012[El-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o657-o658.]). For the synthesis of the starting material, see El-Emam & Ibrahim (1991[El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260-1264.]). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C26H37N5S

  • Mr = 451.67

  • Triclinic, [P \overline 1]

  • a = 10.5618 (2) Å

  • b = 11.2123 (2) Å

  • c = 11.3084 (2) Å

  • α = 89.974 (1)°

  • β = 77.619 (1)°

  • γ = 70.842 (1)°

  • V = 1232.03 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.33 mm−1

  • T = 296 K

  • 0.69 × 0.51 × 0.39 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.460, Tmax = 0.626

  • 13169 measured reflections

  • 4319 independent reflections

  • 3986 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.117

  • S = 1.08

  • 4319 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Adamantane derivatives were early recognized for their diverse biological activities including antiviral activity against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004). In addition, adamantane derivatives were reported to exhibit marked antibacterial (Kadi et al., 2007, 2010) and anti-inflammatory (El-Emam & Ibrahim, 1991) activities. In continuation of our interest in this area, we now describe the synthesis and structure of the title compound, (I).

The piperazine ring (N1/N2/C8–C11) ring, Fig. 1, adopts a chair conformation, with puckering parameters: Q = 0.5829 (17) Å, θ = 176.42 (17)°, and ϕ = 221 (3)° (Cremer & Pople, 1975) and a maximum deviation of 0.257 (1) Å at atom N1. The dihedral angle between the piperazine ring and the triazole (N3–N5/C13/C16) ring is 79.47 (9)°. The triazole (N3–N5/C13/C16) ring forms the dihedral angle of 53.07 (10)° with the benzene (C1–C6) ring. In the crystal, no significant intermolecular interactions beyond the expected packing contacts are observed.

Related literature top

For the pharmacological properties of adamantane derivatives and adamantyl-1,2,4-triazoles, see: Vernier et al. (1969); El-Emam et al. (2004, 2013); Al-Deeb et al. (2006); Kadi et al. (2007, 2010). For related adamantyl-1,2,4-triazole structures, see: Al-Tamimi et al. (2010); Al-Abdullah et al. (2012); El-Emam et al. (2012). For further details of the synthesis, see El-Emam & Ibrahim (1991). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of 527 mg (2 mmol) of 3-(1-adamantyl)-4-ethyl-4H-1,2,4- triazole-5-thiol (El-Emam et al., 1991), 1-benzylpiperazine (353 mg, 2 mmol) and 37% formaldehyde solution (1 ml), in ethanol (8 ml), was heated under reflux for 15 min until a clear solution was obtained. Stirring was continued for 12 h at room temperature and the mixture was allowed to stand overnight. Cold water (5 ml) was slowly added and the mixture was stirred for 20 min. The precipitated crude product were filtered, washed with water, dried, and crystallized from ethanol to yield 759 mg (84%) of the title compound (C26H37N5S) as crystals. m.p.: 441–443 K. Single crystals suitable for X-ray analysis were recrystallized from CHCl3:EtOH solution (1:1; 5 ml) through slow evaporation at room temperature.

1H NMR (CDCl3, 500.13 MHz): δ 1.13 (t, 3H, CH2CH3, J = 6.0 Hz), 1.68–1.73 (m, 6H, Adamantane-H), 1.98–2.10 (m, 9H, Adamantane-H), 2.72–2.76 (m, 4H, Piperazine-H), 3.24–3.26 (m, 4H, Piperazine-H), 3.72 (s, 2H, Benzylic-CH2), 4.15 (q, 2H, CH2CH3, J = 6.5 Hz), 5.02 (s, 2H, CH2), 7.20–7.54 (m, 5H, Ar—H). 13C NMR (CDCl3, 125.76 MHz): δ 12.74 (CH2CH3), 26.90, 34.36, 35.26, 38.82 (Adamantane-C), 40.62 (CH2CH3), 46.01, 50.37 (Piperazine-C), 61.59 (Benzylic-CH2), 66.66 (CH2), 127.40, 128.31, 129.19, 130.57 (Ar—C), 155.55 (Triazole C-5), 167.73 (C=S).

