organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1775-o1776

N′-[(E)-5-Bromo-2-hy­dr­oxy-3-meth­­oxy­benzyl­­idene]benzohydrazide monohydrate

aDepartment of Chemistry, St. Joseph's College, Irinjalakuda, India, bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka, and cDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India
*Correspondence e-mail: eesans@yahoo.com

(Received 28 October 2013; accepted 7 November 2013; online 16 November 2013)

The title compound, C15H13BrN2O3·H2O, exists in an E conformation with respect to the azo­methane C=N double bond. The benzene and phenyl rings form dihedral angles of 0.46 (2) and 4.90 (3)°, respectively with the central C(=O)N2C unit. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, some hydrazide mol­ecules are replaced by mol­ecules of the 6-bromo isomer. The Br atom from this admixture was refined to give a partial occupancy of 0.0443 (19). A supra­molecular network is built in the lattice by means of inter­molecular N—H⋯O and two O—H⋯O inter­actions together with non-classical C—H⋯O inter­actions involving the lattice water mol­ecule stacking the mol­ecules along the b-axis direction.

Related literature

For biological applications of benzohydrazones and derivatives, see: Sreeja et al. (2004[Sreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575-581.]); Rada & Leto (2008[Rada, B. & Leto, T. (2008). Contrib. Microbiol. 15, 164-187.]); Rakha et al. (1996[Rakha, T. H., Ibrahim, K. M., Abdallah, A. M. & Hassanian, M. M. (1996). Synth. React. Inorg. Met. Org. Chem. 26, 1113-1123.]); Takahama (1996[Takahama, U. (1996). Physiol. Plant. 98, 731-736.]). For the synthesis of related compounds, see: Emmanuel et al. (2011[Emmanuel, J., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3267.]). For a related structure, see Reshma et al. (2012[Reshma, P. R., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2821-o2822.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13BrN2O3·H2O

  • Mr = 367.20

  • Orthorhombic, P 21 21 21

  • a = 4.7223 (5) Å

  • b = 13.9357 (17) Å

  • c = 23.028 (3) Å

  • V = 1515.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.73 mm−1

  • T = 293 K

  • 0.32 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.446, Tmax = 0.549

  • 12759 measured reflections

  • 2966 independent reflections

  • 2189 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.114

  • S = 0.89

  • 2966 reflections

  • 218 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1203 Friedel pairs

  • Absolute structure parameter: 0.016 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1Wi 0.86 2.11 2.946 (5) 163
O1—H1⋯N1 0.83 1.93 2.637 (5) 142
O1W—H1B⋯O2ii 0.86 (2) 2.50 (5) 3.178 (5) 136 (6)
O1W—H1B⋯O1ii 0.86 (2) 2.27 (4) 3.051 (5) 151 (6)
O1W—H1A⋯O3 0.86 (2) 1.91 (3) 2.736 (5) 163 (6)
C7—H7⋯O1Wi 0.93 2.50 3.305 (6) 145
C10—H10⋯O1Wi 0.93 2.42 3.329 (6) 166
C11—H11⋯O2i 0.93 2.55 3.435 (5) 160
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrazone derivatives represent an important class of organic compounds. The research for this class of compounds is an area of great interest due to their biological activities (Sreeja et al., 2004; Rada & Leto, 2008). They have been extensively investigated recently owing to their potential application as antineoplastic, antiviral and antiinflammatory agents (Rakha et al., 1996; Takahama, 1996).

The compound (Fig. 1) crystallizes in the monoclinic space group P212121. This molecule adopts an E configuration with respect to the C7=N1 bond and it exists in the amido form with a C8=O3 bond length of 1.222 (5) Å which is very close to the reported C=O bond length of a related structure (Reshma et al., 2012). The O3 and N1 atoms are in a Z configuration with respect to C8–N2 having a torsion angle of -0.3 (7)°. The central C(=O)N2C unit has dihedral angles of 0.46 (2) and 4.90 (3)°, respectively with the phenol and phenyl rings.

In the crystal, approximately 4% of the title compound is replaced by molecules of the 6-isomer, the Br1B atom of this admixture molecule was included in the refinement. Since the molecules of the 6-isomer are likely to be non-planar due to sterical factors, it does not occupy the same position as the molecule of the 5-bromo isomer. As a result, Br1B deviates by 0.39 (2) Å from the mean plane of C1—C6 plane, and the distance C6—Br1B is 1.798 (8) Å, much smaller than the typical bond length of C—Br.

The lattice water molecule connects three adjacent molecules via three classical O–H···O and a N–H···O hydrogen bond interactions with D···A distances of 3.178 (5), 3.052 (5), 2.736 (5) and 2.945 (5) Å and two non-classical C–H···O hydrogen bond interactions with D···A distances of 3.304 (8) and 3.333 (7) Å (Fig. 2, Table 1). Molecules are stacked one over the other by forming a one-dimensional-layer via O–H···O, N–H···O and C–H···O intermolecular hydrogen bonding along a axis (Fig. 3). Such layers are connected by means of a C–H···Br intermolecular hydrogen bonding interaction with D···A distance of 3.649 (5) Å (Fig. 4). These layers arranged in a zig-zag fashion (Fig. 4) forming a three-dimensional-supramolecular network in the lattice. The molecule also has a O–H···N intramolecular hydrogen bonding with a D···A distance of 2.637 (5) Å. Although there are very few weak short ring interactions found in the crystal system, they are not significant to support the network since centroid-centroid distances are above 4 Å. Fig. 5 shows a packing diagram of the title compound viewed along the a axis.

Related literature top

For biological applications of benzohydrazones and derivatives, see: Sreeja et al. (2004); Rada & Leto (2008); Rakha et al. (1996); Takahama (1996). For the synthesis of related compounds, see: Emmanuel et al. (2011). For related structures, see Reshma et al. (2012).

Experimental top

The title compound was prepared by adapting a reported procedure (Emmanuel et al., 2011). A solution of 5-bromo-3-methoxysalicylaldehyde (0.231 g, 1 mmol) in ethanol (10 ml) was mixed with an ethanolic solution (10 ml) of benzhydrazide (0.228 g, 1 mmol). The mixture was boiled under reflux for 3 h and then cooled to room temperature. The formed product was recrystallized in ethanol, washed with few drops of ethanol and dried over P4O10 in vacuo. Colorless block shaped crystals, suitable for single-crystal XRD studies, were obtained after slow evaporation of the solution in air for a few days.

Refinement top

The bromine atoms Br1 and Br1B of this molecule were refined freely, with the sum of their occupancy factors constrained to 1.0. The atoms H2, Br1B, H1A and H1B were located from a difference Fourier map and N2—H2 distance was restrained to 0.88±0.02. The H5 atom was placed in calculated position with occupancy factor equal to that Br1B, and its coordinates were fixed. The H6 atom was refined with restrained distance of 0.93 with occupancy factor equal to that of Br1. O1W–H1A and O1W–H1B distances were restrained to 0.85±0.02. C6–Br1B distance is restrained to 1.88±0.01 Å. The H atoms on C were placed in calculated positions, guided by difference maps, with C–H bond distances 0.93–0.96 Å. H atoms were assigned as Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq (methyl C). Omitted owing to bad disagreement were the reflections (0 0 2) and (0 1 1).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound drawn with 50% probability displacement ellipsoids for the non-H atoms. Bromine and the hydrogen atoms of the admixture was omitted.
[Figure 2] Fig. 2. Hydrogen-bonding interactions in the crystal structure of C15H13BrN2O3·H2O.
[Figure 3] Fig. 3. Molecules are stacked one over the other by means of intermolecular hydrogen bonding interactions in the crystal structure of the title compound.
[Figure 4] Fig. 4. C–H···Br interactions interconnecting the two one-dimensional-layers in the lattice.
[Figure 5] Fig. 5. Packing diagram of the compound along the a axis.
N'-[(E)-5-Bromo-2-hydroxy-3-methoxybenzylidene]benzohydrazide monohydrate top
Crystal data top
C15H13BrN2O3·H2OF(000) = 744
Mr = 367.20Dx = 1.609 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3233 reflections
a = 4.7223 (5) Åθ = 2.3–28.0°
b = 13.9357 (17) ŵ = 2.73 mm1
c = 23.028 (3) ÅT = 293 K
V = 1515.4 (3) Å3Block, pale brown
Z = 40.32 × 0.25 × 0.22 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2966 independent reflections
Radiation source: fine-focus sealed tube2189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
Detector resolution: 8.33 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω and ϕ scanh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1717
Tmin = 0.446, Tmax = 0.549l = 2228
12759 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.P)2 + 1.2809P]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max = 0.001
2966 reflectionsΔρmax = 0.45 e Å3
218 parametersΔρmin = 0.29 e Å3
7 restraintsAbsolute structure: Flack (1983), 1203 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.016 (16)
Crystal data top
C15H13BrN2O3·H2OV = 1515.4 (3) Å3
Mr = 367.20Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.7223 (5) ŵ = 2.73 mm1
b = 13.9357 (17) ÅT = 293 K
c = 23.028 (3) Å0.32 × 0.25 × 0.22 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2966 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2189 reflections with I > 2σ(I)
Tmin = 0.446, Tmax = 0.549Rint = 0.090
12759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114Δρmax = 0.45 e Å3
S = 0.89Δρmin = 0.29 e Å3
2966 reflectionsAbsolute structure: Flack (1983), 1203 Friedel pairs
218 parametersAbsolute structure parameter: 0.016 (16)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br11.56048 (13)0.50757 (4)0.94230 (3)0.0664 (2)0.956 (2)
Br1B1.181 (4)0.4776 (7)0.8289 (6)0.087 (7)0.044 (2)
O11.0006 (7)0.8426 (2)0.82729 (16)0.0610 (10)
H10.906 (14)0.8268 (14)0.798 (3)0.092*
O21.3713 (8)0.8739 (2)0.90679 (15)0.0598 (9)
O30.4122 (11)0.8432 (2)0.70096 (17)0.0800 (12)
N10.7166 (9)0.7183 (4)0.76351 (16)0.0552 (11)
N20.5260 (8)0.6904 (3)0.72170 (16)0.0536 (11)
H20.49970.63050.71460.064*
C21.1208 (10)0.7645 (3)0.85060 (19)0.0479 (11)
C31.3235 (10)0.7802 (3)0.8941 (2)0.0478 (11)
C41.4551 (10)0.7037 (3)0.92142 (19)0.0467 (11)
H41.58570.71400.95100.056*
C51.3871 (10)0.6112 (3)0.9036 (2)0.0496 (11)
H51.47440.55920.92140.060*0.044 (2)
C61.1964 (11)0.5953 (3)0.8607 (2)0.0527 (12)
H61.15700.53270.84920.063*0.956 (2)
C11.0590 (11)0.6710 (3)0.83351 (19)0.0479 (11)
C70.8523 (11)0.6512 (4)0.7890 (2)0.0555 (13)
H70.81680.58790.77870.067*
C80.3806 (11)0.7575 (3)0.6918 (2)0.0516 (12)
C90.1805 (10)0.7211 (3)0.64786 (18)0.0419 (10)
C100.1193 (10)0.6254 (3)0.6384 (2)0.0489 (12)
H100.20730.57870.66090.059*
C110.0706 (12)0.5983 (3)0.5959 (2)0.0587 (13)
H110.10950.53360.59010.070*
C120.2013 (12)0.6656 (4)0.5626 (2)0.0595 (13)
H120.32910.64700.53400.071*
C130.1445 (12)0.7607 (4)0.5713 (2)0.0603 (14)
H130.23300.80680.54840.072*
C140.0435 (11)0.7882 (3)0.6138 (2)0.0559 (12)
H140.07910.85310.61960.067*
C151.5878 (12)0.8956 (3)0.9469 (2)0.0616 (13)
H15A1.53790.87060.98440.092*
H15B1.61090.96390.94940.092*
H15C1.76210.86690.93430.092*
O1W0.4629 (10)0.9794 (2)0.78591 (18)0.0782 (11)
H1A0.473 (15)0.944 (4)0.7555 (18)0.117*
H1B0.346 (12)0.952 (5)0.809 (2)0.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0768 (4)0.0492 (3)0.0733 (4)0.0101 (3)0.0021 (3)0.0056 (3)
Br1B0.127 (13)0.058 (8)0.077 (10)0.019 (8)0.028 (9)0.004 (7)
O10.059 (3)0.064 (2)0.060 (2)0.0015 (17)0.0188 (19)0.0050 (17)
O20.064 (2)0.0475 (18)0.067 (2)0.0032 (17)0.0247 (19)0.0072 (16)
O30.108 (3)0.054 (2)0.078 (3)0.020 (2)0.012 (3)0.0184 (19)
N10.048 (2)0.081 (3)0.037 (2)0.018 (2)0.000 (2)0.010 (2)
N20.051 (3)0.068 (2)0.042 (2)0.012 (2)0.003 (2)0.009 (2)
C20.045 (3)0.059 (3)0.039 (2)0.003 (2)0.001 (2)0.002 (2)
C30.049 (3)0.049 (3)0.045 (3)0.003 (2)0.005 (2)0.005 (2)
C40.044 (2)0.055 (2)0.041 (2)0.002 (2)0.001 (2)0.005 (2)
C50.050 (3)0.052 (3)0.046 (3)0.000 (2)0.005 (2)0.001 (2)
C60.056 (3)0.052 (3)0.050 (3)0.006 (2)0.004 (3)0.004 (2)
C10.044 (2)0.063 (3)0.036 (2)0.008 (3)0.004 (2)0.009 (2)
C70.049 (3)0.076 (3)0.042 (3)0.015 (3)0.004 (2)0.010 (3)
C80.054 (3)0.057 (3)0.044 (3)0.007 (3)0.006 (2)0.008 (2)
C90.043 (2)0.044 (2)0.039 (2)0.002 (2)0.007 (2)0.007 (2)
C100.053 (3)0.042 (2)0.052 (3)0.001 (2)0.010 (2)0.002 (2)
C110.062 (3)0.047 (3)0.067 (3)0.003 (3)0.013 (3)0.015 (2)
C120.057 (3)0.069 (3)0.052 (3)0.006 (3)0.009 (3)0.005 (3)
C130.061 (3)0.063 (3)0.057 (3)0.008 (3)0.006 (3)0.011 (3)
C140.063 (3)0.043 (2)0.061 (3)0.002 (3)0.005 (3)0.000 (2)
C150.061 (3)0.059 (3)0.065 (3)0.002 (3)0.017 (3)0.011 (3)
O1W0.111 (3)0.053 (2)0.071 (2)0.012 (2)0.018 (2)0.0054 (18)
Geometric parameters (Å, º) top
Br1—C51.885 (5)C1—C71.441 (7)
Br1B—C61.798 (8)C7—H70.9300
O1—C21.339 (6)C8—C91.475 (6)
O1—H10.8311C9—C141.382 (6)
O2—C31.357 (5)C9—C101.382 (6)
O2—C151.411 (6)C10—C111.379 (7)
O3—C81.221 (5)C10—H100.9300
N1—C71.277 (7)C11—C121.360 (7)
N1—N21.374 (5)C11—H110.9300
N2—C81.349 (6)C12—C131.366 (7)
N2—H20.8600C12—H120.9300
C2—C11.392 (6)C13—C141.376 (7)
C2—C31.403 (6)C13—H130.9300
C3—C41.385 (6)C14—H140.9300
C4—C51.391 (6)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.355 (7)C15—H15C0.9600
C5—H50.9300O1W—H1A0.86 (2)
C6—C11.387 (6)O1W—H1B0.86 (2)
C6—H60.9300
C2—O1—H1109.5C1—C7—H7119.1
C3—O2—C15117.9 (4)O3—C8—N2121.9 (5)
C7—N1—N2116.3 (5)O3—C8—C9122.2 (5)
C8—N2—N1119.6 (4)N2—C8—C9116.0 (4)
C8—N2—H2120.2C14—C9—C10117.7 (4)
N1—N2—H2120.2C14—C9—C8117.2 (4)
O1—C2—C1123.9 (4)C10—C9—C8125.1 (4)
O1—C2—C3116.7 (4)C11—C10—C9120.8 (4)
C1—C2—C3119.4 (4)C11—C10—H10119.6
O2—C3—C4124.6 (4)C9—C10—H10119.6
O2—C3—C2114.6 (4)C12—C11—C10120.4 (4)
C4—C3—C2120.7 (4)C12—C11—H11119.8
C3—C4—C5118.4 (4)C10—C11—H11119.8
C3—C4—H4120.8C11—C12—C13119.8 (5)
C5—C4—H4120.8C11—C12—H12120.1
C6—C5—C4121.4 (4)C13—C12—H12120.1
C6—C5—Br1120.6 (4)C12—C13—C14120.1 (5)
C4—C5—Br1118.0 (4)C12—C13—H13120.0
C6—C5—H5119.3C14—C13—H13120.0
C4—C5—H5119.3C9—C14—C13121.2 (4)
C5—C6—C1121.0 (4)C9—C14—H14119.4
C5—C6—Br1B118.3 (7)C13—C14—H14119.4
C1—C6—Br1B119.4 (7)O2—C15—H15A109.5
C5—C6—H6119.5O2—C15—H15B109.5
C1—C6—H6119.5H15A—C15—H15B109.5
C6—C1—C2119.1 (4)O2—C15—H15C109.5
C6—C1—C7119.4 (5)H15A—C15—H15C109.5
C2—C1—C7121.5 (5)H15B—C15—H15C109.5
N1—C7—C1121.8 (5)H1A—O1W—H1B106 (4)
N1—C7—H7119.1
C7—N1—N2—C8178.2 (4)C3—C2—C1—C61.1 (7)
C15—O2—C3—C45.9 (7)O1—C2—C1—C71.1 (7)
C15—O2—C3—C2175.2 (4)C3—C2—C1—C7180.0 (4)
O1—C2—C3—O20.1 (6)N2—N1—C7—C1179.7 (4)
C1—C2—C3—O2178.9 (4)C6—C1—C7—N1178.7 (5)
O1—C2—C3—C4178.8 (4)C2—C1—C7—N10.2 (7)
C1—C2—C3—C42.2 (7)N1—N2—C8—O30.3 (7)
O2—C3—C4—C5179.5 (5)N1—N2—C8—C9179.9 (4)
C2—C3—C4—C51.8 (7)O3—C8—C9—C144.8 (7)
C3—C4—C5—C60.2 (7)N2—C8—C9—C14175.5 (4)
C3—C4—C5—Br1178.5 (4)O3—C8—C9—C10175.0 (5)
C4—C5—C6—C10.9 (7)N2—C8—C9—C104.7 (7)
Br1—C5—C6—C1177.3 (4)C14—C9—C10—C110.5 (7)
C4—C5—C6—Br1B165.9 (7)C8—C9—C10—C11179.7 (5)
Br1—C5—C6—Br1B15.9 (8)C9—C10—C11—C120.0 (8)
C5—C6—C1—C20.5 (7)C10—C11—C12—C130.1 (9)
Br1B—C6—C1—C2166.1 (7)C11—C12—C13—C140.3 (9)
C5—C6—C1—C7178.5 (4)C10—C9—C14—C130.8 (7)
Br1B—C6—C1—C714.9 (9)C8—C9—C14—C13179.4 (5)
O1—C2—C1—C6180.0 (4)C12—C13—C14—C90.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1Wi0.862.112.946 (5)163
O1—H1···N10.831.932.637 (5)142
O1W—H1B···O2ii0.86 (2)2.50 (5)3.178 (5)136 (6)
O1W—H1B···O1ii0.86 (2)2.27 (4)3.051 (5)151 (6)
O1W—H1A···O30.86 (2)1.91 (3)2.736 (5)163 (6)
C7—H7···O1Wi0.932.503.305 (6)145
C10—H10···O1Wi0.932.423.329 (6)166
C11—H11···O2i0.932.553.435 (5)160
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1Wi0.862.112.946 (5)163.1
O1—H1···N10.831.932.637 (5)142.2
O1W—H1B···O2ii0.86 (2)2.50 (5)3.178 (5)136 (6)
O1W—H1B···O1ii0.86 (2)2.27 (4)3.051 (5)151 (6)
O1W—H1A···O30.86 (2)1.91 (3)2.736 (5)163 (6)
C7—H7···O1Wi0.93072.49673.305 (6)145.39
C10—H10···O1Wi0.93102.41773.329 (6)166.15
C11—H11···O2i0.93012.54693.435 (5)159.85
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1, y, z.
 

Acknowledgements

The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for the single-crystal X-ray diffraction measurements. The authors are grateful to Dr Matthias Zeller, Department of Chemistry, Youngstown State University, for support with the data refinement.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEmmanuel, J., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRada, B. & Leto, T. (2008). Contrib. Microbiol. 15, 164–187.  CrossRef PubMed CAS Google Scholar
First citationRakha, T. H., Ibrahim, K. M., Abdallah, A. M. & Hassanian, M. M. (1996). Synth. React. Inorg. Met. Org. Chem. 26, 1113–1123.  CrossRef CAS Web of Science Google Scholar
First citationReshma, P. R., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2821–o2822.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575–581.  Web of Science CSD CrossRef CAS Google Scholar
First citationTakahama, U. (1996). Physiol. Plant. 98, 731–736.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1775-o1776
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds