metal-organic compounds
(2-{[4-(Chloridomercuryl)phenyl]iminomethyl}pyridine-κ2N,N′)diiodidomercury(II) dimethyl sulfoxide monosolvate
aDepartment of Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com
The title dimethyl sulfoxide solvate, [Hg2(C12H9ClN2)I2]·C2H6OS, features tetrahedrally and linearly coordinated HgII atoms. The distorted tetrahedral coordination sphere is defined by chelating N atoms that define an acute angle [69.6 (3)°] and two I atoms that form a wide angle [142.80 (4)°]. The linearly coordinated HgII atom [177.0 (4)°] exists with a donor set defined by C and Cl atoms. Secondary interactions are apparent in the crystal packing with the tetrahedrally and linearly coordinated HgII atoms expanding their coordination environments by forming weak Hg⋯I [3.772 (7) Å] and Hg⋯O [2.921 (12) Å] interactions, respectively. Mercury-containing molecules stack along the a axis, are connected by π–π interactions [inter-centroid distance between pyridine and benzene rings = 3.772 (7) Å] and define channels in which the dimethyl sulfoxide molecules reside. The latter are connected by the aforementioned Hg⋯O interactions as well as C—H⋯I and C—H⋯O interactions, resulting in a three-dimensional architecture.
CCDC reference: 969086
Related literature
For background to the structural, spectroscopic and biological properties of zinc triad elements with (E)-N-(pyridin-2-ylmethylidene)arylamine-type ligands, see: Basu Baul, Kundu, Höpfl et al. (2013); Basu Baul, Kundu, Linden et al. (2013); Basu Baul, Kundu, Mitra et al. (2013).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2013); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 969086
10.1107/S1600536813029693/hg5358sup1.cif
contains datablocks general, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813029693/hg5358Isup2.hkl
To a hot solution of 2-[((4-chloromercuryl)phenyl)iminomethyl]pyridine (0.50 g, 1.19 mmol) in methanol (70 ml) was added a solution of HgI2 (0.54 g, 1.18 mmol) in methanol (10 ml) under stirring conditions, whereupon a yellow precipitate formed immediately. The mixture was stirred at ambient temperature for 4 h. The precipitate was filtered, washed with hot methanol (3 x 5 ml) and dried in vacuo. The yellow product (0.79 g, M. pt. 495–497 K (dec.)) so obtained was insoluble in common organic solvents. The yellow crystals of compound suitable for an X-ray crystal-structure determination were obtained from dimethyl sulfoxide by slow evaporation of the solvent at room temperature. M. pt. 447–449 K. CH&N elemental analysis, calculated for C14H15ClHg2I2N2OS: C, 17.69, H, 1.59, N, 2.95%; Found: C, 17.82; H, 1.65; N, 3.07%.
Carbon-bound H-atoms were placed in calculated positions [C—H = 0.93 to 0.96 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the
in the riding model approximation. The maximum and minimum residual electron density peaks of 4.39 and 1.45 e Å-3, respectively, were located 0.99 and 0.80 Å from the Hg1 atom.Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. | |
Fig. 2. A view of the unit-cell contents in projection down the a axis in (I). The Hg···I, O secondary interactions are shown as pink and black dashed lines, respectively. The π—π, C—H···I and C—H···O interactions are shown as purple, green and orange dashed lines, respectively. |
[Hg2(C12H9ClN2)I2]·C2H6OS | Z = 2 |
Mr = 949.77 | F(000) = 840 |
Triclinic, P1 | Dx = 3.002 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5795 (6) Å | Cell parameters from 3179 reflections |
b = 9.8373 (7) Å | θ = 2.9–27.5° |
c = 13.6999 (8) Å | µ = 17.76 mm−1 |
α = 70.030 (6)° | T = 295 K |
β = 76.779 (5)° | Prism, yellow |
γ = 79.362 (6)° | 0.20 × 0.10 × 0.04 mm |
V = 1050.74 (12) Å3 |
Agilent SuperNova Dual diffractometer with an Atlas detector | 4848 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 3470 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.038 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 27.6°, θmin = 2.9° |
ω scan | h = −11→11 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −12→11 |
Tmin = 0.358, Tmax = 1.000 | l = −17→17 |
12862 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0612P)2 + 7.0509P] where P = (Fo2 + 2Fc2)/3 |
4848 reflections | (Δ/σ)max < 0.001 |
208 parameters | Δρmax = 4.40 e Å−3 |
0 restraints | Δρmin = −1.45 e Å−3 |
[Hg2(C12H9ClN2)I2]·C2H6OS | γ = 79.362 (6)° |
Mr = 949.77 | V = 1050.74 (12) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.5795 (6) Å | Mo Kα radiation |
b = 9.8373 (7) Å | µ = 17.76 mm−1 |
c = 13.6999 (8) Å | T = 295 K |
α = 70.030 (6)° | 0.20 × 0.10 × 0.04 mm |
β = 76.779 (5)° |
Agilent SuperNova Dual diffractometer with an Atlas detector | 4848 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 3470 reflections with I > 2σ(I) |
Tmin = 0.358, Tmax = 1.000 | Rint = 0.038 |
12862 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.03 | Δρmax = 4.40 e Å−3 |
4848 reflections | Δρmin = −1.45 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.20510 (6) | 0.31203 (6) | 0.05498 (4) | 0.05488 (18) | |
Hg2 | 0.86627 (6) | 0.16239 (6) | 0.39910 (4) | 0.05315 (17) | |
I1 | 0.45868 (12) | 0.28767 (13) | −0.09397 (7) | 0.0740 (3) | |
I2 | 0.03457 (13) | 0.49555 (11) | 0.15600 (8) | 0.0681 (3) | |
Cl1 | 1.0870 (4) | 0.1770 (4) | 0.4659 (3) | 0.0679 (10) | |
S1 | 0.7709 (5) | 0.4377 (4) | 0.5467 (3) | 0.0681 (10) | |
O1 | 0.6835 (13) | 0.3252 (12) | 0.5397 (10) | 0.083 (3) | |
N1 | 0.0365 (11) | 0.1207 (10) | 0.1108 (6) | 0.040 (2) | |
N2 | 0.2980 (10) | 0.1073 (11) | 0.2044 (7) | 0.041 (2) | |
C1 | −0.0913 (14) | 0.1244 (14) | 0.0724 (9) | 0.047 (3) | |
H1 | −0.1221 | 0.2088 | 0.0207 | 0.057* | |
C2 | −0.1844 (13) | 0.0080 (15) | 0.1050 (9) | 0.046 (3) | |
H2 | −0.2765 | 0.0153 | 0.0777 | 0.056* | |
C3 | −0.1338 (15) | −0.1155 (16) | 0.1780 (10) | 0.054 (3) | |
H3 | −0.1900 | −0.1963 | 0.2004 | 0.065* | |
C4 | −0.0009 (14) | −0.1216 (14) | 0.2188 (10) | 0.052 (3) | |
H4 | 0.0327 | −0.2057 | 0.2698 | 0.063* | |
C5 | 0.0836 (12) | −0.0018 (12) | 0.1837 (7) | 0.036 (2) | |
C6 | 0.2212 (13) | −0.0050 (14) | 0.2305 (9) | 0.046 (3) | |
H6 | 0.2548 | −0.0902 | 0.2806 | 0.056* | |
C7 | 0.4272 (13) | 0.1129 (13) | 0.2514 (8) | 0.039 (2) | |
C8 | 0.4834 (14) | −0.0020 (15) | 0.3326 (9) | 0.048 (3) | |
H8 | 0.4374 | −0.0889 | 0.3593 | 0.058* | |
C9 | 0.6106 (14) | 0.0163 (16) | 0.3731 (9) | 0.054 (3) | |
H9 | 0.6495 | −0.0600 | 0.4272 | 0.065* | |
C10 | 0.6798 (13) | 0.1435 (14) | 0.3355 (9) | 0.043 (3) | |
C11 | 0.6269 (15) | 0.2541 (14) | 0.2524 (10) | 0.050 (3) | |
H11 | 0.6760 | 0.3393 | 0.2234 | 0.060* | |
C12 | 0.4978 (16) | 0.2369 (13) | 0.2117 (10) | 0.050 (3) | |
H12 | 0.4605 | 0.3124 | 0.1565 | 0.060* | |
C13 | 0.632 (2) | 0.541 (2) | 0.6187 (12) | 0.092 (6) | |
H13A | 0.6148 | 0.4852 | 0.6922 | 0.138* | |
H13B | 0.5322 | 0.5648 | 0.5934 | 0.138* | |
H13C | 0.6752 | 0.6289 | 0.6096 | 0.138* | |
C14 | 0.774 (2) | 0.570 (2) | 0.4243 (12) | 0.093 (6) | |
H14A | 0.8405 | 0.5315 | 0.3709 | 0.140* | |
H14B | 0.8175 | 0.6531 | 0.4245 | 0.140* | |
H14C | 0.6665 | 0.5984 | 0.4098 | 0.140* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.0592 (3) | 0.0483 (3) | 0.0548 (3) | −0.0123 (2) | −0.0089 (2) | −0.0109 (2) |
Hg2 | 0.0496 (3) | 0.0575 (4) | 0.0632 (3) | −0.0044 (2) | −0.0222 (2) | −0.0257 (2) |
I1 | 0.0623 (6) | 0.0922 (8) | 0.0572 (5) | −0.0182 (5) | 0.0016 (4) | −0.0137 (5) |
I2 | 0.0842 (7) | 0.0544 (6) | 0.0677 (6) | 0.0013 (5) | −0.0185 (5) | −0.0232 (4) |
Cl1 | 0.062 (2) | 0.064 (2) | 0.090 (2) | −0.0103 (17) | −0.0408 (18) | −0.0204 (19) |
S1 | 0.068 (2) | 0.056 (2) | 0.084 (2) | −0.0134 (18) | −0.0129 (18) | −0.0236 (19) |
O1 | 0.079 (7) | 0.053 (7) | 0.118 (9) | −0.012 (6) | −0.014 (6) | −0.030 (6) |
N1 | 0.043 (5) | 0.039 (6) | 0.036 (4) | −0.007 (4) | −0.008 (4) | −0.008 (4) |
N2 | 0.033 (5) | 0.040 (6) | 0.047 (5) | −0.006 (4) | −0.006 (4) | −0.010 (4) |
C1 | 0.043 (6) | 0.044 (7) | 0.051 (6) | −0.005 (5) | −0.005 (5) | −0.012 (5) |
C2 | 0.037 (6) | 0.061 (8) | 0.058 (7) | −0.001 (5) | −0.003 (5) | −0.046 (6) |
C3 | 0.048 (7) | 0.054 (8) | 0.066 (8) | −0.024 (6) | −0.005 (6) | −0.019 (6) |
C4 | 0.050 (7) | 0.042 (7) | 0.064 (8) | −0.010 (6) | −0.013 (6) | −0.012 (6) |
C5 | 0.041 (6) | 0.040 (6) | 0.033 (5) | −0.014 (5) | −0.001 (4) | −0.016 (4) |
C6 | 0.046 (6) | 0.045 (7) | 0.047 (6) | −0.013 (5) | −0.012 (5) | −0.008 (5) |
C7 | 0.040 (6) | 0.036 (6) | 0.044 (6) | −0.005 (5) | −0.004 (4) | −0.018 (5) |
C8 | 0.048 (7) | 0.054 (8) | 0.044 (6) | −0.015 (6) | −0.008 (5) | −0.013 (5) |
C9 | 0.046 (7) | 0.066 (9) | 0.048 (6) | 0.003 (6) | −0.017 (5) | −0.015 (6) |
C10 | 0.042 (6) | 0.047 (7) | 0.050 (6) | −0.004 (5) | −0.014 (5) | −0.025 (5) |
C11 | 0.052 (7) | 0.036 (7) | 0.065 (7) | −0.008 (5) | −0.016 (6) | −0.016 (6) |
C12 | 0.070 (8) | 0.027 (6) | 0.059 (7) | −0.008 (6) | −0.031 (6) | −0.007 (5) |
C13 | 0.119 (15) | 0.087 (14) | 0.063 (9) | −0.042 (11) | 0.027 (9) | −0.028 (9) |
C14 | 0.131 (15) | 0.085 (13) | 0.071 (10) | −0.061 (12) | 0.014 (9) | −0.029 (9) |
Hg1—I1 | 2.6581 (11) | C4—H4 | 0.9300 |
Hg1—I2 | 2.6684 (12) | C5—C6 | 1.458 (14) |
Hg1—N1 | 2.395 (9) | C6—H6 | 0.9300 |
Hg1—N2 | 2.493 (9) | C7—C12 | 1.350 (16) |
Hg2—Cl1 | 2.330 (3) | C7—C8 | 1.391 (16) |
Hg2—C10 | 2.052 (10) | C8—C9 | 1.396 (16) |
S1—O1 | 1.485 (11) | C8—H8 | 0.9300 |
S1—C14 | 1.734 (16) | C9—C10 | 1.370 (18) |
S1—C13 | 1.766 (19) | C9—H9 | 0.9300 |
N1—C1 | 1.310 (14) | C10—C11 | 1.375 (16) |
N1—C5 | 1.340 (13) | C11—C12 | 1.408 (16) |
N2—C6 | 1.293 (14) | C11—H11 | 0.9300 |
N2—C7 | 1.421 (13) | C12—H12 | 0.9300 |
C1—C2 | 1.405 (17) | C13—H13A | 0.9600 |
C1—H1 | 0.9300 | C13—H13B | 0.9600 |
C2—C3 | 1.356 (18) | C13—H13C | 0.9600 |
C2—H2 | 0.9300 | C14—H14A | 0.9600 |
C3—C4 | 1.363 (16) | C14—H14B | 0.9600 |
C3—H3 | 0.9300 | C14—H14C | 0.9600 |
C4—C5 | 1.384 (15) | ||
N1—Hg1—N2 | 69.6 (3) | N2—C6—H6 | 119.1 |
N1—Hg1—I1 | 114.5 (2) | C5—C6—H6 | 119.1 |
N2—Hg1—I1 | 98.0 (2) | C12—C7—C8 | 120.1 (10) |
N1—Hg1—I2 | 102.0 (2) | C12—C7—N2 | 116.4 (10) |
N2—Hg1—I2 | 101.1 (2) | C8—C7—N2 | 123.4 (10) |
I1—Hg1—I2 | 142.80 (4) | C7—C8—C9 | 118.4 (11) |
C10—Hg2—Cl1 | 177.0 (4) | C7—C8—H8 | 120.8 |
O1—S1—C14 | 103.7 (8) | C9—C8—H8 | 120.8 |
O1—S1—C13 | 107.2 (8) | C10—C9—C8 | 121.9 (11) |
C14—S1—C13 | 96.1 (9) | C10—C9—H9 | 119.1 |
C1—N1—C5 | 118.4 (9) | C8—C9—H9 | 119.1 |
C1—N1—Hg1 | 125.4 (7) | C11—C10—C9 | 119.0 (10) |
C5—N1—Hg1 | 116.1 (6) | C11—C10—Hg2 | 121.3 (9) |
C6—N2—C7 | 124.2 (9) | C9—C10—Hg2 | 119.7 (8) |
C6—N2—Hg1 | 112.9 (7) | C10—C11—C12 | 119.4 (11) |
C7—N2—Hg1 | 122.8 (7) | C10—C11—H11 | 120.3 |
N1—C1—C2 | 123.7 (11) | C12—C11—H11 | 120.3 |
N1—C1—H1 | 118.1 | C7—C12—C11 | 121.2 (11) |
C2—C1—H1 | 118.1 | C7—C12—H12 | 119.4 |
C3—C2—C1 | 117.0 (11) | C11—C12—H12 | 119.4 |
C3—C2—H2 | 121.5 | S1—C13—H13A | 109.5 |
C1—C2—H2 | 121.5 | S1—C13—H13B | 109.5 |
C4—C3—C2 | 120.2 (11) | H13A—C13—H13B | 109.5 |
C4—C3—H3 | 119.9 | S1—C13—H13C | 109.5 |
C2—C3—H3 | 119.9 | H13A—C13—H13C | 109.5 |
C3—C4—C5 | 119.6 (11) | H13B—C13—H13C | 109.5 |
C3—C4—H4 | 120.2 | S1—C14—H14A | 109.5 |
C5—C4—H4 | 120.2 | S1—C14—H14B | 109.5 |
N1—C5—C4 | 121.1 (10) | H14A—C14—H14B | 109.5 |
N1—C5—C6 | 118.9 (9) | S1—C14—H14C | 109.5 |
C4—C5—C6 | 119.9 (10) | H14A—C14—H14C | 109.5 |
N2—C6—C5 | 121.9 (10) | H14B—C14—H14C | 109.5 |
N2—Hg1—N1—C1 | 177.0 (10) | C1—N1—C5—C6 | −177.2 (11) |
I1—Hg1—N1—C1 | −93.4 (10) | Hg1—N1—C5—C6 | 5.9 (13) |
I2—Hg1—N1—C1 | 79.5 (10) | C3—C4—C5—N1 | 0.5 (19) |
N2—Hg1—N1—C5 | −6.4 (7) | C3—C4—C5—C6 | 177.1 (12) |
I1—Hg1—N1—C5 | 83.2 (8) | C7—N2—C6—C5 | 176.5 (10) |
I2—Hg1—N1—C5 | −103.9 (8) | Hg1—N2—C6—C5 | −6.5 (15) |
N1—Hg1—N2—C6 | 6.6 (8) | N1—C5—C6—N2 | 0.7 (18) |
I1—Hg1—N2—C6 | −106.7 (8) | C4—C5—C6—N2 | −176.0 (12) |
I2—Hg1—N2—C6 | 105.4 (8) | C6—N2—C7—C12 | 177.5 (12) |
N1—Hg1—N2—C7 | −176.3 (9) | Hg1—N2—C7—C12 | 0.8 (15) |
I1—Hg1—N2—C7 | 70.4 (8) | C6—N2—C7—C8 | −1.3 (18) |
I2—Hg1—N2—C7 | −77.5 (8) | Hg1—N2—C7—C8 | −178.0 (9) |
C5—N1—C1—C2 | 1.4 (18) | C12—C7—C8—C9 | 1.7 (19) |
Hg1—N1—C1—C2 | 177.9 (9) | N2—C7—C8—C9 | −179.6 (11) |
N1—C1—C2—C3 | −2.0 (19) | C8—C9—C10—Hg2 | 180.0 (10) |
C1—C2—C3—C4 | 1.8 (19) | Hg2—C10—C11—C12 | −179.5 (10) |
C1—N1—C5—C4 | −0.6 (17) | N2—C7—C12—C11 | −180.0 (12) |
Hg1—N1—C5—C4 | −177.4 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1i | 0.93 | 2.54 | 3.458 (18) | 171 |
C9—H9···Cl1ii | 0.93 | 2.83 | 3.625 (13) | 145 |
C13—H13C···Cl1iii | 0.96 | 2.83 | 3.721 (19) | 155 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1; (iii) −x+2, −y+1, −z+1. |
Hg1—I1 | 2.6581 (11) | Hg1—N2 | 2.493 (9) |
Hg1—I2 | 2.6684 (12) | Hg2—Cl1 | 2.330 (3) |
Hg1—N1 | 2.395 (9) | Hg2—C10 | 2.052 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1i | 0.93 | 2.54 | 3.458 (18) | 171 |
C9—H9···Cl1ii | 0.93 | 2.83 | 3.625 (13) | 145 |
C13—H13C···Cl1iii | 0.96 | 2.83 | 3.721 (19) | 155 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1; (iii) −x+2, −y+1, −z+1. |
Footnotes
‡Additional correspondence author, e-mail: basubaul@hotmail.com.
Acknowledgements
The financial support of the University Grants Commission, New Delhi, India (F. No. 42–396/2013 (SR) TSBB), is gratefully acknowledged. The authors also thank the Ministry of Higher Education (Malaysia) and the University of Malaya for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).
References
Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Basu Baul, T. S., Kundu, S., Höpfl, H., Tiekink, E. R. T. & Linden, A. (2013). Polyhedron, 55, 270–282. Web of Science CSD CrossRef CAS Google Scholar
Basu Baul, T. S., Kundu, S., Linden, A., Raviprakash, N., Manna, S. & Guedes da Silva, F. (2013). Dalton Trans. doi:10.1039/c3dt52062e. Google Scholar
Basu Baul, T. S., Kundu, S., Mitra, S., Höpfl, H., Tiekink, E. R. T. & Linden, A. (2013). Dalton Trans. 42, 1905–1920. Web of Science CSD CrossRef CAS PubMed Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Investigations in into the coordination chemistry of divalent zinc triad elements with (E)-N-(pyridin-2-ylmethylidene)arylamine ligands (Basu Baul, Kundu, Höpfl et al., 2013; Basu Baul, Kundu, Linden et al., 2013; Basu Baul, Kundu, Mitra et al. 2013) led to the isolation of the title compound, (I).
In (I), Fig. 1, the 2-[((4-chloromercuryl)phenyl)iminomethyl]pyridine, an organomercury ligand, chelates the Hg1 atom with the Hg1—N1(pyridyl) bond length being shorter than the Hg—N2(imino) bond in accord with related structures (Basu Baul, Kundu, Höpfl et al., 2013). The five-membered chelate ring is an envelope with the Hg1 atom lying 0.24 (2) Å out of the plane of the remaining four atoms (r.m.s. deviation = 0.0022 Å). In terms of angles, the major distortions from the ideal tetrahedral geometry about the Hg1 atom is found in the acute chelate angle (69.6 (3)°) and the wide angle subtended by the large I atoms (142.80 (4)°). The benzene ring carrying the HgCl atoms is almost co-planar to the pyridyl ring, forming a dihedral angle of 6.5 (6)°. The geometry about the Hg2 atom is linear as expected (177.0 (4)°).
In the crystal packing, centrosymmetrically related molecules associate via weak Hg···I secondary interactions: Hg1···I1i = 3.7027 (12) Å for symmetry operation i: -x, 1 - y, -z. These assemble into columns along the a axis via weak π—π interactions formed between the pyridyl and benzene rings [inter-centroid distance = 3.772 (7) Å for symmetry operation -1 + x, y, z]. In this way channels are formed in which reside the dimethyl sulfoxide molecules of solvation which are connected by weak Hg2···O1 secondary interactions [2.921 (12) Å] as well as weak C—H···I, O contacts, Fig. 2 and Table 2.