Refinement top

All H atoms were positioned geometrically [C—H = 0.93, 0.96, 0.97 or 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5(methyl group)Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
3-(Adamantan-1-yl)-1-[(4-benzylpiperazin-1-yl)methyl]-4-ethyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C26H37N5SZ = 2
Mr = 451.67F(000) = 488
Triclinic, P1Dx = 1.218 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 10.5618 (2) ÅCell parameters from 6190 reflections
b = 11.2123 (2) Åθ = 4.0–69.3°
c = 11.3084 (2) ŵ = 1.33 mm1
α = 89.974 (1)°T = 296 K
β = 77.619 (1)°Block, colourless
γ = 70.842 (1)°0.69 × 0.51 × 0.39 mm
V = 1232.03 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4319 independent reflections
Radiation source: fine-focus sealed tube3986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 67.5°, θmin = 4.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.460, Tmax = 0.626k = 1313
13169 measured reflectionsl = 1210
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.2192P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4319 reflectionsΔρmax = 0.22 e Å3
291 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (5)
Crystal data top
C26H37N5Sγ = 70.842 (1)°
Mr = 451.67V = 1232.03 (4) Å3
Triclinic, P1Z = 2
a = 10.5618 (2) ÅCu Kα radiation
b = 11.2123 (2) ŵ = 1.33 mm1
c = 11.3084 (2) ÅT = 296 K
α = 89.974 (1)°0.69 × 0.51 × 0.39 mm
β = 77.619 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4319 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3986 reflections with I > 2σ(I)
Tmin = 0.460, Tmax = 0.626Rint = 0.025
13169 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.08Δρmax = 0.22 e Å3
4319 reflectionsΔρmin = 0.19 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22677 (5)0.18527 (4)0.13850 (5)0.06851 (17)
N10.34170 (12)0.23635 (12)0.02812 (11)0.0489 (3)
N20.16540 (13)0.16685 (11)0.19435 (11)0.0477 (3)
N30.03907 (13)0.29271 (11)0.26359 (12)0.0486 (3)
N40.13337 (13)0.40759 (11)0.31410 (11)0.0485 (3)
N50.06528 (12)0.42739 (11)0.22592 (12)0.0476 (3)
C10.3188 (2)0.16668 (18)0.27179 (17)0.0688 (5)
H1A0.29130.08070.25980.083*
C20.2848 (2)0.2056 (2)0.38571 (18)0.0802 (6)
H2A0.23310.14560.44980.096*
C30.3260 (2)0.3322 (2)0.40656 (17)0.0704 (5)
H3A0.30280.35790.48410.084*
C40.4019 (2)0.41987 (18)0.31105 (17)0.0654 (4)
H4A0.43100.50560.32400.078*
C50.43506 (17)0.38159 (17)0.19630 (16)0.0599 (4)
H5A0.48590.44190.13230.072*
C60.39358 (15)0.25397 (16)0.17470 (15)0.0537 (4)
C70.42804 (17)0.21280 (18)0.04912 (16)0.0594 (4)
H7A0.52400.25810.01220.071*
H7B0.41540.12310.05420.071*
C80.39368 (16)0.21841 (17)0.15458 (15)0.0567 (4)
H8A0.39000.13120.16240.068*
H8B0.48890.27260.18130.068*
C90.30821 (16)0.25001 (16)0.23323 (15)0.0560 (4)
H9A0.31310.33760.22660.067*
H9B0.34410.23930.31750.067*
C100.11059 (15)0.17746 (15)0.06677 (14)0.0524 (4)
H10A0.01780.11750.04150.063*
H10B0.10640.26200.05570.063*
C110.20000 (16)0.15135 (17)0.01097 (16)0.0578 (4)
H11A0.16410.16240.09510.069*
H11B0.19760.06430.00540.069*
C120.07720 (17)0.17719 (14)0.27078 (15)0.0517 (4)
H12A0.00660.10440.25060.062*
H12B0.12220.17290.35420.062*
C130.08395 (16)0.30056 (14)0.20895 (14)0.0492 (3)
C140.17668 (16)0.47676 (15)0.17788 (17)0.0597 (4)
H14A0.26180.41970.19370.072*
H14B0.15710.55830.22010.072*
C150.1955 (2)0.49166 (19)0.04371 (19)0.0760 (5)
H15A0.26090.53450.01860.114*
H15B0.10900.54040.02640.114*
H15C0.22870.40970.00060.114*
C160.06822 (15)0.48847 (13)0.28983 (13)0.0449 (3)
C170.13467 (15)0.62762 (13)0.33107 (14)0.0464 (3)
C180.07200 (18)0.66332 (15)0.43095 (16)0.0575 (4)
H18A0.08330.61230.49910.069*
H18B0.02570.64640.39970.069*
C190.1432 (2)0.80408 (16)0.47337 (18)0.0678 (5)
H19A0.10150.82640.53570.081*
C200.1263 (2)0.88384 (16)0.3662 (2)0.0720 (5)
H20A0.16920.97300.39330.086*
H20B0.02920.86780.33230.086*
C210.1921 (2)0.85163 (16)0.27002 (18)0.0675 (5)
H21A0.18160.90420.20180.081*
C220.3438 (2)0.87674 (18)0.3226 (2)0.0792 (6)
H22A0.38610.85620.26080.095*
H22B0.38930.96570.34950.095*
C230.36012 (19)0.79624 (18)0.4289 (2)0.0737 (5)
H23A0.45830.81240.46280.088*
C240.28947 (17)0.65544 (16)0.38466 (19)0.0651 (5)
H24A0.33170.63420.32330.078*
H24B0.30140.60360.45200.078*
C250.2958 (2)0.82930 (19)0.5263 (2)0.0783 (6)
H25A0.30710.77840.59460.094*
H25B0.34090.91780.55500.094*
C260.12118 (19)0.71224 (15)0.22511 (15)0.0579 (4)
H26A0.02460.69690.18940.069*
H26B0.16270.69140.16300.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0597 (3)0.0421 (2)0.0933 (4)0.01144 (18)0.0046 (2)0.0041 (2)
N10.0435 (6)0.0499 (7)0.0504 (7)0.0141 (5)0.0069 (5)0.0036 (5)
N20.0565 (7)0.0367 (6)0.0529 (7)0.0188 (5)0.0140 (5)0.0067 (5)
N30.0568 (7)0.0347 (6)0.0569 (7)0.0198 (5)0.0113 (5)0.0030 (5)
N40.0538 (7)0.0387 (6)0.0552 (7)0.0200 (5)0.0097 (5)0.0024 (5)
N50.0475 (6)0.0368 (6)0.0607 (8)0.0178 (5)0.0112 (5)0.0029 (5)
C10.0811 (12)0.0559 (10)0.0660 (11)0.0199 (9)0.0143 (9)0.0018 (8)
C20.1022 (15)0.0737 (13)0.0568 (11)0.0282 (11)0.0035 (10)0.0116 (9)
C30.0840 (12)0.0775 (13)0.0564 (10)0.0368 (10)0.0149 (9)0.0063 (8)
C40.0700 (11)0.0592 (10)0.0710 (12)0.0235 (9)0.0213 (9)0.0071 (8)
C50.0556 (9)0.0596 (10)0.0609 (10)0.0164 (8)0.0103 (7)0.0049 (7)
C60.0463 (8)0.0607 (9)0.0573 (9)0.0200 (7)0.0152 (6)0.0018 (7)
C70.0519 (8)0.0691 (11)0.0614 (10)0.0258 (8)0.0132 (7)0.0068 (8)
C80.0502 (8)0.0644 (10)0.0552 (9)0.0231 (7)0.0052 (7)0.0060 (7)
C90.0550 (9)0.0611 (10)0.0500 (9)0.0230 (7)0.0024 (7)0.0006 (7)
C100.0444 (7)0.0501 (8)0.0556 (9)0.0092 (6)0.0070 (6)0.0005 (6)
C110.0489 (8)0.0602 (10)0.0550 (9)0.0087 (7)0.0072 (7)0.0058 (7)
C120.0667 (9)0.0372 (7)0.0594 (9)0.0247 (7)0.0200 (7)0.0123 (6)
C130.0552 (8)0.0384 (7)0.0572 (9)0.0184 (6)0.0151 (7)0.0047 (6)
C140.0478 (8)0.0450 (8)0.0874 (12)0.0212 (7)0.0089 (8)0.0019 (7)
C150.0716 (11)0.0614 (11)0.0862 (14)0.0250 (9)0.0045 (10)0.0112 (9)
C160.0489 (7)0.0374 (7)0.0520 (8)0.0176 (6)0.0138 (6)0.0041 (6)
C170.0483 (8)0.0351 (7)0.0580 (9)0.0152 (6)0.0145 (6)0.0027 (6)
C180.0659 (10)0.0455 (8)0.0632 (10)0.0149 (7)0.0251 (8)0.0019 (7)
C190.0816 (12)0.0502 (9)0.0746 (12)0.0187 (9)0.0292 (9)0.0094 (8)
C200.0787 (12)0.0377 (8)0.0997 (15)0.0230 (8)0.0151 (10)0.0030 (8)
C210.0830 (12)0.0408 (9)0.0741 (12)0.0137 (8)0.0196 (9)0.0138 (8)
C220.0741 (12)0.0502 (10)0.1061 (16)0.0029 (9)0.0337 (11)0.0037 (10)
C230.0524 (9)0.0517 (10)0.1044 (15)0.0100 (8)0.0034 (9)0.0068 (9)
C240.0525 (9)0.0500 (9)0.0910 (13)0.0194 (7)0.0088 (8)0.0014 (8)
C250.0895 (14)0.0522 (10)0.0762 (13)0.0130 (10)0.0006 (10)0.0086 (8)
C260.0698 (10)0.0446 (8)0.0587 (10)0.0164 (7)0.0180 (8)0.0071 (7)
Geometric parameters (Å, º) top
S1—C131.6694 (16)C11—H11B0.9700
N1—C81.457 (2)C12—H12A0.9700
N1—C111.4574 (19)C12—H12B0.9700
N1—C71.471 (2)C14—C151.504 (3)
N2—C121.4299 (19)C14—H14A0.9700
N2—C101.455 (2)C14—H14B0.9700
N2—C91.460 (2)C15—H15A0.9600
N3—C131.345 (2)C15—H15B0.9600
N3—N41.3756 (17)C15—H15C0.9600
N3—C121.4746 (18)C16—C171.5119 (19)
N4—C161.3037 (18)C17—C181.539 (2)
N5—C131.3777 (18)C17—C261.540 (2)
N5—C161.3817 (19)C17—C241.542 (2)
N5—C141.463 (2)C18—C191.534 (2)
C1—C21.372 (3)C18—H18A0.9700
C1—C61.382 (2)C18—H18B0.9700
C1—H1A0.9300C19—C201.520 (3)
C2—C31.378 (3)C19—C251.523 (3)
C2—H2A0.9300C19—H19A0.9800
C3—C41.374 (3)C20—C211.512 (3)
C3—H3A0.9300C20—H20A0.9700
C4—C51.376 (3)C20—H20B0.9700
C4—H4A0.9300C21—C221.515 (3)
C5—C61.390 (2)C21—C261.527 (2)
C5—H5A0.9300C21—H21A0.9800
C6—C71.500 (2)C22—C231.518 (3)
C7—H7A0.9700C22—H22A0.9700
C7—H7B0.9700C22—H22B0.9700
C8—C91.512 (2)C23—C251.516 (3)
C8—H8A0.9700C23—C241.539 (2)
C8—H8B0.9700C23—H23A0.9800
C9—H9A0.9700C24—H24A0.9700
C9—H9B0.9700C24—H24B0.9700
C10—C111.513 (2)C25—H25A0.9700
C10—H10A0.9700C25—H25B0.9700
C10—H10B0.9700C26—H26A0.9700
C11—H11A0.9700C26—H26B0.9700
C8—N1—C11108.65 (12)N5—C14—H14B109.1
C8—N1—C7110.90 (12)C15—C14—H14B109.1
C11—N1—C7110.90 (13)H14A—C14—H14B107.8
C12—N2—C10113.10 (12)C14—C15—H15A109.5
C12—N2—C9114.96 (12)C14—C15—H15B109.5
C10—N2—C9110.90 (12)H15A—C15—H15B109.5
C13—N3—N4112.98 (11)C14—C15—H15C109.5
C13—N3—C12126.34 (13)H15A—C15—H15C109.5
N4—N3—C12120.67 (12)H15B—C15—H15C109.5
C16—N4—N3104.98 (12)N4—C16—N5110.22 (12)
C13—N5—C16108.38 (12)N4—C16—C17122.45 (13)
C13—N5—C14120.92 (13)N5—C16—C17127.32 (12)
C16—N5—C14130.70 (12)C16—C17—C18110.91 (12)
C2—C1—C6120.65 (18)C16—C17—C26111.94 (13)
C2—C1—H1A119.7C18—C17—C26109.46 (13)
C6—C1—H1A119.7C16—C17—C24108.86 (12)
C1—C2—C3120.97 (18)C18—C17—C24107.90 (14)
C1—C2—H2A119.5C26—C17—C24107.63 (13)
C3—C2—H2A119.5C19—C18—C17109.97 (13)
C4—C3—C2118.94 (18)C19—C18—H18A109.7
C4—C3—H3A120.5C17—C18—H18A109.7
C2—C3—H3A120.5C19—C18—H18B109.7
C3—C4—C5120.39 (18)C17—C18—H18B109.7
C3—C4—H4A119.8H18A—C18—H18B108.2
C5—C4—H4A119.8C20—C19—C25109.56 (16)
C4—C5—C6120.91 (16)C20—C19—C18109.55 (15)
C4—C5—H5A119.5C25—C19—C18109.49 (16)
C6—C5—H5A119.5C20—C19—H19A109.4
C1—C6—C5118.12 (16)C25—C19—H19A109.4
C1—C6—C7121.14 (16)C18—C19—H19A109.4
C5—C6—C7120.73 (15)C21—C20—C19109.95 (15)
N1—C7—C6112.00 (13)C21—C20—H20A109.7
N1—C7—H7A109.2C19—C20—H20A109.7
C6—C7—H7A109.2C21—C20—H20B109.7
N1—C7—H7B109.2C19—C20—H20B109.7
C6—C7—H7B109.2H20A—C20—H20B108.2
H7A—C7—H7B107.9C20—C21—C22109.80 (17)
N1—C8—C9110.02 (13)C20—C21—C26109.38 (14)
N1—C8—H8A109.7C22—C21—C26109.75 (16)
C9—C8—H8A109.7C20—C21—H21A109.3
N1—C8—H8B109.7C22—C21—H21A109.3
C9—C8—H8B109.7C26—C21—H21A109.3
H8A—C8—H8B108.2C21—C22—C23109.30 (15)
N2—C9—C8109.63 (13)C21—C22—H22A109.8
N2—C9—H9A109.7C23—C22—H22A109.8
C8—C9—H9A109.7C21—C22—H22B109.8
N2—C9—H9B109.7C23—C22—H22B109.8
C8—C9—H9B109.7H22A—C22—H22B108.3
H9A—C9—H9B108.2C25—C23—C22109.94 (17)
N2—C10—C11110.69 (13)C25—C23—C24109.75 (16)
N2—C10—H10A109.5C22—C23—C24109.33 (17)
C11—C10—H10A109.5C25—C23—H23A109.3
N2—C10—H10B109.5C22—C23—H23A109.3
C11—C10—H10B109.5C24—C23—H23A109.3
H10A—C10—H10B108.1C23—C24—C17110.23 (14)
N1—C11—C10110.90 (13)C23—C24—H24A109.6
N1—C11—H11A109.5C17—C24—H24A109.6
C10—C11—H11A109.5C23—C24—H24B109.6
N1—C11—H11B109.5C17—C24—H24B109.6
C10—C11—H11B109.5H24A—C24—H24B108.1
H11A—C11—H11B108.0C23—C25—C19109.13 (16)
N2—C12—N3116.03 (12)C23—C25—H25A109.9
N2—C12—H12A108.3C19—C25—H25A109.9
N3—C12—H12A108.3C23—C25—H25B109.9
N2—C12—H12B108.3C19—C25—H25B109.9
N3—C12—H12B108.3H25A—C25—H25B108.3
H12A—C12—H12B107.4C21—C26—C17110.28 (14)
N3—C13—N5103.43 (13)C21—C26—H26A109.6
N3—C13—S1128.88 (11)C17—C26—H26A109.6
N5—C13—S1127.69 (12)C21—C26—H26B109.6
N5—C14—C15112.60 (15)C17—C26—H26B109.6
N5—C14—H14A109.1H26A—C26—H26B108.1
C15—C14—H14A109.1
C13—N3—N4—C160.40 (16)N3—N4—C16—C17179.14 (13)
C12—N3—N4—C16178.80 (13)C13—N5—C16—N40.30 (17)
C6—C1—C2—C31.0 (3)C14—N5—C16—N4179.45 (15)
C1—C2—C3—C40.2 (3)C13—N5—C16—C17178.95 (14)
C2—C3—C4—C50.5 (3)C14—N5—C16—C171.9 (3)
C3—C4—C5—C60.5 (3)N4—C16—C17—C18109.96 (16)
C2—C1—C6—C51.1 (3)N5—C16—C17—C1868.55 (19)
C2—C1—C6—C7178.28 (18)N4—C16—C17—C26127.47 (15)
C4—C5—C6—C10.3 (3)N5—C16—C17—C2654.03 (19)
C4—C5—C6—C7179.02 (15)N4—C16—C17—C248.6 (2)
C8—N1—C7—C6169.20 (14)N5—C16—C17—C24172.88 (15)
C11—N1—C7—C669.99 (18)C16—C17—C18—C19178.70 (14)
C1—C6—C7—N1104.19 (18)C26—C17—C18—C1957.30 (18)
C5—C6—C7—N175.16 (19)C24—C17—C18—C1959.55 (18)
C11—N1—C8—C960.95 (17)C17—C18—C19—C2058.9 (2)
C7—N1—C8—C9176.91 (14)C17—C18—C19—C2561.3 (2)
C12—N2—C9—C8172.94 (12)C25—C19—C20—C2159.28 (19)
C10—N2—C9—C857.20 (16)C18—C19—C20—C2160.8 (2)
N1—C8—C9—N260.32 (17)C19—C20—C21—C2259.44 (19)
C12—N2—C10—C11173.70 (12)C19—C20—C21—C2661.1 (2)
C9—N2—C10—C1155.46 (16)C20—C21—C22—C2359.6 (2)
C8—N1—C11—C1059.08 (18)C26—C21—C22—C2360.7 (2)
C7—N1—C11—C10178.79 (13)C21—C22—C23—C2560.2 (2)
N2—C10—C11—N156.68 (18)C21—C22—C23—C2460.4 (2)
C10—N2—C12—N355.67 (17)C25—C23—C24—C1760.1 (2)
C9—N2—C12—N373.11 (17)C22—C23—C24—C1760.5 (2)
C13—N3—C12—N2105.86 (17)C16—C17—C24—C23179.36 (15)
N4—N3—C12—N273.21 (18)C18—C17—C24—C2358.92 (19)
N4—N3—C13—N50.21 (16)C26—C17—C24—C2359.11 (19)
C12—N3—C13—N5178.92 (13)C22—C23—C25—C1960.1 (2)
N4—N3—C13—S1179.12 (11)C24—C23—C25—C1960.2 (2)
C12—N3—C13—S11.7 (2)C20—C19—C25—C2359.33 (19)
C16—N5—C13—N30.04 (16)C18—C19—C25—C2360.8 (2)
C14—N5—C13—N3179.29 (14)C20—C21—C26—C1759.6 (2)
C16—N5—C13—S1179.39 (12)C22—C21—C26—C1760.88 (19)
C14—N5—C13—S11.4 (2)C16—C17—C26—C21178.81 (13)
C13—N5—C14—C1577.74 (18)C18—C17—C26—C2157.80 (18)
C16—N5—C14—C15101.32 (19)C24—C17—C26—C2159.22 (18)
N3—N4—C16—N50.41 (15)

Experimental details

Crystal data
Chemical formulaC26H37N5S
Mr451.67
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.5618 (2), 11.2123 (2), 11.3084 (2)
α, β, γ (°)89.974 (1), 77.619 (1), 70.842 (1)
V3)1232.03 (4)
Z2
Radiation typeCu Kα
µ (mm1)1.33
Crystal size (mm)0.69 × 0.51 × 0.39
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.460, 0.626
No. of measured, independent and
observed [I > 2σ(I)] reflections
13169, 4319, 3986
Rint0.025
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.08
No. of reflections4319
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Additonal correspondence author, e-mail: elemam5@hotmail.com.

§Thomson Reuters ResearcherID: A-3561-2009

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University, is greatly appreciated. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAl-Abdullah, E. S., Asiri, H. H., El-Emam, A. A. & Ng, S. W. (2012). Acta Cryst. E68, o531.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47.  CAS Google Scholar
First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o657–o658.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEl-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, A. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96–102.  Web of Science CAS PubMed Google Scholar
First citationEl-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260–1264.  CAS Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1813-o1814
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds