organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1726-o1727

N-(1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)-2-phenyl­acetamide

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 20 October 2013; accepted 28 October 2013; online 6 November 2013)

The title compound, C19H19N3O2, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In mol­ecule A, the pyrazole ring adopts a slightly disordered half-chair conformation while in B it is planar [r.m.s. deviation = 0.0386 (15) Å]. The dihedral angle between the mean planes of the two phenyl rings is 56.2 (8) in A and 38.2 (3)° in B. The N-phenyl substituent on the pyrazole ring is twisted by 46.5 (2) in A and 58.6 (4)° in B while the extended phenyl ring is twisted by 82.2 (8) in A and 87.5 (9)° in B. The mean plane of the amide group forms an angle of 74.8 (3) in A and 67.7 (1)° in B with respect to the phenyl ring. In addition, the amide group is rotated by 51.4 (1) in A and 53.6 (2)° in B from the the mean plane of the pyrazole ring. In the crystal, the two molecules are linked via N—H⋯O hydrogen bonds, supported by weak C—H⋯O inter­actions, forming dimers enclosing an R22(10) ring motif. The dimers are linked via C—H⋯O inter­actions, forming a three-dimensional structure.

Related literature

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin et al. (2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]). For the coordination abilities of amides, see: Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.], 2010[Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.]). For the pharmaceutical, insecticidal and non-linear properties of pyrazoles, see: Chandrakantha et al. (2013[Chandrakantha, B., Isloor, A. M., Sridharan, K., Philip, R., Shetty, P. & Padaki, M. (2013). Arabian J. Chem. 6, 97-102.]); Cheng et al. (2008[Cheng, J. L., Wei, F. L., Zhu, L., Zhao, J. H. & Zhu, G. N. (2008). Chin. J. Org. Chem. 28, 622-627.]); Hatton et al. (1993[Hatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W. & Pearson, C. J. (1993). US Patent 5232940.]); Liu et al. (2010[Liu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897-902.]). For related structures, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.], 2012[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2677.]); Butcher et al. (2013a[Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013a). Acta Cryst. E69, o46-o47.],b[Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013b). Acta Cryst. E69, o39.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19N3O2

  • Mr = 321.37

  • Triclinic, [P \overline 1]

  • a = 10.1258 (7) Å

  • b = 10.4671 (8) Å

  • c = 17.8888 (12) Å

  • α = 100.833 (6)°

  • β = 92.527 (5)°

  • γ = 116.812 (7)°

  • V = 1643.9 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 173 K

  • 0.48 × 0.32 × 0.26 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.876, Tmax = 1.000

  • 10216 measured reflections

  • 6333 independent reflections

  • 5485 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.130

  • S = 1.04

  • 6333 reflections

  • 438 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O2B 0.86 1.97 2.8292 (16) 173
C14A—H14A⋯O1Ai 0.93 2.55 3.454 (2) 165
N1B—H1B⋯O2A 0.86 1.98 2.8115 (16) 163
C2B—H2BA⋯O1Bii 0.97 2.55 3.4239 (19) 150
C4B—H4B⋯O1Bii 0.93 2.72 3.487 (2) 141
C8B—H8B⋯O2A 0.93 2.57 3.404 (2) 150
C14B—H14B⋯O1Aiii 0.93 2.70 3.398 (2) 132
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

N-Substituted 2-arylacetamides are biologically active compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). In a variety of biological heterocyclic compounds, N-pyrazole derivatives are of great interest because of their chemical and pharmaceutical properties (Cheng et al., 2008). Some of the N-pyrazole derivatives have been found to exhibit good insecticidal activities (Hatton et al., 1993), antifungal activities (Liu et al., 2010) and non-linear optical properties (Chandrakantha et al., 2013). Crystal structures of some related acetamide and pyrazole derivatives are : N-(4-Bromophenyl)-2-(naphthalen-1-yl) acetamide, N-(3,5-Dichlorophenyl)-2-(naphthalen-1-yl)acetamide, N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2- [4-(methylsulfanyl)phenyl]acetamide, (Fun et al., 2011a,b, 2012), 2-(2,4-Dichlorophenyl)-N-(1,5-dimethyl-3-oxo-2- phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide, 2-(2,6-dichloro phenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol- 4-yl)acetamide (Butcher et al., 2013a,b) have been reported. In view of the importance of amide derivatives of pyrazoles, this paper reports the crystal structure of the title compound (I), C19H19N3O2.

The title compound, (I), crystallizes with two independent molecules in the asymmetric unit (A and B) (Fig. 1). In molecule A, the pyrazole ring adopts a slightly disordered half-chair conformation while in B it is planar. The dihedral angle between the mean planes of the two phenyl rings is 56.2 (8)° (A) and 38.2 (3)° (B). The N-phenyl substituent on the pyrazole ring is twisted by 46.5 (2)° (A) and 58.6 (4)° (B) while the extended phenyl ring is twisted by 82.2 (8)° (A) and 87.5 (9)° (B). The mean plane of the amide group forms an angle of 74.8 (3)° (A)(C2A/C1A/O1A/N1A), 67.7 (1)° (B)(C2B/C1B/O1B/N1B) with respect to that of the phenyl rings. In addition, the amide group is rotated by 51.4 (1)° (A), 53.6 (2)° (B) from the the mean plane of the pyrazole rings. Bond lengths are in normal ranges (Allen et al., 1987). N—H···O intermolecular hydrogen bonds supported by a weak C14A—H14A···O1A intermolecular interaction are observed which link the molecules into dimers forming R22(10) graph set motifs (Fig. 2). Also, additional weak C—H···O intermolecular interactions are also observed which interlink the dimers and influence the crystal packing.

Related literature top

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For the pharmaceutical, insecticidal and non-linear properties of pyrazoles, see: Chandrakantha et al. (2013); Cheng et al. (2008); Hatton et al. (1993); Liu et al. (2010). For related structures, see: Fun et al. (2011a,b, 2012); Butcher et al. (2013a,b). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Phenylacetic acid (0.136 g, 1 mmol) and 4-aminoantipyrine (0.203 g, 1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) and were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from methanol and acetone mixture (1:1) and further recrystallised from ethanol by by the slow evaporation method which were used as such for X-ray studies (M.P.: 445-447 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH); 0.97Å (CH2); 0.96Å (CH3) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH)and 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as rotating group.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (C19H19N3O2) showing the labeling scheme of molecules A and B with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the a axis. Dashed lines indicate N—H···O intermolecular hydrogen bonds supported by a weak C—H···O intermolecular interactions link the molecules into dimers forming R22(10) graph set motifs. Also, weak C—H···O intermolecular interactions are observed which interlink the dimers and influence the crystal packing. H atoms not involved in hydrogen bonding have been removed for clarity.
[Figure 3] Fig. 3. Synthesis scheme of (I).
N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-phenylacetamide top
Crystal data top
C19H19N3O2Z = 4
Mr = 321.37F(000) = 680
Triclinic, P1Dx = 1.298 Mg m3
a = 10.1258 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.4671 (8) ÅCell parameters from 4663 reflections
c = 17.8888 (12) Åθ = 4.9–72.3°
α = 100.833 (6)°µ = 0.69 mm1
β = 92.527 (5)°T = 173 K
γ = 116.812 (7)°Irregular, colourless
V = 1643.9 (2) Å30.48 × 0.32 × 0.26 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
6333 independent reflections
Radiation source: Enhance (Cu) X-ray Source5485 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.037
ω scansθmax = 72.4°, θmin = 4.9°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 1210
Tmin = 0.876, Tmax = 1.000k = 1212
10216 measured reflectionsl = 1721
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.280P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.30 e Å3
6333 reflectionsΔρmin = 0.23 e Å3
438 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0080 (5)
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H19N3O2γ = 116.812 (7)°
Mr = 321.37V = 1643.9 (2) Å3
Triclinic, P1Z = 4
a = 10.1258 (7) ÅCu Kα radiation
b = 10.4671 (8) ŵ = 0.69 mm1
c = 17.8888 (12) ÅT = 173 K
α = 100.833 (6)°0.48 × 0.32 × 0.26 mm
β = 92.527 (5)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
6333 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
5485 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 1.000Rint = 0.037
10216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
6333 reflectionsΔρmin = 0.23 e Å3
438 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.53484 (12)0.15316 (13)0.11113 (6)0.0325 (3)
O2A0.18670 (13)0.29954 (12)0.18901 (6)0.0295 (3)
N1A0.30791 (13)0.08641 (13)0.15051 (7)0.0224 (3)
H1A0.24870.03940.18000.027*
N2A0.16758 (14)0.28576 (14)0.05759 (7)0.0241 (3)
N3A0.21484 (14)0.22128 (14)0.00455 (7)0.0249 (3)
C1A0.44894 (16)0.10244 (16)0.15614 (8)0.0241 (3)
C2A0.49459 (18)0.05345 (18)0.22348 (10)0.0309 (3)
H2AA0.41410.02140.25420.037*
H2AB0.51380.02870.20430.037*
C3A0.63393 (18)0.18034 (18)0.27245 (9)0.0291 (3)
C4A0.62384 (19)0.2730 (2)0.33564 (10)0.0346 (4)
H4A0.53080.25140.35070.042*
C5A0.7501 (2)0.3977 (2)0.37709 (10)0.0399 (4)
H5A0.74120.45890.41930.048*
C6A0.8889 (2)0.4302 (2)0.35513 (10)0.0403 (4)
H6A0.97360.51400.38220.048*
C7A0.90161 (19)0.3379 (2)0.29293 (11)0.0398 (4)
H7A0.99510.35910.27850.048*
C8A0.77540 (19)0.2139 (2)0.25202 (10)0.0348 (4)
H8A0.78500.15220.21040.042*
C9A0.25487 (15)0.14376 (15)0.09827 (8)0.0210 (3)
C10A0.25652 (16)0.12695 (16)0.02099 (8)0.0236 (3)
C11A0.20064 (15)0.24720 (15)0.12389 (8)0.0210 (3)
C12A0.17598 (16)0.42661 (16)0.05939 (8)0.0241 (3)
C13A0.27423 (17)0.52009 (18)0.01869 (9)0.0295 (3)
H13A0.33380.49120.01070.035*
C14A0.2824 (2)0.65726 (19)0.02239 (10)0.0374 (4)
H14A0.34570.71970.00570.045*
C15A0.1962 (2)0.70113 (19)0.06787 (11)0.0408 (4)
H15A0.20310.79370.07100.049*
C16A0.0999 (2)0.6075 (2)0.10855 (10)0.0381 (4)
H16A0.04290.63780.13940.046*
C17A0.08765 (18)0.46855 (18)0.10377 (9)0.0305 (3)
H17A0.02090.40460.13010.037*
C18A0.12208 (19)0.17807 (18)0.07928 (8)0.0312 (3)
H18A0.02430.10030.07840.047*
H18B0.16750.14440.11900.047*
H18C0.11370.26120.08940.047*
C19A0.2914 (2)0.02504 (19)0.03425 (9)0.0345 (4)
H19A0.20020.05420.06380.052*
H19B0.34210.01400.00640.052*
H19C0.35450.07760.06820.052*
O1B0.31592 (13)0.34788 (13)0.46337 (6)0.0366 (3)
O2B0.09934 (12)0.05612 (12)0.24555 (6)0.0285 (3)
N1B0.21077 (13)0.25496 (13)0.33811 (7)0.0233 (3)
H1B0.22070.26790.29220.028*
N2B0.08803 (13)0.10989 (13)0.32306 (7)0.0240 (3)
N3B0.13148 (14)0.02662 (14)0.37736 (7)0.0257 (3)
C1B0.31460 (16)0.35901 (16)0.39659 (8)0.0243 (3)
C2B0.42779 (16)0.49491 (16)0.37249 (9)0.0268 (3)
H2BA0.52380.53480.40440.032*
H2BB0.44060.46730.31950.032*
C3B0.37614 (16)0.61150 (16)0.38034 (9)0.0247 (3)
C4B0.40330 (17)0.70709 (18)0.45149 (9)0.0302 (3)
H4B0.45050.69710.49420.036*
C5B0.3608 (2)0.8167 (2)0.45926 (11)0.0384 (4)
H5B0.37910.87960.50710.046*
C6B0.2910 (2)0.8332 (2)0.39606 (11)0.0398 (4)
H6B0.26400.90810.40130.048*
C7B0.26169 (19)0.7381 (2)0.32530 (11)0.0366 (4)
H7B0.21410.74820.28280.044*
C8B0.30353 (17)0.62717 (17)0.31766 (9)0.0293 (3)
H8B0.28270.56270.27000.035*
C9B0.08712 (15)0.12641 (16)0.34769 (8)0.0219 (3)
C10B0.01869 (16)0.11522 (16)0.39461 (8)0.0239 (3)
C11B0.04395 (15)0.01523 (16)0.29956 (8)0.0216 (3)
C12B0.20372 (16)0.23775 (16)0.27073 (8)0.0247 (3)
C13B0.17998 (19)0.35804 (17)0.24651 (9)0.0313 (3)
H13B0.09280.35740.26580.038*
C14B0.2880 (2)0.48003 (18)0.19304 (10)0.0404 (4)
H14B0.27290.56140.17620.049*
C15B0.4170 (2)0.4809 (2)0.16501 (10)0.0443 (5)
H15B0.48850.56250.12890.053*
C16B0.44110 (19)0.3609 (2)0.19021 (10)0.0426 (5)
H16B0.52910.36270.17140.051*
C17B0.33419 (18)0.23789 (19)0.24349 (10)0.0332 (4)
H17B0.34980.15690.26060.040*
C18B0.2191 (2)0.09991 (19)0.43300 (10)0.0359 (4)
H18D0.29670.19570.40690.054*
H18E0.26320.04270.45840.054*
H18F0.15530.10970.47030.054*
C19B0.02449 (19)0.22860 (18)0.45642 (9)0.0327 (4)
H19D0.12160.22330.45010.049*
H19E0.05020.32450.45340.049*
H19F0.00590.21120.50570.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0297 (6)0.0411 (7)0.0298 (6)0.0174 (5)0.0106 (5)0.0121 (5)
O2A0.0455 (6)0.0349 (6)0.0183 (5)0.0265 (5)0.0104 (4)0.0078 (4)
N1A0.0257 (6)0.0216 (6)0.0227 (6)0.0116 (5)0.0069 (5)0.0091 (5)
N2A0.0318 (6)0.0277 (6)0.0178 (6)0.0176 (5)0.0064 (5)0.0060 (5)
N3A0.0320 (6)0.0281 (6)0.0161 (6)0.0161 (5)0.0050 (5)0.0032 (5)
C1A0.0270 (7)0.0215 (7)0.0251 (7)0.0124 (6)0.0051 (6)0.0050 (5)
C2A0.0333 (8)0.0311 (8)0.0355 (9)0.0186 (7)0.0066 (7)0.0138 (7)
C3A0.0333 (8)0.0364 (8)0.0272 (8)0.0216 (7)0.0060 (6)0.0146 (6)
C4A0.0362 (9)0.0449 (10)0.0313 (8)0.0242 (8)0.0098 (7)0.0132 (7)
C5A0.0509 (10)0.0450 (10)0.0282 (8)0.0268 (9)0.0049 (7)0.0070 (7)
C6A0.0390 (9)0.0442 (10)0.0334 (9)0.0156 (8)0.0042 (7)0.0118 (8)
C7A0.0299 (8)0.0564 (11)0.0387 (9)0.0223 (8)0.0058 (7)0.0182 (8)
C8A0.0365 (9)0.0486 (10)0.0293 (8)0.0272 (8)0.0086 (7)0.0116 (7)
C9A0.0211 (6)0.0201 (7)0.0198 (7)0.0082 (5)0.0035 (5)0.0038 (5)
C10A0.0260 (7)0.0208 (7)0.0220 (7)0.0099 (6)0.0047 (5)0.0032 (5)
C11A0.0218 (6)0.0220 (7)0.0193 (7)0.0094 (6)0.0039 (5)0.0066 (5)
C12A0.0287 (7)0.0255 (7)0.0192 (7)0.0140 (6)0.0006 (6)0.0052 (5)
C13A0.0301 (8)0.0313 (8)0.0253 (7)0.0126 (7)0.0042 (6)0.0075 (6)
C14A0.0424 (9)0.0276 (8)0.0354 (9)0.0092 (7)0.0026 (7)0.0117 (7)
C15A0.0582 (11)0.0285 (8)0.0371 (9)0.0233 (8)0.0028 (8)0.0047 (7)
C16A0.0542 (11)0.0437 (10)0.0297 (8)0.0353 (9)0.0056 (8)0.0056 (7)
C17A0.0372 (8)0.0364 (9)0.0249 (7)0.0216 (7)0.0067 (6)0.0108 (6)
C18A0.0365 (8)0.0350 (8)0.0190 (7)0.0146 (7)0.0013 (6)0.0055 (6)
C19A0.0485 (10)0.0343 (9)0.0239 (8)0.0237 (8)0.0086 (7)0.0018 (6)
O1B0.0345 (6)0.0386 (6)0.0229 (6)0.0053 (5)0.0029 (5)0.0095 (5)
O2B0.0286 (5)0.0264 (5)0.0278 (6)0.0105 (4)0.0117 (4)0.0049 (4)
N1B0.0244 (6)0.0222 (6)0.0190 (6)0.0064 (5)0.0040 (5)0.0072 (5)
N2B0.0220 (6)0.0233 (6)0.0228 (6)0.0076 (5)0.0066 (5)0.0036 (5)
N3B0.0255 (6)0.0255 (6)0.0236 (6)0.0096 (5)0.0096 (5)0.0052 (5)
C1B0.0239 (7)0.0240 (7)0.0242 (7)0.0103 (6)0.0039 (5)0.0064 (6)
C2B0.0229 (7)0.0243 (7)0.0291 (8)0.0075 (6)0.0059 (6)0.0056 (6)
C3B0.0194 (6)0.0214 (7)0.0282 (7)0.0044 (5)0.0088 (6)0.0067 (6)
C4B0.0259 (7)0.0326 (8)0.0269 (8)0.0099 (6)0.0064 (6)0.0049 (6)
C5B0.0379 (9)0.0342 (9)0.0370 (9)0.0146 (7)0.0117 (7)0.0011 (7)
C6B0.0420 (9)0.0337 (9)0.0510 (11)0.0224 (8)0.0169 (8)0.0113 (8)
C7B0.0358 (9)0.0403 (9)0.0389 (9)0.0193 (8)0.0094 (7)0.0162 (7)
C8B0.0293 (8)0.0281 (8)0.0263 (8)0.0102 (6)0.0059 (6)0.0052 (6)
C9B0.0220 (7)0.0233 (7)0.0192 (6)0.0093 (6)0.0031 (5)0.0060 (5)
C10B0.0245 (7)0.0240 (7)0.0219 (7)0.0101 (6)0.0032 (5)0.0061 (6)
C11B0.0205 (6)0.0243 (7)0.0202 (7)0.0097 (6)0.0029 (5)0.0080 (5)
C12B0.0237 (7)0.0229 (7)0.0218 (7)0.0051 (6)0.0060 (6)0.0071 (6)
C13B0.0335 (8)0.0274 (8)0.0305 (8)0.0109 (7)0.0073 (6)0.0092 (6)
C14B0.0487 (10)0.0235 (8)0.0364 (9)0.0068 (7)0.0137 (8)0.0032 (7)
C15B0.0340 (9)0.0394 (10)0.0287 (9)0.0058 (8)0.0070 (7)0.0010 (7)
C16B0.0242 (8)0.0578 (12)0.0300 (9)0.0078 (8)0.0023 (7)0.0053 (8)
C17B0.0289 (8)0.0372 (9)0.0298 (8)0.0127 (7)0.0062 (6)0.0065 (7)
C18B0.0373 (9)0.0345 (9)0.0339 (9)0.0125 (7)0.0183 (7)0.0119 (7)
C19B0.0365 (8)0.0315 (8)0.0298 (8)0.0168 (7)0.0095 (7)0.0031 (6)
Geometric parameters (Å, º) top
O1A—C1A1.2217 (18)O1B—C1B1.2219 (19)
O2A—C11A1.2334 (17)O2B—C11B1.2412 (18)
N1A—H1A0.8600N1B—H1B0.8600
N1A—C1A1.3574 (19)N1B—C1B1.3519 (19)
N1A—C9A1.4069 (18)N1B—C9B1.4118 (18)
N2A—N3A1.4057 (16)N2B—N3B1.4008 (17)
N2A—C11A1.3958 (18)N2B—C11B1.3985 (18)
N2A—C12A1.4320 (19)N2B—C12B1.4345 (18)
N3A—C10A1.375 (2)N3B—C10B1.3678 (19)
N3A—C18A1.4673 (19)N3B—C18B1.4553 (19)
C1A—C2A1.525 (2)C1B—C2B1.525 (2)
C2A—H2AA0.9700C2B—H2BA0.9700
C2A—H2AB0.9700C2B—H2BB0.9700
C2A—C3A1.512 (2)C2B—C3B1.517 (2)
C3A—C4A1.384 (2)C3B—C4B1.392 (2)
C3A—C8A1.396 (2)C3B—C8B1.389 (2)
C4A—H4A0.9300C4B—H4B0.9300
C4A—C5A1.391 (3)C4B—C5B1.383 (2)
C5A—H5A0.9300C5B—H5B0.9300
C5A—C6A1.383 (3)C5B—C6B1.386 (3)
C6A—H6A0.9300C6B—H6B0.9300
C6A—C7A1.382 (3)C6B—C7B1.381 (3)
C7A—H7A0.9300C7B—H7B0.9300
C7A—C8A1.384 (3)C7B—C8B1.391 (2)
C8A—H8A0.9300C8B—H8B0.9300
C9A—C10A1.362 (2)C9B—C10B1.367 (2)
C9A—C11A1.4339 (19)C9B—C11B1.426 (2)
C10A—C19A1.488 (2)C10B—C19B1.486 (2)
C12A—C13A1.389 (2)C12B—C13B1.381 (2)
C12A—C17A1.382 (2)C12B—C17B1.387 (2)
C13A—H13A0.9300C13B—H13B0.9300
C13A—C14A1.389 (2)C13B—C14B1.389 (2)
C14A—H14A0.9300C14B—H14B0.9300
C14A—C15A1.385 (3)C14B—C15B1.374 (3)
C15A—H15A0.9300C15B—H15B0.9300
C15A—C16A1.381 (3)C15B—C16B1.383 (3)
C16A—H16A0.9300C16B—H16B0.9300
C16A—C17A1.389 (2)C16B—C17B1.389 (2)
C17A—H17A0.9300C17B—H17B0.9300
C18A—H18A0.9600C18B—H18D0.9600
C18A—H18B0.9600C18B—H18E0.9600
C18A—H18C0.9600C18B—H18F0.9600
C19A—H19A0.9600C19B—H19D0.9600
C19A—H19B0.9600C19B—H19E0.9600
C19A—H19C0.9600C19B—H19F0.9600
C1A—N1A—H1A118.7C1B—N1B—H1B117.9
C1A—N1A—C9A122.53 (12)C1B—N1B—C9B124.10 (12)
C9A—N1A—H1A118.7C9B—N1B—H1B117.9
N3A—N2A—C12A118.71 (12)N3B—N2B—C12B117.75 (11)
C11A—N2A—N3A109.01 (11)C11B—N2B—N3B109.03 (11)
C11A—N2A—C12A122.24 (12)C11B—N2B—C12B122.09 (12)
N2A—N3A—C18A114.99 (12)N2B—N3B—C18B116.82 (12)
C10A—N3A—N2A107.00 (11)C10B—N3B—N2B107.38 (11)
C10A—N3A—C18A121.64 (12)C10B—N3B—C18B124.49 (13)
O1A—C1A—N1A123.06 (14)O1B—C1B—N1B123.34 (14)
O1A—C1A—C2A121.64 (14)O1B—C1B—C2B122.55 (14)
N1A—C1A—C2A115.30 (13)N1B—C1B—C2B114.08 (13)
C1A—C2A—H2AA109.8C1B—C2B—H2BA109.5
C1A—C2A—H2AB109.8C1B—C2B—H2BB109.5
H2AA—C2A—H2AB108.2H2BA—C2B—H2BB108.0
C3A—C2A—C1A109.43 (13)C3B—C2B—C1B110.89 (12)
C3A—C2A—H2AA109.8C3B—C2B—H2BA109.5
C3A—C2A—H2AB109.8C3B—C2B—H2BB109.5
C4A—C3A—C2A120.74 (14)C4B—C3B—C2B119.81 (14)
C4A—C3A—C8A118.09 (16)C8B—C3B—C2B121.54 (14)
C8A—C3A—C2A121.00 (15)C8B—C3B—C4B118.65 (15)
C3A—C4A—H4A119.3C3B—C4B—H4B119.7
C3A—C4A—C5A121.35 (16)C5B—C4B—C3B120.61 (16)
C5A—C4A—H4A119.3C5B—C4B—H4B119.7
C4A—C5A—H5A120.2C4B—C5B—H5B119.8
C6A—C5A—C4A119.60 (17)C4B—C5B—C6B120.31 (16)
C6A—C5A—H5A120.2C6B—C5B—H5B119.8
C5A—C6A—H6A120.0C5B—C6B—H6B120.1
C7A—C6A—C5A119.93 (17)C7B—C6B—C5B119.74 (16)
C7A—C6A—H6A120.0C7B—C6B—H6B120.1
C6A—C7A—H7A120.0C6B—C7B—H7B120.0
C6A—C7A—C8A120.08 (16)C6B—C7B—C8B119.90 (17)
C8A—C7A—H7A120.0C8B—C7B—H7B120.0
C3A—C8A—H8A119.5C3B—C8B—C7B120.78 (15)
C7A—C8A—C3A120.94 (16)C3B—C8B—H8B119.6
C7A—C8A—H8A119.5C7B—C8B—H8B119.6
N1A—C9A—C11A121.51 (12)N1B—C9B—C11B122.38 (12)
C10A—C9A—N1A129.66 (13)C10B—C9B—N1B128.32 (13)
C10A—C9A—C11A108.58 (13)C10B—C9B—C11B108.85 (13)
N3A—C10A—C19A120.26 (13)N3B—C10B—C19B120.50 (13)
C9A—C10A—N3A109.52 (13)C9B—C10B—N3B109.22 (13)
C9A—C10A—C19A130.20 (14)C9B—C10B—C19B130.28 (14)
O2A—C11A—N2A123.95 (13)O2B—C11B—N2B123.28 (13)
O2A—C11A—C9A130.81 (13)O2B—C11B—C9B131.65 (13)
N2A—C11A—C9A105.21 (12)N2B—C11B—C9B105.02 (12)
C13A—C12A—N2A120.23 (13)C13B—C12B—N2B118.52 (14)
C17A—C12A—N2A118.71 (13)C13B—C12B—C17B121.12 (14)
C17A—C12A—C13A121.04 (14)C17B—C12B—N2B120.34 (14)
C12A—C13A—H13A120.4C12B—C13B—H13B120.4
C14A—C13A—C12A119.21 (15)C12B—C13B—C14B119.18 (16)
C14A—C13A—H13A120.4C14B—C13B—H13B120.4
C13A—C14A—H14A120.0C13B—C14B—H14B119.9
C15A—C14A—C13A120.06 (16)C15B—C14B—C13B120.24 (17)
C15A—C14A—H14A120.0C15B—C14B—H14B119.9
C14A—C15A—H15A120.0C14B—C15B—H15B119.8
C16A—C15A—C14A120.08 (16)C14B—C15B—C16B120.34 (16)
C16A—C15A—H15A120.0C16B—C15B—H15B119.8
C15A—C16A—H16A119.8C15B—C16B—H16B119.9
C15A—C16A—C17A120.48 (16)C15B—C16B—C17B120.20 (17)
C17A—C16A—H16A119.8C17B—C16B—H16B119.9
C12A—C17A—C16A119.08 (15)C12B—C17B—C16B118.91 (17)
C12A—C17A—H17A120.5C12B—C17B—H17B120.5
C16A—C17A—H17A120.5C16B—C17B—H17B120.5
N3A—C18A—H18A109.5N3B—C18B—H18D109.5
N3A—C18A—H18B109.5N3B—C18B—H18E109.5
N3A—C18A—H18C109.5N3B—C18B—H18F109.5
H18A—C18A—H18B109.5H18D—C18B—H18E109.5
H18A—C18A—H18C109.5H18D—C18B—H18F109.5
H18B—C18A—H18C109.5H18E—C18B—H18F109.5
C10A—C19A—H19A109.5C10B—C19B—H19D109.5
C10A—C19A—H19B109.5C10B—C19B—H19E109.5
C10A—C19A—H19C109.5C10B—C19B—H19F109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
O1A—C1A—C2A—C3A56.40 (19)O1B—C1B—C2B—C3B86.23 (18)
N1A—C1A—C2A—C3A123.19 (14)N1B—C1B—C2B—C3B91.80 (15)
N1A—C9A—C10A—N3A170.40 (14)N1B—C9B—C10B—N3B170.33 (14)
N1A—C9A—C10A—C19A11.1 (3)N1B—C9B—C10B—C19B9.8 (3)
N1A—C9A—C11A—O2A1.8 (2)N1B—C9B—C11B—O2B1.9 (2)
N1A—C9A—C11A—N2A176.26 (12)N1B—C9B—C11B—N2B175.40 (12)
N2A—N3A—C10A—C9A7.50 (16)N2B—N3B—C10B—C9B5.75 (16)
N2A—N3A—C10A—C19A171.13 (13)N2B—N3B—C10B—C19B174.13 (13)
N2A—C12A—C13A—C14A178.87 (14)N2B—C12B—C13B—C14B176.98 (14)
N2A—C12A—C17A—C16A177.18 (14)N2B—C12B—C17B—C16B177.11 (14)
N3A—N2A—C11A—O2A172.11 (13)N3B—N2B—C11B—O2B171.57 (13)
N3A—N2A—C11A—C9A6.14 (15)N3B—N2B—C11B—C9B6.02 (15)
N3A—N2A—C12A—C13A22.75 (19)N3B—N2B—C12B—C13B146.60 (14)
N3A—N2A—C12A—C17A158.89 (13)N3B—N2B—C12B—C17B35.38 (19)
C1A—N1A—C9A—C10A52.2 (2)C1B—N1B—C9B—C10B53.7 (2)
C1A—N1A—C9A—C11A121.29 (15)C1B—N1B—C9B—C11B134.85 (15)
C1A—C2A—C3A—C4A93.50 (17)C1B—C2B—C3B—C4B83.37 (16)
C1A—C2A—C3A—C8A81.70 (18)C1B—C2B—C3B—C8B97.55 (16)
C2A—C3A—C4A—C5A174.17 (15)C2B—C3B—C4B—C5B178.16 (14)
C2A—C3A—C8A—C7A174.12 (16)C2B—C3B—C8B—C7B177.67 (14)
C3A—C4A—C5A—C6A0.2 (3)C3B—C4B—C5B—C6B0.3 (3)
C4A—C3A—C8A—C7A1.2 (2)C4B—C3B—C8B—C7B1.4 (2)
C4A—C5A—C6A—C7A0.8 (3)C4B—C5B—C6B—C7B1.1 (3)
C5A—C6A—C7A—C8A0.8 (3)C5B—C6B—C7B—C8B0.6 (3)
C6A—C7A—C8A—C3A0.3 (3)C6B—C7B—C8B—C3B0.7 (2)
C8A—C3A—C4A—C5A1.2 (2)C8B—C3B—C4B—C5B1.0 (2)
C9A—N1A—C1A—O1A8.2 (2)C9B—N1B—C1B—O1B4.1 (2)
C9A—N1A—C1A—C2A171.37 (13)C9B—N1B—C1B—C2B173.89 (13)
C10A—C9A—C11A—O2A176.54 (15)C10B—C9B—C11B—O2B174.80 (15)
C10A—C9A—C11A—N2A1.55 (15)C10B—C9B—C11B—N2B2.50 (16)
C11A—N2A—N3A—C10A8.50 (15)C11B—N2B—N3B—C10B7.40 (16)
C11A—N2A—N3A—C18A146.89 (13)C11B—N2B—N3B—C18B152.81 (13)
C11A—N2A—C12A—C13A118.93 (16)C11B—N2B—C12B—C13B73.50 (18)
C11A—N2A—C12A—C17A59.42 (19)C11B—N2B—C12B—C17B104.52 (17)
C11A—C9A—C10A—N3A3.74 (16)C11B—C9B—C10B—N3B2.02 (17)
C11A—C9A—C10A—C19A174.72 (15)C11B—C9B—C10B—C19B177.85 (15)
C12A—N2A—N3A—C10A154.81 (12)C12B—N2B—N3B—C10B152.14 (13)
C12A—N2A—N3A—C18A66.80 (17)C12B—N2B—N3B—C18B62.45 (18)
C12A—N2A—C11A—O2A27.2 (2)C12B—N2B—C11B—O2B28.7 (2)
C12A—N2A—C11A—C9A151.03 (13)C12B—N2B—C11B—C9B148.94 (13)
C12A—C13A—C14A—C15A1.7 (2)C12B—C13B—C14B—C15B0.3 (2)
C13A—C12A—C17A—C16A1.2 (2)C13B—C12B—C17B—C16B0.9 (2)
C13A—C14A—C15A—C16A1.2 (3)C13B—C14B—C15B—C16B0.5 (3)
C14A—C15A—C16A—C17A0.6 (3)C14B—C15B—C16B—C17B0.7 (3)
C15A—C16A—C17A—C12A1.7 (3)C15B—C16B—C17B—C12B0.0 (3)
C17A—C12A—C13A—C14A0.6 (2)C17B—C12B—C13B—C14B1.0 (2)
C18A—N3A—C10A—C9A142.51 (14)C18B—N3B—C10B—C9B147.82 (15)
C18A—N3A—C10A—C19A36.1 (2)C18B—N3B—C10B—C19B32.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O2B0.861.972.8292 (16)173
C14A—H14A···O1Ai0.932.553.454 (2)165
N1B—H1B···O2A0.861.982.8115 (16)163
C2B—H2BA···O1Bii0.972.553.4239 (19)150
C4B—H4B···O1Bii0.932.723.487 (2)141
C8B—H8B···O2A0.932.573.404 (2)150
C14B—H14B···O1Aiii0.932.703.398 (2)132
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O2B0.861.972.8292 (16)173.2
C14A—H14A···O1Ai0.932.553.454 (2)165.2
N1B—H1B···O2A0.861.982.8115 (16)162.9
C2B—H2BA···O1Bii0.972.553.4239 (19)149.8
C4B—H4B···O1Bii0.932.723.487 (2)140.8
C8B—H8B···O2A0.932.573.404 (2)149.8
C14B—H14B···O1Aiii0.932.703.398 (2)132.0
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y1, z.
 

Acknowledgements

MK is grateful to CPEPA–UGC for the award of a JRF and thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationButcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013a). Acta Cryst. E69, o46–o47.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationButcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013b). Acta Cryst. E69, o39.  CSD CrossRef IUCr Journals Google Scholar
First citationChandrakantha, B., Isloor, A. M., Sridharan, K., Philip, R., Shetty, P. & Padaki, M. (2013). Arabian J. Chem. 6, 97–102.  Web of Science CrossRef CAS Google Scholar
First citationCheng, J. L., Wei, F. L., Zhu, L., Zhao, J. H. & Zhu, G. N. (2008). Chin. J. Org. Chem. 28, 622–627.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2677.  CSD CrossRef IUCr Journals Google Scholar
First citationHatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W. & Pearson, C. J. (1993). US Patent 5232940.  Google Scholar
First citationLiu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897–902.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.  Web of Science CrossRef CAS Google Scholar
First citationWu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1726-o1727
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds