organic compounds
2-Methylaspartic acid monohydrate
aDepartment of Chemistry, Catholic University of America, Washington, DC 20064, USA, bNASA Goddard Space Flight Center, Greenbelt, MD 20771, USA, cSolar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The title compound, C5H9NO4·H2O, is an isomer of the α-amino acid glutamic acid that crystallizes from water in its zwitterionic form as a monohydrate. It is not one of the 20 proteinogenic α-amino acids that are used in living systems and differs from the natural amino acids in that it has an α-methyl group rather than an α-H atom. In the crystal, an O—H⋯O hydrogen bond is present between the acid and water molecules while extensive N—H⋯O and O—H⋯O hydrogen bonds link the components into a three-dimensional array.
CCDC reference: 953406
Related literature
For the eighty amino acids that have been detected in meteorites or comets, see: Pizzarello et al. (2006); Glavin & Dworkin, (2009); Burton et al. (2012). For the role that crystallization plays in chiral separation, see: Blackmond & Klussmann (2007); Blackmond et al. (2008). For the role of the H atom on the α-C atom in enhancing the rate of see: Yamada et al. (1983). For the mechanism of of amino acids lacking an α-H atom, see: Pizzarello & Groy (2011). For the role that crystallization can play in the enrichment of L isovaline and its structure, see: Glavin & Dworkin (2009); Butcher et al. (2013). For normal bond lengths and angles, see: Orpen (1993). For the number of α-methyl amino acids that have been observed with L-enantiomeric excesses up to 20% that are not believed to be the result of contamination, see: Pizzarello & Cronin (2000); Glavin & Dworkin (2009); Glavin et al. (2011, 2012); Burton et al. (2013).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 953406
10.1107/S1600536813032170/hg5362sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813032170/hg5362Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813032170/hg5362Isup3.cml
2-Methylaspartic acid was purchased from Nagase and Co. Ltd. Crystals of the title compound were grown from slow evaporation of a racemic solution of the amino acid in water.
H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.98 and 0.99 Å. The protons on the N and O were refined isotropically with the O—H distances for the water H's constrained to be 0.82 Å and the H—O—H angle close to 104.5°.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Diagram of the title compound showing atom labeling. Atomic displacement parameters are at the 30% probability level. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. Packing diagram of the title compound viewed along the c axis showing the extensive N—H···O and O—H···O hydrogen bonds as dashed lines. |
C5H9NO4·H2O | F(000) = 352 |
Mr = 165.15 | Dx = 1.527 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ybc | Cell parameters from 3596 reflections |
a = 9.9690 (6) Å | θ = 3.4–77.1° |
b = 12.8677 (6) Å | µ = 1.20 mm−1 |
c = 5.8409 (3) Å | T = 123 K |
β = 106.491 (6)° | Plate, colourless |
V = 718.44 (7) Å3 | 0.49 × 0.12 × 0.04 mm |
Z = 4 |
Agilent Xcalibur Ruby Gemini diffractometer | 1498 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1436 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 77.3°, θmin = 3.4° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −15→16 |
Tmin = 0.682, Tmax = 1.000 | l = −7→5 |
5544 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.090 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.279 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.20 | w = 1/[σ2(Fo2) + (0.171P)2 + 1.5626P] where P = (Fo2 + 2Fc2)/3 |
1498 reflections | (Δ/σ)max < 0.001 |
123 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.53 e Å−3 |
C5H9NO4·H2O | V = 718.44 (7) Å3 |
Mr = 165.15 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 9.9690 (6) Å | µ = 1.20 mm−1 |
b = 12.8677 (6) Å | T = 123 K |
c = 5.8409 (3) Å | 0.49 × 0.12 × 0.04 mm |
β = 106.491 (6)° |
Agilent Xcalibur Ruby Gemini diffractometer | 1498 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 1436 reflections with I > 2σ(I) |
Tmin = 0.682, Tmax = 1.000 | Rint = 0.038 |
5544 measured reflections |
R[F2 > 2σ(F2)] = 0.090 | 0 restraints |
wR(F2) = 0.279 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.20 | Δρmax = 0.50 e Å−3 |
1498 reflections | Δρmin = −0.53 e Å−3 |
123 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.1948 (3) | 0.4358 (2) | 0.7672 (5) | 0.0230 (7) | |
O2 | 0.3545 (3) | 0.3270 (2) | 0.6994 (5) | 0.0214 (6) | |
O3 | 0.3796 (3) | 0.5820 (2) | 0.5612 (5) | 0.0212 (6) | |
O4 | 0.2105 (3) | 0.6995 (2) | 0.4131 (6) | 0.0236 (7) | |
H4O | 0.276 (7) | 0.743 (6) | 0.457 (13) | 0.042 (17)* | |
O1W | 0.3772 (3) | 0.8584 (2) | 0.5403 (6) | 0.0246 (7) | |
H1W1 | 0.469 (7) | 0.851 (5) | 0.608 (12) | 0.033 (15)* | |
H1W2 | 0.380 (6) | 0.879 (4) | 0.409 (11) | 0.018 (12)* | |
N1 | 0.3151 (3) | 0.3888 (3) | 0.2516 (6) | 0.0183 (7) | |
H1A | 0.294 (6) | 0.405 (5) | 0.095 (11) | 0.027* | |
H1B | 0.332 (6) | 0.320 (5) | 0.249 (10) | 0.027* | |
H1C | 0.393 (6) | 0.422 (5) | 0.325 (11) | 0.027* | |
C1 | 0.2565 (4) | 0.3913 (3) | 0.6364 (7) | 0.0182 (8) | |
C2 | 0.2010 (4) | 0.4134 (3) | 0.3646 (7) | 0.0174 (8) | |
C3 | 0.0787 (4) | 0.3399 (3) | 0.2591 (7) | 0.0198 (8) | |
H3A | 0.0458 | 0.3495 | 0.0857 | 0.030* | |
H3B | 0.0023 | 0.3552 | 0.3289 | 0.030* | |
H3C | 0.1095 | 0.2679 | 0.2950 | 0.030* | |
C4 | 0.1559 (4) | 0.5261 (3) | 0.3097 (7) | 0.0188 (8) | |
H4A | 0.1373 | 0.5379 | 0.1360 | 0.023* | |
H4B | 0.0671 | 0.5374 | 0.3502 | 0.023* | |
C5 | 0.2607 (4) | 0.6045 (3) | 0.4406 (7) | 0.0183 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0262 (14) | 0.0207 (14) | 0.0234 (14) | 0.0023 (11) | 0.0091 (11) | 0.0003 (11) |
O2 | 0.0223 (13) | 0.0144 (13) | 0.0254 (13) | 0.0015 (10) | 0.0033 (11) | 0.0024 (10) |
O3 | 0.0178 (12) | 0.0163 (12) | 0.0275 (14) | 0.0010 (10) | 0.0032 (11) | 0.0008 (11) |
O4 | 0.0228 (13) | 0.0124 (12) | 0.0333 (15) | 0.0024 (11) | 0.0041 (12) | −0.0012 (11) |
O1W | 0.0222 (14) | 0.0216 (14) | 0.0288 (16) | −0.0019 (11) | 0.0050 (12) | 0.0042 (11) |
N1 | 0.0189 (16) | 0.0142 (15) | 0.0225 (16) | −0.0011 (12) | 0.0070 (12) | −0.0011 (12) |
C1 | 0.0180 (17) | 0.0103 (16) | 0.0262 (19) | −0.0053 (12) | 0.0063 (15) | −0.0004 (13) |
C2 | 0.0167 (17) | 0.0118 (15) | 0.0242 (18) | 0.0009 (13) | 0.0065 (14) | −0.0002 (13) |
C3 | 0.0200 (17) | 0.0149 (16) | 0.0232 (18) | −0.0032 (14) | 0.0038 (14) | −0.0029 (14) |
C4 | 0.0193 (17) | 0.0141 (17) | 0.0215 (16) | 0.0034 (13) | 0.0034 (14) | 0.0005 (14) |
C5 | 0.0212 (17) | 0.0106 (16) | 0.0244 (18) | 0.0014 (13) | 0.0087 (14) | −0.0005 (13) |
O1—C1 | 1.247 (5) | N1—H1C | 0.88 (6) |
O2—C1 | 1.253 (5) | C1—C2 | 1.552 (5) |
O3—C5 | 1.229 (5) | C2—C4 | 1.525 (5) |
O4—C5 | 1.313 (4) | C2—C3 | 1.528 (5) |
O4—H4O | 0.84 (8) | C3—H3A | 0.9800 |
O1W—H1W1 | 0.89 (6) | C3—H3B | 0.9800 |
O1W—H1W2 | 0.82 (6) | C3—H3C | 0.9800 |
N1—C2 | 1.502 (5) | C4—C5 | 1.497 (5) |
N1—H1A | 0.91 (6) | C4—H4A | 0.9900 |
N1—H1B | 0.90 (7) | C4—H4B | 0.9900 |
C5—O4—H4O | 110 (5) | C3—C2—C1 | 108.1 (3) |
H1W1—O1W—H1W2 | 99 (6) | C2—C3—H3A | 109.5 |
C2—N1—H1A | 114 (4) | C2—C3—H3B | 109.5 |
C2—N1—H1B | 112 (4) | H3A—C3—H3B | 109.5 |
H1A—N1—H1B | 102 (5) | C2—C3—H3C | 109.5 |
C2—N1—H1C | 111 (4) | H3A—C3—H3C | 109.5 |
H1A—N1—H1C | 108 (5) | H3B—C3—H3C | 109.5 |
H1B—N1—H1C | 110 (5) | C5—C4—C2 | 114.3 (3) |
O1—C1—O2 | 127.0 (4) | C5—C4—H4A | 108.7 |
O1—C1—C2 | 116.6 (3) | C2—C4—H4A | 108.7 |
O2—C1—C2 | 116.3 (3) | C5—C4—H4B | 108.7 |
N1—C2—C4 | 108.8 (3) | C2—C4—H4B | 108.7 |
N1—C2—C3 | 108.0 (3) | H4A—C4—H4B | 107.6 |
C4—C2—C3 | 110.5 (3) | O3—C5—O4 | 124.2 (3) |
N1—C2—C1 | 108.5 (3) | O3—C5—C4 | 123.6 (3) |
C4—C2—C1 | 112.8 (3) | O4—C5—C4 | 112.2 (3) |
O1—C1—C2—N1 | 158.8 (3) | N1—C2—C4—C5 | −71.6 (4) |
O2—C1—C2—N1 | −24.4 (4) | C3—C2—C4—C5 | 170.0 (3) |
O1—C1—C2—C4 | 38.2 (4) | C1—C2—C4—C5 | 48.8 (4) |
O2—C1—C2—C4 | −145.0 (3) | C2—C4—C5—O3 | 8.0 (6) |
O1—C1—C2—C3 | −84.3 (4) | C2—C4—C5—O4 | −171.5 (3) |
O2—C1—C2—C3 | 92.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4O···O1W | 0.84 (8) | 1.78 (8) | 2.607 (4) | 165 (7) |
O1W—H1W1···O2i | 0.89 (6) | 1.83 (6) | 2.705 (4) | 168 (6) |
O1W—H1W2···O3ii | 0.82 (6) | 2.09 (6) | 2.909 (4) | 174 (5) |
N1—H1A···O1iii | 0.91 (6) | 1.93 (6) | 2.807 (5) | 164 (5) |
N1—H1B···O2iv | 0.90 (7) | 1.94 (7) | 2.832 (4) | 172 (5) |
N1—H1C···O3v | 0.88 (6) | 2.18 (6) | 2.951 (4) | 146 (5) |
N1—H1C···O3 | 0.88 (6) | 2.50 (6) | 3.033 (4) | 119 (5) |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+3/2, z−1/2; (iii) x, y, z−1; (iv) x, −y+1/2, z−1/2; (v) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4O···O1W | 0.84 (8) | 1.78 (8) | 2.607 (4) | 165 (7) |
O1W—H1W1···O2i | 0.89 (6) | 1.83 (6) | 2.705 (4) | 168 (6) |
O1W—H1W2···O3ii | 0.82 (6) | 2.09 (6) | 2.909 (4) | 174 (5) |
N1—H1A···O1iii | 0.91 (6) | 1.93 (6) | 2.807 (5) | 164 (5) |
N1—H1B···O2iv | 0.90 (7) | 1.94 (7) | 2.832 (4) | 172 (5) |
N1—H1C···O3v | 0.88 (6) | 2.18 (6) | 2.951 (4) | 146 (5) |
N1—H1C···O3 | 0.88 (6) | 2.50 (6) | 3.033 (4) | 119 (5) |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+3/2, z−1/2; (iii) x, y, z−1; (iv) x, −y+1/2, z−1/2; (v) −x+1, −y+1, −z+1. |
Acknowledgements
RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer. GB wishes to acknowledge support of this work from NASA (NNX10AK71A).
References
Agilent (2012). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Blackmond, D. G. & Klussmann, M. (2007). Chem. Commun. pp. 3990–3996. Web of Science CrossRef Google Scholar
Blackmond, D., Viedma, C., Ortiz, J., Torres, T. & Izuma, T. (2008). J. Am. Chem. Soc. 130, 15274–15275. Web of Science PubMed Google Scholar
Burton, A. S., Elsila, J. E., Hein, J. E., Glavin, D. P. & Dworkin, J. P. (2013). Meteorites Planet. Sci. 48, 390–402. Web of Science CrossRef CAS Google Scholar
Burton, A. S., Stern, J. C., Elsila, J. E., Dworkin, J. P. & Galvin, D. P. (2012). Chem. Soc. Rev. 41, 5459–5472. Web of Science CrossRef CAS PubMed Google Scholar
Butcher, R. J., Brewer, G., Burton, A. S. & Dworkin, J. P. (2013). Acta Cryst. E69, o1829–o1830. CSD CrossRef CAS IUCr Journals Google Scholar
Glavin, D. P., Callahan, M. P., Dworkin, J. P. & Elsila, J. E. (2011). Meteorites Planet. Sci. 45, 1948–1972. Web of Science CrossRef Google Scholar
Glavin, D. P. & Dworkin, J. P. (2009). Proc. Natl Acad. Sci. 106, 5487–5492. Web of Science CrossRef PubMed CAS Google Scholar
Glavin, D. P., Elsila, J. E., Burton, A. S., Callahan, M. P., Dworkin, J. P., Hilts, R. W. & Herd, C. D. H. (2012). Meteorites Planet. Sci. 47, 1347–1364. Web of Science CrossRef CAS Google Scholar
Orpen, G. A. (1993). Chem. Soc. Rev. 22, 191–197. CrossRef CAS Web of Science Google Scholar
Pizzarello, S., Cooper, G. W. & Flynn, G. J. (2006). The Nature and Distribution of the Organic Material in Carbonaceous Chondrites and Interplanetary Dust Particles in Meteorites and the Early Solar System II, edited by D. Lauretta, L. A. Leshin & H. Y. McSween Jr. University of Arizona Press, USA. Google Scholar
Pizzarello, S. & Cronin, J. R. (2000). Geochim. Cosmochim. Acta, 64, 329–338. Web of Science CrossRef PubMed CAS Google Scholar
Pizzarello, S. & Groy, T. L. (2011). Geochim. Cosmochim. Acta, 75, 645–656. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamada, S., Hongo, C., Yoshioka, R. & Chibata, I. (1983). J. Org. Chem. 48, 843–846. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The α-amino acids are essential for life as they are the building blocks of all proteins and enzymes. Nature uses almost exclusively the L form of the nineteen common chiral amino acids. However, there are over eighty amino acids that have been identified in meteorites (Pizzarello et al., 2006; Burton et al., 2012). One of these extraterrestrial non-proteinogenic amino acids is 2-methylaspartic acid. The majority of meteoritic amino acids show little or no enrichment of one enantiomer over the other. However, a number of alpha methyl amino acids have been observed with L-enantiomeric excesses up to 20% that are not believed to be the result of contamination (Pizzarello & Cronin, 2000; Glavin & Dworkin, 2009; Glavin et al., 2011; Glavin et al., 2012; Burton et al., 2013). An intriguing question is the process that leads to the separation and enrichment of the L enantiomer over the D. There are several possible explanations for this including the role that crystallization plays (Blackmond et al., 2007; Glavin et al., 2012). Only two of the twenty amino acids used biologically crystallize in a chiral space group from a racemic solution, which allows for spontaneous separation of enantiomers, at the level of the crystal (Blackmond et al., (2008).
Racemic 2-methylaspartic crystallizes from water in an achiral space group acid, forming a racemic compound, in which there are equal numbers of D and L enantiomers in the unit cell. Thus, crystallization under these conditions would not provide a mechanism for separation of enantiomers at the level of the crystal. Another important aspect in the prebiotic chemistry of the amino acids is the role of racemization. All of the nineteen naturally occurring chiral amino acids have a hydrogen atom on the alpha carbon atom, which enhances the rate of racemization (Yamada et al., 1983). However, little is known about the mechanism of racemization of amino acids lacking an alpha hydrogen atom (Pizzarello et al., 2011). We recently reported the structure of another non-proteinogenic amino acid, isovaline, which crystallized as a racemic conglomerate from water in contrast to the present example which crystallizes in a centro-symmetric space group and is thus a racemate as indicated above (Butcher et al., 2013). Resolved 2-methylaspartic acid and the structure given here can be used as a starting point in mechanistic studies of racemization mechanisms of amino acids lacking an alpha hydrogen atom.
In the structure of the title compound the amino acid is in the usual zwitterionic form involving the α carboxylate group and all the the bond lengths and angles are in the normal range for such compounds (Orpen, 1993). There is extensive N—H···O and O—H···O hydrogen bonding linking the zwitterions into a 3-D array.