organic compounds
3-[1-(4-Bromophenyl)ethoxy]-2,2,5-trimethyl-4-phenyl-3-azahexane
aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and bDepartment of Polymer Engineering, University of Akron, Akron, OH, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The title compound, C22H30BrNO, is an alkoxyamine compound, an effective initiator in nitroxide-mediated polymerization. It was prepared as a mixture of two diasteromers; the crystal for the X-ray analysis showed one of these as a pair of R,S and S,R enantiomers. The tert-butyl and isopropyl groups are in an almost anti conformation in the crystal [C—N—C—C torsion angle = −168.8 (1)°], and the methyl group of the ethoxy group is in an approximate anti relationship to the tert-butyl group. The dihedral angle between the phenyl and benzene rings is 33.12 (7)°. The Br atom is disordered over two positions, with occupancies of 0.9139 (16) and 0.0861 (16). In the crystal, weak C—H⋯Br contacts link the molecules into chains along [-110].
CCDC reference: 969901
Related literature
For the use of TIPNO-based alkoxyamine in polymer synthesis (TIPNO = 2,2,5-trimethyl-4-phenyl-3-azahexane-3-nitroxide), see: Benoit et al. (1999). For the synthesis of the title compound, see: Kaul et al. (2010). For the use of the title compound in synthesis, see: Richard et al. (2008); Kaul et al. (2010); Stalmach et al. (2001); van der Veen et al. (2004); Widin et al. (2013). For properties of alkoxyamines, see: Benoit et al. (1999); Wetter et al. (2004); Rodlert et al. (2000); Nilsen & Braslau (2006). For synthesis of 1-(4-bromophenyl) ethylbromide, see: Kodama et al. (2011); Thompson et al. (2011). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 969901
10.1107/S1600536813029966/hg5350sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813029966/hg5350Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813029966/hg5350Isup3.cml
(a) 1-(4-Bromophenyl)ethylbromide
1-(4-Bromophenyl)ethylbromide was synthesized according to previously reported procedures. 4-Bromoacetophenone was reduced to 1-(4-bromophenyl)ethanol by sodium borohydride (Kodama et al., 2011), and the product was treated with PBr3 using a procedure of Thompson (Thompson et al., 2011). 1-(4-Bromophenyl)ethylbromide (Kaul et al., 2010) was obtained as colorless liquid in 70% overall yield.
(b) 3-[1-(4-Bromophenyl)ethoxy]-2,2,5-trimethyl-4-phenyl-3-azahexane (1)
3-[1-(4-Bromophenyl)ethoxy]-2,2,5-trimethyl-4-phenyl-3-azahexane was synthesized according to a previously reported method [Kaul et al., 2010] with a modification of the time and temperature. Synthesized 1-(4-bromophenyl) ethylbromide and commercially available 2,2,5-trimethyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO) were reacted in the presence of CuBr and N,N,N'',N',N''-pentamethyldiethylenetriamine (PMDETA) in toluene at 75 oC for 17 hr to form the title compound (1), 3-[1-(4-bromophenyl)ethoxy]-2,2,5-trimethyl-4-phenyl-3-azahexane, in 80% yield as a viscous colorless oil which slowly crystallized in the refrigerator. The synthesized compound was characterized by 1H NMR and its
was determined by X-ray crystallography. The 1H NMR spectrum (Figure 3) showed the presence of two in nearly equal amounts, and was in agreement with the published spectrum (Kaul et al., 2010). A crystal was taken for X-ray crystallography.1H NMR (400 MHz, CDCl3) (mixture of two diastereomers): δ = 7.55–7.15 (HAr), 4.89 (H5 and H5'), 3.43 (H3), 3.31 (H3'), 2.31 (H2), 1.58 (H6), 1.53 (H6'), 1.42 (H2'), 1.26 (H1), 1.04 (H4'), 0.93 (H1'), 0.78 (H4), 0.54 (H1), 0.25 (H1').
Carbon-bonded hydrogen atoms were included in idealized positions and set to ride on the parent atoms. The bromine atom was disordered over two positions with occupancies of 0.9139 (16) and 0.0961 (16).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Structural diagram of the title compound. Atomic displacement parameters are at the 30% probability level. | |
Fig. 2. Packing diagram of the title compound viewed along the a axis. | |
Fig. 3. 1H NMR spectrum of 3-[1-(4-bromophenyl)ethoxy]-2,2,5-trimethyl-4-phenyl-3-azahexane (two diastereomers) in CDCl3 | |
Fig. 4. Alkoxyamine 2 (X = H) and the title compound, bromo analog 1 (X = Br). |
C22H30BrNO | Z = 2 |
Mr = 404.38 | F(000) = 424 |
Triclinic, P1 | Dx = 1.321 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2595 (4) Å | Cell parameters from 4369 reflections |
b = 10.0175 (4) Å | θ = 3.2–40.9° |
c = 12.5257 (6) Å | µ = 2.03 mm−1 |
α = 88.798 (4)° | T = 123 K |
β = 78.824 (4)° | Diamond shaped plate, colorless |
γ = 89.220 (3)° | 0.51 × 0.35 × 0.06 mm |
V = 1016.45 (8) Å3 |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 13014 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 7448 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 41.0°, θmin = 3.2° |
ω scans | h = −13→15 |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)] | k = −18→18 |
Tmin = 0.375, Tmax = 0.888 | l = −16→22 |
23820 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0319P)2 + 0.3044P] where P = (Fo2 + 2Fc2)/3 |
13014 reflections | (Δ/σ)max = 0.002 |
237 parameters | Δρmax = 0.71 e Å−3 |
14 restraints | Δρmin = −0.78 e Å−3 |
C22H30BrNO | γ = 89.220 (3)° |
Mr = 404.38 | V = 1016.45 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.2595 (4) Å | Mo Kα radiation |
b = 10.0175 (4) Å | µ = 2.03 mm−1 |
c = 12.5257 (6) Å | T = 123 K |
α = 88.798 (4)° | 0.51 × 0.35 × 0.06 mm |
β = 78.824 (4)° |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 13014 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)] | 7448 reflections with I > 2σ(I) |
Tmin = 0.375, Tmax = 0.888 | Rint = 0.040 |
23820 measured reflections |
R[F2 > 2σ(F2)] = 0.066 | 14 restraints |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.71 e Å−3 |
13014 reflections | Δρmin = −0.78 e Å−3 |
237 parameters |
Experimental. CrysAlisPro (Agilent, 2012) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark & Reid, 1995) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1A | −0.21657 (3) | 1.03569 (3) | 0.31920 (3) | 0.03904 (8) | 0.9139 (16) |
Br1B | −0.2097 (3) | 1.0344 (3) | 0.2954 (4) | 0.03904 (8) | 0.0861 (16) |
O1 | 0.33888 (11) | 0.52249 (9) | 0.26150 (7) | 0.02013 (18) | |
N1 | 0.42054 (13) | 0.41412 (11) | 0.31003 (9) | 0.0184 (2) | |
C1 | 0.22930 (16) | 0.73932 (14) | 0.30589 (11) | 0.0213 (2) | |
C2 | 0.21935 (18) | 0.85614 (15) | 0.36510 (12) | 0.0263 (3) | |
H2A | 0.3043 | 0.8757 | 0.4036 | 0.032* | |
C3 | 0.08780 (19) | 0.94442 (15) | 0.36896 (13) | 0.0282 (3) | |
H3A | 0.0825 | 1.0244 | 0.4089 | 0.034* | |
C4 | −0.03621 (15) | 0.91347 (13) | 0.31314 (12) | 0.0255 (3) | |
C5 | −0.03140 (18) | 0.79814 (15) | 0.25483 (12) | 0.0260 (3) | |
H5A | −0.1177 | 0.7784 | 0.2175 | 0.031* | |
C6 | 0.10213 (17) | 0.71062 (15) | 0.25143 (11) | 0.0235 (3) | |
H6A | 0.1066 | 0.6306 | 0.2116 | 0.028* | |
C7 | 0.38199 (16) | 0.65120 (14) | 0.29630 (12) | 0.0243 (3) | |
H7A | 0.4127 | 0.6411 | 0.3695 | 0.029* | |
C8 | 0.5227 (2) | 0.71609 (18) | 0.21809 (15) | 0.0361 (4) | |
H8A | 0.6227 | 0.6610 | 0.2138 | 0.054* | |
H8B | 0.5424 | 0.8050 | 0.2440 | 0.054* | |
H8C | 0.4943 | 0.7243 | 0.1458 | 0.054* | |
C9 | 0.29326 (17) | 0.35139 (15) | 0.39863 (11) | 0.0228 (3) | |
C10 | 0.25278 (19) | 0.45110 (17) | 0.49164 (12) | 0.0297 (3) | |
H10A | 0.1974 | 0.5298 | 0.4670 | 0.045* | |
H10B | 0.3551 | 0.4782 | 0.5133 | 0.045* | |
H10C | 0.1800 | 0.4089 | 0.5539 | 0.045* | |
C11 | 0.3726 (2) | 0.22698 (17) | 0.44159 (13) | 0.0338 (4) | |
H11A | 0.3849 | 0.1568 | 0.3872 | 0.051* | |
H11B | 0.3021 | 0.1950 | 0.5092 | 0.051* | |
H11C | 0.4813 | 0.2497 | 0.4559 | 0.051* | |
C12 | 0.13032 (17) | 0.31498 (16) | 0.36504 (13) | 0.0276 (3) | |
H12A | 0.1510 | 0.2450 | 0.3104 | 0.041* | |
H12B | 0.0841 | 0.3942 | 0.3342 | 0.041* | |
H12C | 0.0520 | 0.2825 | 0.4290 | 0.041* | |
C13 | 0.49844 (15) | 0.32510 (13) | 0.21998 (10) | 0.0188 (2) | |
H13A | 0.5453 | 0.2479 | 0.2563 | 0.023* | |
C14 | 0.64814 (15) | 0.39403 (15) | 0.14855 (10) | 0.0209 (2) | |
H14A | 0.6102 | 0.4801 | 0.1192 | 0.025* | |
C15 | 0.77943 (17) | 0.42426 (17) | 0.21525 (12) | 0.0273 (3) | |
H15A | 0.8661 | 0.4789 | 0.1713 | 0.041* | |
H15B | 0.8277 | 0.3404 | 0.2367 | 0.041* | |
H15C | 0.7287 | 0.4729 | 0.2805 | 0.041* | |
C16 | 0.72633 (18) | 0.30662 (18) | 0.05259 (12) | 0.0303 (3) | |
H16A | 0.8242 | 0.3510 | 0.0108 | 0.045* | |
H16B | 0.6463 | 0.2931 | 0.0055 | 0.045* | |
H16C | 0.7585 | 0.2200 | 0.0802 | 0.045* | |
C17 | 0.38509 (16) | 0.26336 (14) | 0.15192 (10) | 0.0203 (2) | |
C18 | 0.3761 (2) | 0.12507 (16) | 0.14801 (12) | 0.0283 (3) | |
H18A | 0.4397 | 0.0712 | 0.1881 | 0.034* | |
C19 | 0.2754 (2) | 0.06402 (18) | 0.08627 (13) | 0.0363 (4) | |
H19A | 0.2704 | −0.0306 | 0.0847 | 0.044* | |
C20 | 0.1827 (2) | 0.1417 (2) | 0.02737 (13) | 0.0372 (4) | |
H20A | 0.1125 | 0.1007 | −0.0138 | 0.045* | |
C21 | 0.19305 (18) | 0.27933 (18) | 0.02873 (12) | 0.0299 (3) | |
H21A | 0.1304 | 0.3327 | −0.0124 | 0.036* | |
C22 | 0.29426 (17) | 0.34049 (15) | 0.08968 (11) | 0.0232 (3) | |
H22A | 0.3016 | 0.4351 | 0.0890 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1A | 0.03220 (8) | 0.02458 (8) | 0.0589 (2) | 0.01144 (6) | −0.00651 (9) | 0.00285 (9) |
Br1B | 0.03220 (8) | 0.02458 (8) | 0.0589 (2) | 0.01144 (6) | −0.00651 (9) | 0.00285 (9) |
O1 | 0.0218 (4) | 0.0146 (4) | 0.0256 (4) | 0.0023 (3) | −0.0084 (3) | −0.0031 (3) |
N1 | 0.0176 (4) | 0.0182 (5) | 0.0187 (5) | 0.0036 (4) | −0.0019 (4) | −0.0007 (4) |
C1 | 0.0193 (5) | 0.0165 (5) | 0.0273 (6) | −0.0007 (4) | −0.0026 (5) | −0.0019 (5) |
C2 | 0.0260 (6) | 0.0197 (6) | 0.0342 (7) | 0.0003 (5) | −0.0079 (5) | −0.0059 (5) |
C3 | 0.0305 (7) | 0.0169 (6) | 0.0357 (7) | 0.0018 (5) | −0.0020 (6) | −0.0042 (5) |
C4 | 0.0219 (6) | 0.0173 (6) | 0.0346 (7) | 0.0035 (5) | 0.0004 (5) | 0.0046 (5) |
C5 | 0.0217 (6) | 0.0256 (7) | 0.0310 (7) | 0.0031 (5) | −0.0061 (5) | −0.0009 (5) |
C6 | 0.0204 (5) | 0.0207 (6) | 0.0295 (6) | 0.0011 (5) | −0.0043 (5) | −0.0060 (5) |
C7 | 0.0187 (5) | 0.0182 (6) | 0.0367 (7) | −0.0001 (5) | −0.0067 (5) | −0.0058 (5) |
C8 | 0.0243 (7) | 0.0267 (8) | 0.0543 (10) | −0.0028 (6) | 0.0009 (7) | −0.0064 (7) |
C9 | 0.0204 (5) | 0.0230 (6) | 0.0229 (6) | 0.0009 (5) | 0.0011 (5) | 0.0002 (5) |
C10 | 0.0278 (7) | 0.0352 (8) | 0.0232 (6) | −0.0001 (6) | 0.0025 (5) | −0.0050 (6) |
C11 | 0.0355 (8) | 0.0317 (8) | 0.0307 (7) | 0.0048 (7) | 0.0008 (6) | 0.0089 (6) |
C12 | 0.0206 (6) | 0.0255 (7) | 0.0342 (7) | −0.0038 (5) | 0.0018 (5) | −0.0030 (6) |
C13 | 0.0181 (5) | 0.0182 (5) | 0.0200 (5) | 0.0024 (4) | −0.0036 (4) | −0.0023 (4) |
C14 | 0.0165 (5) | 0.0248 (6) | 0.0208 (6) | 0.0017 (5) | −0.0024 (4) | −0.0032 (5) |
C15 | 0.0188 (5) | 0.0360 (8) | 0.0281 (7) | 0.0005 (5) | −0.0060 (5) | −0.0057 (6) |
C16 | 0.0221 (6) | 0.0413 (9) | 0.0260 (7) | 0.0020 (6) | −0.0001 (5) | −0.0110 (6) |
C17 | 0.0179 (5) | 0.0213 (6) | 0.0209 (6) | −0.0003 (5) | −0.0012 (4) | −0.0039 (4) |
C18 | 0.0334 (7) | 0.0221 (6) | 0.0289 (7) | −0.0010 (6) | −0.0047 (6) | −0.0042 (5) |
C19 | 0.0455 (9) | 0.0276 (8) | 0.0352 (8) | −0.0129 (7) | −0.0048 (7) | −0.0080 (6) |
C20 | 0.0352 (8) | 0.0463 (10) | 0.0315 (8) | −0.0160 (7) | −0.0075 (6) | −0.0078 (7) |
C21 | 0.0232 (6) | 0.0421 (9) | 0.0253 (7) | −0.0041 (6) | −0.0067 (5) | −0.0032 (6) |
C22 | 0.0206 (5) | 0.0266 (7) | 0.0222 (6) | 0.0001 (5) | −0.0031 (5) | −0.0035 (5) |
Br1A—C4 | 1.9064 (11) | C11—H11B | 0.9800 |
Br1B—C4 | 1.9064 (15) | C11—H11C | 0.9800 |
O1—C7 | 1.4406 (17) | C12—H12A | 0.9800 |
O1—N1 | 1.4540 (14) | C12—H12B | 0.9800 |
N1—C13 | 1.4922 (16) | C12—H12C | 0.9800 |
N1—C9 | 1.5061 (18) | C13—C17 | 1.5274 (18) |
C1—C2 | 1.3916 (19) | C13—C14 | 1.5409 (19) |
C1—C6 | 1.3948 (19) | C13—H13A | 1.0000 |
C1—C7 | 1.5165 (18) | C14—C15 | 1.5285 (19) |
C2—C3 | 1.386 (2) | C14—C16 | 1.5350 (19) |
C2—H2A | 0.9500 | C14—H14A | 1.0000 |
C3—C4 | 1.389 (2) | C15—H15A | 0.9800 |
C3—H3A | 0.9500 | C15—H15B | 0.9800 |
C4—C5 | 1.376 (2) | C15—H15C | 0.9800 |
C5—C6 | 1.3942 (19) | C16—H16A | 0.9800 |
C5—H5A | 0.9500 | C16—H16B | 0.9800 |
C6—H6A | 0.9500 | C16—H16C | 0.9800 |
C7—C8 | 1.512 (2) | C17—C18 | 1.391 (2) |
C7—H7A | 1.0000 | C17—C22 | 1.3975 (19) |
C8—H8A | 0.9800 | C18—C19 | 1.396 (2) |
C8—H8B | 0.9800 | C18—H18A | 0.9500 |
C8—H8C | 0.9800 | C19—C20 | 1.383 (3) |
C9—C10 | 1.535 (2) | C19—H19A | 0.9500 |
C9—C11 | 1.536 (2) | C20—C21 | 1.384 (3) |
C9—C12 | 1.536 (2) | C20—H20A | 0.9500 |
C10—H10A | 0.9800 | C21—C22 | 1.392 (2) |
C10—H10B | 0.9800 | C21—H21A | 0.9500 |
C10—H10C | 0.9800 | C22—H22A | 0.9500 |
C11—H11A | 0.9800 | ||
C7—O1—N1 | 111.94 (9) | C9—C11—H11C | 109.5 |
O1—N1—C13 | 107.20 (9) | H11A—C11—H11C | 109.5 |
O1—N1—C9 | 107.14 (9) | H11B—C11—H11C | 109.5 |
C13—N1—C9 | 116.38 (11) | C9—C12—H12A | 109.5 |
C2—C1—C6 | 118.76 (12) | C9—C12—H12B | 109.5 |
C2—C1—C7 | 119.47 (12) | H12A—C12—H12B | 109.5 |
C6—C1—C7 | 121.66 (12) | C9—C12—H12C | 109.5 |
C3—C2—C1 | 121.23 (14) | H12A—C12—H12C | 109.5 |
C3—C2—H2A | 119.4 | H12B—C12—H12C | 109.5 |
C1—C2—H2A | 119.4 | N1—C13—C17 | 117.31 (10) |
C2—C3—C4 | 118.61 (13) | N1—C13—C14 | 110.32 (11) |
C2—C3—H3A | 120.7 | C17—C13—C14 | 112.06 (10) |
C4—C3—H3A | 120.7 | N1—C13—H13A | 105.4 |
C5—C4—C3 | 121.74 (11) | C17—C13—H13A | 105.4 |
C5—C4—Br1A | 120.07 (11) | C14—C13—H13A | 105.4 |
C3—C4—Br1A | 118.19 (11) | C15—C14—C16 | 108.65 (11) |
C5—C4—Br1B | 114.39 (18) | C15—C14—C13 | 110.80 (11) |
C3—C4—Br1B | 123.43 (18) | C16—C14—C13 | 111.31 (12) |
Br1A—C4—Br1B | 8.81 (16) | C15—C14—H14A | 108.7 |
C4—C5—C6 | 118.94 (13) | C16—C14—H14A | 108.7 |
C4—C5—H5A | 120.5 | C13—C14—H14A | 108.7 |
C6—C5—H5A | 120.5 | C14—C15—H15A | 109.5 |
C5—C6—C1 | 120.72 (13) | C14—C15—H15B | 109.5 |
C5—C6—H6A | 119.6 | H15A—C15—H15B | 109.5 |
C1—C6—H6A | 119.6 | C14—C15—H15C | 109.5 |
O1—C7—C8 | 113.22 (12) | H15A—C15—H15C | 109.5 |
O1—C7—C1 | 106.94 (10) | H15B—C15—H15C | 109.5 |
C8—C7—C1 | 109.28 (12) | C14—C16—H16A | 109.5 |
O1—C7—H7A | 109.1 | C14—C16—H16B | 109.5 |
C8—C7—H7A | 109.1 | H16A—C16—H16B | 109.5 |
C1—C7—H7A | 109.1 | C14—C16—H16C | 109.5 |
C7—C8—H8A | 109.5 | H16A—C16—H16C | 109.5 |
C7—C8—H8B | 109.5 | H16B—C16—H16C | 109.5 |
H8A—C8—H8B | 109.5 | C18—C17—C22 | 118.35 (13) |
C7—C8—H8C | 109.5 | C18—C17—C13 | 119.09 (12) |
H8A—C8—H8C | 109.5 | C22—C17—C13 | 122.51 (12) |
H8B—C8—H8C | 109.5 | C17—C18—C19 | 121.19 (15) |
N1—C9—C10 | 107.73 (12) | C17—C18—H18A | 119.4 |
N1—C9—C11 | 107.59 (11) | C19—C18—H18A | 119.4 |
C10—C9—C11 | 108.01 (12) | C20—C19—C18 | 119.81 (16) |
N1—C9—C12 | 115.25 (11) | C20—C19—H19A | 120.1 |
C10—C9—C12 | 107.66 (11) | C18—C19—H19A | 120.1 |
C11—C9—C12 | 110.36 (13) | C19—C20—C21 | 119.62 (15) |
C9—C10—H10A | 109.5 | C19—C20—H20A | 120.2 |
C9—C10—H10B | 109.5 | C21—C20—H20A | 120.2 |
H10A—C10—H10B | 109.5 | C20—C21—C22 | 120.69 (15) |
C9—C10—H10C | 109.5 | C20—C21—H21A | 119.7 |
H10A—C10—H10C | 109.5 | C22—C21—H21A | 119.7 |
H10B—C10—H10C | 109.5 | C21—C22—C17 | 120.29 (15) |
C9—C11—H11A | 109.5 | C21—C22—H22A | 119.9 |
C9—C11—H11B | 109.5 | C17—C22—H22A | 119.9 |
H11A—C11—H11B | 109.5 | ||
C7—O1—N1—C13 | −130.22 (11) | O1—N1—C9—C12 | 50.03 (14) |
C7—O1—N1—C9 | 104.18 (12) | C13—N1—C9—C12 | −69.86 (15) |
C6—C1—C2—C3 | −1.2 (2) | O1—N1—C13—C17 | −58.63 (14) |
C7—C1—C2—C3 | 175.04 (14) | C9—N1—C13—C17 | 61.23 (15) |
C1—C2—C3—C4 | 0.7 (2) | O1—N1—C13—C14 | 71.30 (12) |
C2—C3—C4—C5 | 0.1 (2) | C9—N1—C13—C14 | −168.84 (10) |
C2—C3—C4—Br1A | 179.95 (11) | N1—C13—C14—C15 | 61.24 (14) |
C2—C3—C4—Br1B | −171.8 (2) | C17—C13—C14—C15 | −166.09 (11) |
C3—C4—C5—C6 | −0.3 (2) | N1—C13—C14—C16 | −177.74 (11) |
Br1A—C4—C5—C6 | 179.81 (11) | C17—C13—C14—C16 | −45.06 (15) |
Br1B—C4—C5—C6 | 172.24 (17) | N1—C13—C17—C18 | −120.29 (14) |
C4—C5—C6—C1 | −0.2 (2) | C14—C13—C17—C18 | 110.60 (14) |
C2—C1—C6—C5 | 0.9 (2) | N1—C13—C17—C22 | 62.25 (17) |
C7—C1—C6—C5 | −175.21 (14) | C14—C13—C17—C22 | −66.86 (15) |
N1—O1—C7—C8 | 95.05 (14) | C22—C17—C18—C19 | −1.9 (2) |
N1—O1—C7—C1 | −144.54 (10) | C13—C17—C18—C19 | −179.49 (14) |
C2—C1—C7—O1 | 162.77 (13) | C17—C18—C19—C20 | 0.2 (2) |
C6—C1—C7—O1 | −21.13 (18) | C18—C19—C20—C21 | 1.1 (3) |
C2—C1—C7—C8 | −74.34 (17) | C19—C20—C21—C22 | −0.7 (2) |
C6—C1—C7—C8 | 101.77 (16) | C20—C21—C22—C17 | −1.0 (2) |
O1—N1—C9—C10 | −70.17 (13) | C18—C17—C22—C21 | 2.3 (2) |
C13—N1—C9—C10 | 169.94 (11) | C13—C17—C22—C21 | 179.79 (12) |
O1—N1—C9—C11 | 173.61 (11) | C8—C7—C13—C14 | 4.56 (11) |
C13—N1—C9—C11 | 53.72 (15) | C8—C7—N1—C9 | 172.28 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···Br1Ai | 0.98 | 3.12 | 3.9782 (16) | 148 |
C13—H13A···Br1Aii | 1.00 | 3.07 | 4.0358 (13) | 163 |
C13—H13A···Br1Bii | 1.00 | 3.02 | 3.970 (2) | 159 |
C15—H15B···Br1Bii | 0.98 | 3.14 | 4.017 (3) | 149 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x+1, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···Br1Ai | 0.98 | 3.12 | 3.9782 (16) | 147.6 |
C13—H13A···Br1Aii | 1.00 | 3.07 | 4.0358 (13) | 162.7 |
C13—H13A···Br1Bii | 1.00 | 3.02 | 3.970 (2) | 158.6 |
C15—H15B···Br1Bii | 0.98 | 3.14 | 4.017 (3) | 149.3 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x+1, y−1, z. |
Acknowledgements
DR and AK would like to thank the US Department of Energy, Division of Basic Energy Sciences under contract No. DE–FG02-10ER4779. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer and the Howard University Nanoscience Facility for access to liquid nitrogen.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Benoit, D., Chaplinski, V., Braslau, R. & Hawker, C. J. (1999). J. Am. Chem. Soc. 121, 3904–3920. Web of Science CrossRef CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kaul, E., Senkovskyy, V., Tkachov, R., Bocharova, V., Komber, H., Stamm, M. & Kiriy, A. (2010). Macromolecules, 43, 77–81. Web of Science CrossRef CAS Google Scholar
Kodama, S., Hashidate, S., Nomoto, A., Yano, S., Ueshima, M. & Ogawa, A. (2011). Chem. Lett. 40, 495–497. Web of Science CrossRef CAS Google Scholar
Nilsen, A. & Braslau, R. (2006). J. Polym. Sci. Part A Polym. Chem. 44, 697–717. Web of Science CrossRef CAS Google Scholar
Richard, F., Brochon, C., Leclerc, N., Eckhardt, D., Heiser, T. & Hadziioannou, G. (2008). Macromol. Rapid Commun. 29, 885–891. Web of Science CrossRef CAS Google Scholar
Rodlert, M., Harth, E., Rees, I. & Hawker, C. J. (2000). J. Polym. Sci. Part A Polym. Chem. 38, 4749–4763. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stalmach, U., de Boer, B., Post, A. D., van Hutten, P. F. & Hadziioannou, G. (2001). Angew. Chem. Int. Ed. 40, 428–430. Web of Science CrossRef CAS Google Scholar
Thompson, A. M., Sutherland, H. S., Palmer, B. D., Kmentova, I., Blaser, A., Franzblau, S. G., Wan, B., Wang, Y., Ma, Z. & Denny, W. A. (2011). J. Med. Chem. 54, 6563–6585. Web of Science CrossRef CAS PubMed Google Scholar
Veen, M. H. van der, de Boer, B., Stalmach, U., van de Wetering, K. I. & Hadziioannou, G. (2004). Macromolecules, 37, 3673–3684. Google Scholar
Wetter, C., Gierlich, J., Knoop, C. A., Müller, C., Schulte, T. & Studer, A. (2004). Chem. Eur. J. 10, 1156–1166. Web of Science CrossRef PubMed CAS Google Scholar
Widin, J. M., Kim, M., Schmitt, A. K., Han, E., Gopalan, P. & Mahanthappa, M. K. (2013). Macromolecules, 46, 4472–4480. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitroxide-mediated radical polymerization (NMRP) has been widely used under mild conditions to synthesize polymers and block copolymers with controlled molecular weight, polydispersity, and end group functionality (Benoit et al., 1999; Wetter et al., 2004). In NMRP, an alkoxyamine is used to initiate and mediate polymerization. The C–O bond of an alkoxyamine is stable to normal purification and handling procedures as well as variety of reaction conditions (Rodlert et al., 2000). However, under appropriate conditions, homolysis of the C—O bond occurs, giving a (relatively stable) nitroxide radical and carbon radical which can initiate radical polymerization. The nitroxides are kinetically persistent radicals, and act as reversible traps for the less stable radical intermediates in the polymerization (Nilsen & Braslau, 2006).
Alkoxyamines based on 2,2,5-trimethyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO) have been widely used as initiators/mediators to synthesize a variety of linear polymers and block copolymers (van der Veen et al., 2004; Widin et al., 2013). In particular, alkoxyamine 2 (X = H; Figure 4), was found to be especially useful in NMRP (Benoit et al., 1999). The title compound, bromo analog 1 (X = Br) was developed so that 2 could be attached to a polymer, to give a macroinitiator for block copolymer synthesis (Stalmach et al., 2001). It has been used successfully in a number of block copolymer syntheses including polystyrene-b-poly(3-hexylthiophene) (PS-b-P3HT) (Kaul et al., 2010), poly(phenylenevinylene)-b-poly(butylacrylate) (PPV-b-PBA) (Stalmach et al., 2001), and poly(3-hexylthiophene)-b-poly(butylacrylate-stat-C60methylstyrene {P3HT-b-[P(BA-stat-C60MS)]} (Richard et al., 2008). Examples of block copolymers, prepared by TIPNO-mediated polymerizations, that have been successfully utilized in photovoltaic application are poly[(2,5-di(2'ethyl)hexyloxy)-1,4-phenylenevinylene]-b-poly(butylacrylate-stat-C60methylstyrene) [DEH-PPV-b-P(BA-stat-C60MS)], poly(vinyltriphenylamine)-b-poly(perylene bisimide acrylate) (PvTPA-b-PPerAcr) and poly(3-hexylthiophene)-b-poly(perylene bisimide acrylate (P3HT-b-PPerAcr).
The title compound was prepared as a mixture of two diastereomers in nearly equal amounts, as can be seen by the NMR spectrum (Figure 3). The crystal for the X-ray analysis showed one of the diastereomers (Figure 1), a pair of R,S and S,R (at C7 and C13) enantiomers. The tert-butyl group and isopropyl group are in a nearly anti conformation in the crystal (dihedral angle C9, N1, C13, C14 = -168.8 (1)°). The C—Me bond (C7, C8) and N-tert-Bu bond (N1, C9) are in an anti relationship (C8, C7, N1, C9 = 172.3 (1)°), and the C—Me bond (C7, C8) and C-isopropyl bond (C13, C14) are in a syn relationship (C8, C7, C13, C14 = 4.6 (1) degrees). The dihedral angle between the planes of the phenyl groups is 33.12 (7)°.
The bromine atom was disordered over two positions with occupancies of 0.9139 (16) and 0.0961 (16). The central N is pyramidal and all the bond lengths and angles are in the normal ranges (Allen et al., 1987). There are weak C—H···Br intermolecular contacts which link the molecules into chains in the [1 1 0] direction.