organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro­phenyl quinoline-2-carboxyl­ate

aDepartment of Chemistry, Yuvaraja's College, Mysore 570 005, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cP.P.S.F.T. Department, Central Food Technplogy Research institute, Mysore 570 005, India, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 24 November 2013; accepted 24 November 2013; online 30 November 2013)

In the title compound, C16H10ClNO2, the dihedral angle between the quinoline ring system and the benzene ring is 14.7 (5)°. The carboxyl­ate group is twisted from the mean planes of the quinoline ring system and the benzene ring by 17.7 (5) and 32.1 (4)°, respectively. In the crystal, inversion dimers are formed with the molecules linked by pairs of weak C—H⋯O inter­actions arising from an activated aromatic C atom adjacent to the C—Cl bond, generating R22(14) loops.

Related literature

For related structures, see: Fazal et al. (2012[Fazal, E., Jasinski, J. P., Krauss, S. T., Sudha, B. S. & Yathirajan, H. S. (2012). Acta Cryst. E68, o3231-o3232.]); Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603.]); Jing & Qin (2008[Jing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. 223, 35-36.]); Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172-181.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10ClNO2

  • Mr = 283.70

  • Monoclinic, P 21 /n

  • a = 6.38693 (18) Å

  • b = 16.8893 (5) Å

  • c = 12.2649 (4) Å

  • β = 103.527 (3)°

  • V = 1286.33 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.63 mm−1

  • T = 173 K

  • 0.34 × 0.18 × 0.12 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.611, Tmax = 1.000

  • 7778 measured reflections

  • 2502 independent reflections

  • 2168 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.104

  • S = 1.05

  • 2502 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.93 2.42 3.250 (2) 148
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The crystal structures of 4-methylphenyl quinoline-2-carboxylate (Fazal et al.,2012), 1-(quinolin-2-yl)ethanone (Butcher et al., 2007) and methyl quinoline-2-carboxylate (Jing & Qin, 2008) and the synthesis, crystal structures and theoretical studies of four Schiff bases derived from 4-hydrazinyl-8-(trifluoromethyl) quinoline (Jasinski et al., 2010) have been reported. As part of our studies in this area, we now report the crystal structure of the title compound, (I), C16H10ClNO2.

The dihedral angle between the mean planes of the quinoline ring and the phenyl ring is 14.7 (5)8° (Fig. 1). The mean plane of the carboxylate group is twisted from the mean planes of the quinoline ring and phenyl ring by 17.7 (5)ånd 32.1 (4)°, respectively. In the crystal, weak C13—H13···O1 intermolecular interactions link the molecules into dimers forming R22(14) graph set motifs (Fig. 2).

Related literature top

For related structures, see: Fazal et al. (2012); Butcher et al. (2007); Jing & Qin (2008); Jasinski et al. (2010).

Experimental top

To a mixture of 1.73 g (10 mmole) of quinaldic acid and 1.28 g (10 mmole) of 4-chlorophenol in a round-bottomed flask fitted with a reflex condenser with a drying tube was added 0.75 g (5 mmole) of phosphorous oxychloride. The mixture was heated with occasional swirling, and temperature maintained at 353-363 K. At the end of eight hours the reaction mixture was poured in to a solution of 2 g of sodium bicarbonate in 25 ml of water. The precipitated ester was collected on a filter and washed with water (yield = 2.70 g (90%). Irregula colourless crystals were obtained by recrystallization from absolute ethanol solution ( M.P.: 386 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH). Isotropic displacement parameters for these atoms were set to 1.2 (CH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the a axis. Dashed lines indicate weak C13—H13···O1 interactions linking the molecules into dimers forming R22(14) loops. The remaining H atoms have been removed for clarity.
4-Chlorophenyl quinoline-2-carboxylate top
Crystal data top
C16H10ClNO2F(000) = 584
Mr = 283.70Dx = 1.465 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 6.38693 (18) ÅCell parameters from 3028 reflections
b = 16.8893 (5) Åθ = 3.7–72.3°
c = 12.2649 (4) ŵ = 2.63 mm1
β = 103.527 (3)°T = 173 K
V = 1286.33 (6) Å3Irregular, colourless
Z = 40.34 × 0.18 × 0.12 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2502 independent reflections
Radiation source: Enhance (Cu) X-ray Source2168 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.032
ω scansθmax = 72.5°, θmin = 4.5°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 57
Tmin = 0.611, Tmax = 1.000k = 2020
7778 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2502 reflectionsΔρmax = 0.21 e Å3
181 parametersΔρmin = 0.25 e Å3
0 restraints
Crystal data top
C16H10ClNO2V = 1286.33 (6) Å3
Mr = 283.70Z = 4
Monoclinic, P21/nCu Kα radiation
a = 6.38693 (18) ŵ = 2.63 mm1
b = 16.8893 (5) ÅT = 173 K
c = 12.2649 (4) Å0.34 × 0.18 × 0.12 mm
β = 103.527 (3)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2502 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2168 reflections with I > 2σ(I)
Tmin = 0.611, Tmax = 1.000Rint = 0.032
7778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
2502 reflectionsΔρmin = 0.25 e Å3
181 parameters
Special details top

Experimental. 1H NMR(500MHz,DMSO) δ 8.6 (1H,d, J= 8.48Hz), 8.34(1H,d, J= 8.49Hz),8.29(1H,d, J= 8.49Hz), 8.08(1H,d, J= 8.23 Hz),7.91(1H,dt, J1= 8.2Hz, J2=7, J3=1.36Hz), 7.79(1H,t, J= 7.73Hz), 7.51(2H,d, J= 8.78Hz), 7.38(2H,d, J= 8.78Hz)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.24130 (8)0.40648 (3)0.40342 (4)0.04923 (18)
O10.61750 (19)0.56656 (7)0.05303 (10)0.0362 (3)
O20.57559 (18)0.60496 (7)0.11776 (9)0.0291 (3)
N10.2144 (2)0.68008 (8)0.02285 (11)0.0255 (3)
C10.5257 (3)0.60419 (9)0.00414 (13)0.0271 (3)
C20.3381 (3)0.65748 (9)0.04352 (13)0.0257 (3)
C30.3074 (3)0.67937 (10)0.15754 (13)0.0299 (4)
H30.39840.66060.20080.036*
C40.1399 (3)0.72894 (10)0.20223 (13)0.0316 (4)
H40.11790.74570.27630.038*
C50.0005 (3)0.75454 (9)0.13540 (13)0.0268 (3)
C60.1776 (3)0.80535 (10)0.17629 (14)0.0317 (4)
H60.20500.82400.24960.038*
C70.3082 (3)0.82679 (10)0.10810 (15)0.0333 (4)
H70.42500.86000.13530.040*
C80.2682 (3)0.79909 (10)0.00373 (14)0.0313 (4)
H80.36020.81380.04890.038*
C90.0962 (3)0.75108 (9)0.04632 (13)0.0285 (4)
H90.07080.73370.12020.034*
C100.0434 (3)0.72779 (9)0.02247 (12)0.0250 (3)
C110.7396 (3)0.55652 (9)0.17935 (13)0.0266 (3)
C120.9292 (3)0.53939 (10)0.14730 (14)0.0312 (4)
H120.95320.55880.08030.037*
C131.0823 (3)0.49268 (10)0.21764 (15)0.0328 (4)
H131.20950.47970.19730.039*
C141.0458 (3)0.46548 (10)0.31740 (15)0.0314 (4)
C150.8591 (3)0.48398 (10)0.35058 (14)0.0314 (4)
H150.83750.46590.41870.038*
C160.7051 (3)0.52997 (10)0.28040 (14)0.0284 (3)
H160.57840.54300.30120.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0401 (3)0.0515 (3)0.0530 (3)0.0174 (2)0.0047 (2)0.0118 (2)
O10.0361 (7)0.0436 (7)0.0297 (6)0.0062 (5)0.0094 (5)0.0075 (5)
O20.0313 (6)0.0318 (6)0.0243 (6)0.0059 (5)0.0068 (4)0.0011 (4)
N10.0294 (7)0.0249 (6)0.0221 (6)0.0011 (5)0.0056 (5)0.0001 (5)
C10.0294 (8)0.0276 (8)0.0250 (8)0.0035 (6)0.0076 (6)0.0032 (6)
C20.0282 (8)0.0252 (8)0.0242 (7)0.0038 (6)0.0069 (6)0.0025 (6)
C30.0339 (9)0.0343 (9)0.0236 (8)0.0026 (7)0.0110 (7)0.0024 (6)
C40.0400 (10)0.0358 (9)0.0192 (7)0.0041 (7)0.0075 (7)0.0021 (6)
C50.0305 (8)0.0254 (8)0.0230 (7)0.0055 (6)0.0031 (6)0.0002 (6)
C60.0350 (9)0.0313 (8)0.0262 (8)0.0041 (7)0.0018 (7)0.0045 (6)
C70.0307 (9)0.0291 (8)0.0377 (9)0.0017 (7)0.0033 (7)0.0038 (7)
C80.0323 (9)0.0297 (8)0.0338 (9)0.0002 (7)0.0116 (7)0.0007 (7)
C90.0334 (9)0.0286 (8)0.0239 (7)0.0005 (6)0.0074 (6)0.0014 (6)
C100.0286 (8)0.0234 (7)0.0224 (7)0.0038 (6)0.0047 (6)0.0006 (6)
C110.0263 (8)0.0250 (8)0.0273 (8)0.0001 (6)0.0042 (6)0.0024 (6)
C120.0313 (9)0.0342 (9)0.0296 (8)0.0022 (7)0.0104 (7)0.0017 (7)
C130.0264 (9)0.0360 (9)0.0370 (9)0.0020 (7)0.0093 (7)0.0053 (7)
C140.0281 (9)0.0274 (8)0.0359 (9)0.0032 (6)0.0020 (7)0.0009 (7)
C150.0318 (9)0.0316 (8)0.0305 (8)0.0010 (7)0.0068 (7)0.0020 (7)
C160.0249 (8)0.0312 (8)0.0304 (8)0.0004 (6)0.0093 (6)0.0025 (6)
Geometric parameters (Å, º) top
Cl1—C141.7459 (17)C7—H70.9300
O1—C11.1963 (19)C7—C81.415 (2)
O2—C11.3549 (19)C8—H80.9300
O2—C111.4025 (19)C8—C91.367 (2)
N1—C21.317 (2)C9—H90.9300
N1—C101.366 (2)C9—C101.419 (2)
C1—C21.503 (2)C11—C121.388 (2)
C2—C31.415 (2)C11—C161.383 (2)
C3—H30.9300C12—H120.9300
C3—C41.368 (2)C12—C131.388 (2)
C4—H40.9300C13—H130.9300
C4—C51.411 (2)C13—C141.377 (2)
C5—C61.420 (2)C14—C151.383 (2)
C5—C101.421 (2)C15—H150.9300
C6—H60.9300C15—C161.384 (2)
C6—C71.361 (3)C16—H160.9300
C1—O2—C11120.97 (12)C9—C8—H8119.6
C2—N1—C10117.23 (13)C8—C9—H9120.1
O1—C1—O2125.33 (15)C8—C9—C10119.85 (15)
O1—C1—C2123.05 (15)C10—C9—H9120.1
O2—C1—C2111.61 (13)N1—C10—C5122.51 (14)
N1—C2—C1118.18 (14)N1—C10—C9118.37 (14)
N1—C2—C3124.79 (15)C9—C10—C5119.12 (15)
C3—C2—C1117.03 (14)C12—C11—O2124.07 (14)
C2—C3—H3121.0C16—C11—O2114.59 (13)
C4—C3—C2118.07 (15)C16—C11—C12121.23 (15)
C4—C3—H3121.0C11—C12—H12120.8
C3—C4—H4120.2C11—C12—C13118.46 (15)
C3—C4—C5119.67 (14)C13—C12—H12120.8
C5—C4—H4120.2C12—C13—H13120.0
C4—C5—C6122.82 (15)C14—C13—C12120.06 (15)
C4—C5—C10117.69 (15)C14—C13—H13120.0
C6—C5—C10119.49 (15)C13—C14—Cl1118.80 (13)
C5—C6—H6120.0C13—C14—C15121.52 (16)
C7—C6—C5119.96 (15)C15—C14—Cl1119.68 (14)
C7—C6—H6120.0C14—C15—H15120.6
C6—C7—H7119.7C14—C15—C16118.71 (16)
C6—C7—C8120.66 (16)C16—C15—H15120.6
C8—C7—H7119.7C11—C16—C15119.99 (15)
C7—C8—H8119.6C11—C16—H16120.0
C9—C8—C7120.89 (16)C15—C16—H16120.0
Cl1—C14—C15—C16179.15 (12)C5—C6—C7—C80.2 (3)
O1—C1—C2—N1162.83 (16)C6—C5—C10—N1178.71 (14)
O1—C1—C2—C316.9 (2)C6—C5—C10—C91.5 (2)
O2—C1—C2—N117.4 (2)C6—C7—C8—C90.8 (3)
O2—C1—C2—C3162.86 (14)C7—C8—C9—C100.7 (2)
O2—C11—C12—C13177.89 (14)C8—C9—C10—N1179.69 (14)
O2—C11—C16—C15177.73 (14)C8—C9—C10—C50.5 (2)
N1—C2—C3—C41.4 (2)C10—N1—C2—C1179.29 (13)
C1—O2—C11—C1236.5 (2)C10—N1—C2—C30.4 (2)
C1—O2—C11—C16147.26 (15)C10—C5—C6—C71.3 (2)
C1—C2—C3—C4178.90 (14)C11—O2—C1—O13.2 (2)
C2—N1—C10—C51.7 (2)C11—O2—C1—C2177.06 (13)
C2—N1—C10—C9178.15 (14)C11—C12—C13—C141.0 (2)
C2—C3—C4—C51.9 (2)C12—C11—C16—C151.4 (2)
C3—C4—C5—C6179.43 (15)C12—C13—C14—Cl1179.69 (13)
C3—C4—C5—C100.7 (2)C12—C13—C14—C150.4 (3)
C4—C5—C6—C7178.84 (16)C13—C14—C15—C161.0 (3)
C4—C5—C10—N11.1 (2)C14—C15—C16—C110.1 (2)
C4—C5—C10—C9178.68 (14)C16—C11—C12—C131.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.423.250 (2)148
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.423.250 (2)148
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

EF thanks the CFTRI, Mysore and Yuvaraja's College, UOM, for providing research facilities. EF is grateful to Mr J. R. Manjunatha, PPSFT, CFTRI for the NMR spectra. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFazal, E., Jasinski, J. P., Krauss, S. T., Sudha, B. S. & Yathirajan, H. S. (2012). Acta Cryst. E68, o3231–o3232.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172–181.  Web of Science CSD CrossRef CAS Google Scholar
First citationJing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. 223, 35–36.  CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds