metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(5-hy­dr­oxy­isophthalato-κO1)bis­­[4-(pyridine-3-carboxamido-κN3)pyridinium]copper(II) tetra­hydrate

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 7 November 2013; accepted 8 November 2013; online 16 November 2013)

In the title compound, [Cu(C11H10N3O)2(C8H4O5)2]·4H2O, the CuII ion, located on a crystallographic inversion center, is coordinated in a square-planar environment by two trans-O atoms belonging to two monodentate 5-hy­droxy­isophthalate (hip) dianions and two trans nicotinamide pyridyl N-donor atoms from monodentate protonated pendant N-(pyridin-4-yl)nicotinamide (4-pnaH) ligands. The protonated 4-pyridyl­amine groups engage in N—H+⋯O hydrogen-bond donation to unligated hip O atoms to construct supra­molecular chain motifs parallel to [100]. Water mol­ecules of crystallization, situated between the chains, engage in O—H⋯O hydrogen bonding to form supra­molecular layers and the overall three-dimensional network structure.

Related literature

For the preparation of 4-pyridyl­nicotinamide, see: Gardner et al. (1954[Gardner, T. S., Wenis, E. & Lee, J. (1954). J. Org. Chem. 19, 753-757.]). For the preparation of other di­carboxyl­ate coordin­ation polymers containing 4-pyridyl­nicotinamide, see: Kumar (2009[Kumar, D. K. (2009). Inorg. Chim. Acta, 362, 1767-1771.]); Wilson et al. (2013[Wilson, J. A., Uebler, J. W. & LaDuca, R. L. (2013). CrystEngComm, 15, 5218-5225.])

[Scheme 1]

Experimental

Crystal data
  • [Cu(C11H10N3O)2(C8H4O5)2]·4H2O

  • Mr = 896.27

  • Monoclinic, P 21 /c

  • a = 16.402 (2) Å

  • b = 7.7699 (10) Å

  • c = 16.403 (2) Å

  • β = 115.466 (1)°

  • V = 1887.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 173 K

  • 0.50 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.686, Tmax = 0.745

  • 15084 measured reflections

  • 3483 independent reflections

  • 3122 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.076

  • S = 1.07

  • 3483 reflections

  • 288 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.87 1.85 2.7164 (18) 170
O1W—H1WB⋯O3ii 0.87 1.92 2.775 (2) 169
O2W—H2WA⋯O2 0.87 1.97 2.814 (2) 163
O2W—H2WB⋯O2iii 0.87 1.94 2.8049 (18) 177
O5—H5⋯O1W 0.84 1.81 2.6384 (18) 168
N2—H2⋯O2Wiv 0.88 2.00 2.823 (2) 156
N3—H3⋯O3v 0.91 (3) 1.69 (3) 2.582 (2) 166 (2)
Symmetry codes: (i) -x, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

In comparison to divalent metal coordination polymers containing rigid rod dipyridine ligands such as 4,4'-bipyridine, related phases containing the kinked and hydrogen-bonding capable dipodal ligand 4-pyridylnicotinamide (4-pna) are less widely reported (Kumar, 2009; Wilson et al., 2013). The title compound was obtained in attempt at preparing a coordination polymer, as purple crystals through the hydrothermal reaction of copper nitrate, 5-hydroxyisophthalic acid (H2hip), and 4-pna in the presence of aqueous base.

The asymmetric unit of the title compound, which exists as a simple coordination complex [Cu(hip)2(4-pnaH)2]·4H2O, contains a divalent copper atom on a crystallographic inversion center, a 4-pnaH ligand protonated at its unligated 4-pyridylamine terminus, a doubly deprotonated hip ligand, and two water molecules of crystallization. The copper atom is square planar coordinated (Fig. 1) by two trans O atoms belonging to two monodentate 5-hydroxyisophthalate (hip) dianions and two trans nicotinamide pyridyl N-donor atoms from 4-pnaH ligands.

Neighboring [Cu(hip)2(4-pnaH)2] coordination complexes are connected into supramolecular chains parallel to [1 0 0] by charge-separated N—H+···O- hydrogen bonding between the protonated termini of the 4-pnaH ligands and unligated hip oxygen atoms (Fig. 2). These chains aggregate into undulating supramolecular layers (Fig. 3) by means of O—H···O hydrogen bonding mediated by the water molecules of crystallization. The main interchain aggregation mechanism involves O—H···O hydrogen bonding from water molecules (O2W) to unbound hip oxygen atoms (O2) belonging to the ligated monodentate carboxylate groups (Fig. 4). These water molecules also accept N—H···O hydrogen bonding from the central amide functional group of the 4-pnaH ligands. The aggregation of the supramolecular layers into the full three-dimensional crystal structure of the title compound is accomplished by O—H···O hydrogen bonding patterns. The hydroxyl group of the hip ligands in one layer donates hydrogen bonds to the water molecules of crystallization (O1W), which in turn serve as hydrogen bonding donors to unligated hip oxygen atoms in a neighboring layer (Fig. 5).

Related literature top

For the preparation of 4-pyridylnicotinamide, see: Gardner et al. (1954). For the preparation of other dicarboxylate coordination polymers containing 4-pyridylnicotinamide, see: Kumar (2009); Wilson et al. (2013)

Experimental top

Copper(II) nitrate hydrate and 5-hydroxyisophthalic acid were obtained commercially. 4-Pyridylnicotinamide (4-pna) was prepared via a published procedure (Gardner et al., 1954). A mixture of copper nitrate hydrate (65 mg, 0.28 mmol), 5-hydroxyisophthalic acid (51 mg, 0.28 mmol), 4-pna (55 mg, 0.28 mmol) and 10.0 g water (550 mmol), along with 0.5 mL of 1.0 M NaOH solution was placed into a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 373 K for 48 h. Purple blocks of the title compound were obtained.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atom within the amide group of the 4-pna ligand was found in a difference Fourier map, restrained with N—H = 0.9 Å and refined with Uiso = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A complete molecule of the title compound, showing 50% probability ellipsoids, and atom numbering scheme. Hydrogen atom positions are shown as grey sticks. Color codes: dark blue Cu, red O, light blue N, black C. Symmetry code: (i) -x + 1, -y + 1, -z + 1.
[Figure 2] Fig. 2. A single supramolecular chain in the title compound. N—H+···O- hydrogen bonding is shown as dashed lines.
[Figure 3] Fig. 3. Aggregation of supramolecular chains in the title compound, mediated by water molecules of crystallization (orange spheres). O—H···O hydrogen bonding is shown as dashed lines.
[Figure 4] Fig. 4. Layer of supramolecular chains in the title compound. O—H···O hydrogen bonding is shown as dashed lines.
[Figure 5] Fig. 5. Stacking of supramolecular layers within the title compound.
Bis(5-hydroxyisophthalato-κO1)bis[4-(pyridine-3-carboxamido-κN3)pyridinium]copper(II) tetrahydrate top
Crystal data top
[Cu(C11H10N3O)2(C8H4O5)2]·4H2OF(000) = 926
Mr = 896.27Dx = 1.577 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.402 (2) ÅCell parameters from 9855 reflections
b = 7.7699 (10) Åθ = 2.5–25.4°
c = 16.403 (2) ŵ = 0.67 mm1
β = 115.466 (1)°T = 173 K
V = 1887.3 (4) Å3Block, purple
Z = 20.50 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
3483 independent reflections
Radiation source: fine-focus sealed tube3122 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1919
Tmin = 0.686, Tmax = 0.745k = 99
15084 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0359P)2 + 1.2489P]
where P = (Fo2 + 2Fc2)/3
3483 reflections(Δ/σ)max < 0.001
288 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu(C11H10N3O)2(C8H4O5)2]·4H2OV = 1887.3 (4) Å3
Mr = 896.27Z = 2
Monoclinic, P21/cMo Kα radiation
a = 16.402 (2) ŵ = 0.67 mm1
b = 7.7699 (10) ÅT = 173 K
c = 16.403 (2) Å0.50 × 0.20 × 0.18 mm
β = 115.466 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3483 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
3122 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.745Rint = 0.025
15084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.26 e Å3
3483 reflectionsΔρmin = 0.42 e Å3
288 parameters
Special details top

Experimental. SADABS-2012/1 (Bruker,2012) was used for absorption correction. wR2(int) was 0.0479 before and 0.0373 after correction. The Ratio of minimum to maximum transmission is 0.9208. The λ/2 correction factor is 0.0015.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.01401 (10)
O10.39722 (8)0.39435 (15)0.40222 (8)0.0194 (3)
O1W0.14145 (9)0.00460 (18)0.10490 (9)0.0275 (3)
H1WA0.09330.04850.10350.041*
H1WB0.12600.06260.15160.041*
O20.46616 (8)0.48157 (16)0.31902 (9)0.0228 (3)
O2W0.40905 (9)0.7846 (2)0.21591 (10)0.0321 (3)
H2WA0.43460.68940.24250.048*
H2WB0.44830.84810.20720.048*
O30.07175 (9)0.2777 (2)0.25064 (10)0.0376 (4)
O40.01886 (9)0.13283 (19)0.12102 (9)0.0304 (3)
O50.27672 (8)0.14834 (18)0.02882 (8)0.0255 (3)
H50.22950.10220.00960.038*
O60.15526 (9)0.9500 (2)0.45393 (9)0.0310 (3)
N10.42685 (9)0.71203 (18)0.47758 (9)0.0162 (3)
N20.23450 (10)0.7950 (2)0.58285 (10)0.0209 (3)
H20.28680.74460.61400.025*
N30.05618 (10)0.7640 (2)0.69925 (11)0.0243 (3)
H30.0179 (18)0.754 (3)0.7256 (17)0.049 (7)*
C10.43854 (12)0.8397 (2)0.42900 (11)0.0195 (4)
H10.48620.83120.41090.023*
C20.38399 (13)0.9829 (2)0.40438 (13)0.0241 (4)
H2A0.39351.07130.36940.029*
C30.31522 (13)0.9966 (2)0.43120 (13)0.0227 (4)
H3A0.27691.09470.41520.027*
C40.30281 (11)0.8649 (2)0.48184 (11)0.0184 (4)
C50.35943 (11)0.7231 (2)0.50298 (11)0.0174 (3)
H5A0.35030.63120.53630.021*
C60.22328 (12)0.8746 (2)0.50426 (12)0.0212 (4)
C70.02556 (12)0.8174 (3)0.61421 (13)0.0272 (4)
H70.03630.84800.58240.033*
C80.08076 (12)0.8293 (3)0.57121 (13)0.0255 (4)
H80.05760.86660.51020.031*
C90.17144 (12)0.7858 (2)0.61853 (12)0.0196 (4)
C100.20149 (12)0.7265 (3)0.70722 (12)0.0246 (4)
H100.26270.69320.74070.029*
C110.14239 (13)0.7166 (3)0.74539 (13)0.0272 (4)
H110.16270.67550.80550.033*
C120.32288 (11)0.3368 (2)0.24693 (11)0.0165 (3)
C130.24036 (11)0.3152 (2)0.25072 (11)0.0167 (3)
H130.23320.35240.30240.020*
C140.16865 (11)0.2397 (2)0.17922 (11)0.0174 (4)
C150.17939 (11)0.1822 (2)0.10391 (11)0.0183 (4)
H150.13060.12830.05540.022*
C160.26192 (12)0.2041 (2)0.10003 (11)0.0183 (4)
C170.33334 (11)0.2836 (2)0.17084 (12)0.0187 (4)
H170.38910.30150.16740.022*
C180.07858 (12)0.2138 (2)0.18280 (12)0.0218 (4)
C190.40097 (11)0.4108 (2)0.32675 (11)0.0167 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01290 (16)0.01534 (16)0.01324 (16)0.00149 (11)0.00510 (12)0.00120 (10)
O10.0185 (6)0.0214 (6)0.0162 (6)0.0007 (5)0.0053 (5)0.0027 (5)
O1W0.0196 (7)0.0403 (9)0.0210 (7)0.0074 (6)0.0074 (6)0.0019 (6)
O20.0155 (6)0.0255 (7)0.0267 (7)0.0033 (5)0.0084 (5)0.0035 (5)
O2W0.0195 (7)0.0429 (9)0.0321 (8)0.0053 (6)0.0096 (6)0.0088 (7)
O30.0245 (7)0.0638 (10)0.0321 (8)0.0103 (7)0.0193 (7)0.0163 (7)
O40.0189 (7)0.0450 (9)0.0263 (7)0.0103 (6)0.0088 (6)0.0057 (6)
O50.0225 (7)0.0359 (8)0.0209 (7)0.0062 (6)0.0119 (6)0.0104 (6)
O60.0217 (7)0.0413 (8)0.0309 (8)0.0147 (6)0.0121 (6)0.0113 (6)
N10.0156 (7)0.0166 (7)0.0149 (7)0.0006 (6)0.0051 (6)0.0022 (5)
N20.0148 (7)0.0278 (8)0.0207 (8)0.0068 (6)0.0081 (6)0.0018 (6)
N30.0181 (8)0.0325 (9)0.0260 (8)0.0007 (7)0.0130 (7)0.0050 (7)
C10.0183 (9)0.0224 (9)0.0188 (9)0.0021 (7)0.0090 (7)0.0018 (7)
C20.0288 (10)0.0189 (9)0.0270 (10)0.0012 (8)0.0142 (8)0.0041 (7)
C30.0239 (10)0.0178 (9)0.0246 (10)0.0050 (7)0.0086 (8)0.0019 (7)
C40.0170 (8)0.0206 (9)0.0167 (8)0.0014 (7)0.0062 (7)0.0017 (7)
C50.0172 (8)0.0190 (8)0.0164 (8)0.0001 (7)0.0076 (7)0.0002 (7)
C60.0180 (9)0.0222 (9)0.0231 (9)0.0029 (7)0.0086 (8)0.0013 (7)
C70.0149 (9)0.0362 (11)0.0288 (10)0.0041 (8)0.0079 (8)0.0011 (8)
C80.0188 (9)0.0342 (11)0.0224 (9)0.0045 (8)0.0078 (8)0.0017 (8)
C90.0171 (9)0.0205 (9)0.0218 (9)0.0008 (7)0.0091 (7)0.0057 (7)
C100.0153 (9)0.0350 (11)0.0218 (9)0.0032 (8)0.0064 (8)0.0005 (8)
C110.0211 (9)0.0399 (12)0.0207 (9)0.0012 (8)0.0089 (8)0.0003 (8)
C120.0171 (8)0.0146 (8)0.0169 (8)0.0008 (7)0.0064 (7)0.0014 (7)
C130.0178 (8)0.0181 (8)0.0143 (8)0.0020 (7)0.0069 (7)0.0009 (7)
C140.0161 (8)0.0180 (8)0.0183 (8)0.0003 (7)0.0077 (7)0.0034 (7)
C150.0165 (8)0.0205 (9)0.0151 (8)0.0018 (7)0.0040 (7)0.0008 (7)
C160.0214 (9)0.0192 (9)0.0158 (8)0.0008 (7)0.0093 (7)0.0004 (7)
C170.0154 (8)0.0203 (9)0.0216 (9)0.0004 (7)0.0091 (7)0.0009 (7)
C180.0178 (9)0.0282 (10)0.0199 (9)0.0003 (8)0.0085 (8)0.0031 (7)
C190.0146 (8)0.0130 (8)0.0207 (9)0.0036 (7)0.0058 (7)0.0017 (7)
Geometric parameters (Å, º) top
Cu1—O11.9399 (12)C2—C31.380 (3)
Cu1—O1i1.9399 (12)C3—H3A0.9500
Cu1—N1i1.9772 (14)C3—C41.387 (3)
Cu1—N11.9773 (14)C4—C51.386 (2)
O1—C191.272 (2)C4—C61.502 (2)
O1W—H1WA0.8701C5—H5A0.9500
O1W—H1WB0.8701C7—H70.9500
O2—C191.256 (2)C7—C81.369 (3)
O2W—H2WA0.8698C8—H80.9500
O2W—H2WB0.8700C8—C91.392 (2)
O3—C181.267 (2)C9—C101.398 (3)
O4—C181.236 (2)C10—H100.9500
O5—H50.8400C10—C111.364 (3)
O5—C161.362 (2)C11—H110.9500
O6—C61.216 (2)C12—C131.392 (2)
N1—C11.337 (2)C12—C171.394 (2)
N1—C51.342 (2)C12—C191.498 (2)
N2—H20.8800C13—H130.9500
N2—C61.369 (2)C13—C141.385 (2)
N2—C91.392 (2)C14—C151.394 (2)
N3—H30.91 (3)C14—C181.517 (2)
N3—C71.330 (3)C15—H150.9500
N3—C111.337 (2)C15—C161.393 (2)
C1—H10.9500C16—C171.390 (2)
C1—C21.375 (3)C17—H170.9500
C2—H2A0.9500
O1—Cu1—O1i180.0N3—C7—C8121.77 (17)
O1i—Cu1—N1i87.52 (5)C8—C7—H7119.1
O1—Cu1—N1i92.48 (5)C7—C8—H8120.6
O1i—Cu1—N192.48 (5)C7—C8—C9118.76 (18)
O1—Cu1—N187.52 (5)C9—C8—H8120.6
N1i—Cu1—N1180.00 (7)N2—C9—C10117.46 (15)
C19—O1—Cu1111.94 (11)C8—C9—N2124.21 (16)
H1WA—O1W—H1WB109.5C8—C9—C10118.32 (16)
H2WA—O2W—H2WB109.5C9—C10—H10120.2
C16—O5—H5109.5C11—C10—C9119.61 (17)
C1—N1—Cu1119.87 (11)C11—C10—H10120.2
C1—N1—C5119.10 (15)N3—C11—C10120.81 (18)
C5—N1—Cu1120.71 (11)N3—C11—H11119.6
C6—N2—H2116.7C10—C11—H11119.6
C6—N2—C9126.57 (15)C13—C12—C17120.07 (16)
C9—N2—H2116.7C13—C12—C19119.32 (15)
C7—N3—H3120.0 (16)C17—C12—C19120.56 (15)
C7—N3—C11120.68 (17)C12—C13—H13120.0
C11—N3—H3119.3 (16)C14—C13—C12120.09 (15)
N1—C1—H1118.9C14—C13—H13120.0
N1—C1—C2122.24 (16)C13—C14—C15120.09 (16)
C2—C1—H1118.9C13—C14—C18120.67 (15)
C1—C2—H2A120.5C15—C14—C18119.21 (16)
C1—C2—C3119.10 (17)C14—C15—H15120.1
C3—C2—H2A120.5C16—C15—C14119.81 (16)
C2—C3—H3A120.5C16—C15—H15120.1
C2—C3—C4119.02 (16)O5—C16—C15122.39 (16)
C4—C3—H3A120.5O5—C16—C17117.44 (15)
C3—C4—C6118.46 (16)C17—C16—C15120.16 (15)
C5—C4—C3118.77 (16)C12—C17—H17120.1
C5—C4—C6122.53 (16)C16—C17—C12119.74 (16)
N1—C5—C4121.75 (16)C16—C17—H17120.1
N1—C5—H5A119.1O3—C18—C14115.95 (16)
C4—C5—H5A119.1O4—C18—O3125.54 (16)
O6—C6—N2124.73 (16)O4—C18—C14118.50 (16)
O6—C6—C4119.88 (16)O1—C19—C12115.53 (15)
N2—C6—C4115.40 (15)O2—C19—O1122.79 (15)
N3—C7—H7119.1O2—C19—C12121.66 (15)
Cu1—O1—C19—O22.7 (2)C7—N3—C11—C101.9 (3)
Cu1—O1—C19—C12178.48 (11)C7—C8—C9—N2179.01 (18)
Cu1—N1—C1—C2173.90 (14)C7—C8—C9—C102.0 (3)
Cu1—N1—C5—C4174.92 (13)C8—C9—C10—C111.5 (3)
O1—Cu1—N1—C199.24 (13)C9—N2—C6—O60.2 (3)
O1i—Cu1—N1—C180.76 (13)C9—N2—C6—C4179.90 (16)
O1—Cu1—N1—C574.23 (13)C9—C10—C11—N30.4 (3)
O1i—Cu1—N1—C5105.77 (13)C11—N3—C7—C81.3 (3)
O5—C16—C17—C12177.43 (15)C12—C13—C14—C151.1 (3)
N1—Cu1—O1—C1991.90 (11)C12—C13—C14—C18179.40 (15)
N1i—Cu1—O1—C1988.10 (11)C13—C12—C17—C162.0 (3)
N1—C1—C2—C30.5 (3)C13—C12—C19—O123.5 (2)
N2—C9—C10—C11179.44 (18)C13—C12—C19—O2157.68 (16)
N3—C7—C8—C90.6 (3)C13—C14—C15—C161.3 (3)
C1—N1—C5—C41.4 (2)C13—C14—C18—O35.6 (3)
C1—C2—C3—C40.3 (3)C13—C14—C18—O4173.92 (17)
C2—C3—C4—C50.7 (3)C14—C15—C16—O5179.04 (16)
C2—C3—C4—C6175.17 (16)C14—C15—C16—C170.2 (3)
C3—C4—C5—N11.6 (3)C15—C14—C18—O3176.14 (17)
C3—C4—C6—O628.3 (3)C15—C14—C18—O44.4 (3)
C3—C4—C6—N2151.50 (17)C15—C16—C17—C121.9 (3)
C5—N1—C1—C20.3 (3)C17—C12—C13—C140.5 (2)
C5—C4—C6—O6146.00 (19)C17—C12—C19—O1154.05 (15)
C5—C4—C6—N234.2 (2)C17—C12—C19—O224.8 (2)
C6—N2—C9—C812.5 (3)C18—C14—C15—C16179.57 (16)
C6—N2—C9—C10168.55 (18)C19—C12—C13—C14177.03 (15)
C6—C4—C5—N1175.84 (15)C19—C12—C17—C16175.49 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4ii0.871.852.7164 (18)170
O1W—H1WB···O3iii0.871.922.775 (2)169
O2W—H2WA···O20.871.972.814 (2)163
O2W—H2WB···O2iv0.871.942.8049 (18)177
O5—H5···O1W0.841.812.6384 (18)168
N2—H2···O2Wv0.882.002.823 (2)156
N3—H3···O3vi0.91 (3)1.69 (3)2.582 (2)166 (2)
Symmetry codes: (ii) x, y, z; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.871.852.7164 (18)170.4
O1W—H1WB···O3ii0.871.922.775 (2)168.5
O2W—H2WA···O20.871.972.814 (2)162.5
O2W—H2WB···O2iii0.871.942.8049 (18)176.5
O5—H5···O1W0.841.812.6384 (18)168.4
N2—H2···O2Wiv0.882.002.823 (2)156.1
N3—H3···O3v0.91 (3)1.69 (3)2.582 (2)166 (2)
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge Michigan State University for funding this work. We thank Dr A. Lifeson for helpful assistance.

References

First citationBruker (2006). APEX2. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGardner, T. S., Wenis, E. & Lee, J. (1954). J. Org. Chem. 19, 753–757.  CrossRef CAS Web of Science Google Scholar
First citationKumar, D. K. (2009). Inorg. Chim. Acta, 362, 1767–1771.  Web of Science CSD CrossRef Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, J. A., Uebler, J. W. & LaDuca, R. L. (2013). CrystEngComm, 15, 5218–5225.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds