metal-organic compounds
Poly[di-μ9-citrato-tetrasodiumzinc]
aAir Force Service College, Xuzhou 221000, People's Republic of China, and bLogistics College, Beijing 100858, People's Republic of China
*Correspondence e-mail: myhmayuhong@163.com
In the title compound, [Na4Zn(C6H5O7)2]n, the ZnII ion lies on an inversion center and is coordinated by six O atoms from two citrate ligands, forming a distorted octahedral geometry. There are two crystallographically independent Na+ cations in the One Na+ cation exhibits a distorted square-pyramidal geometry defined by five O atoms from four citrate ligands. The other Na+ cation is surrounded by six O atoms from five citrate ligands in a distorted octahedral geometry. The Na+ cations are bridged by citrate carboxylate groups, forming a layer parallel to (100). The layers are further assembled into a three-dimensional network with the [Zn(citrate)2]4− building units as `pillars'; O—H⋯O hydrogen bonds also stabilize the structure.
CCDC reference: 969917
Experimental
Crystal data
|
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 969917
10.1107/S1600536813030067/hy2639sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813030067/hy2639Isup2.hkl
A mixture of citric acid (0.2 mmol), NaOH (0.2 mmol) and zinc nitrate hexahydrate (0.1 mmol) was dissolved in DMAC/H2O solvent (5 ml, v/v = 1:4) (DMAC = N,N'-dimethylacetamide) and placed in a capped vial (10 ml), which was heated to 363 K for three days and then cooled to room temperature. The crystals obtained were washed with water and dried in air.
C-bound H atoms were placed at calculated positions and refined as riding atoms, with C—H = 0.97 Å and with Uiso(H) = 1.2Ueq(C). The hydroxy H atom was located in a difference map and refined isotropically.
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Na4Zn(C6H5O7)2] | F(000) = 536 |
Mr = 535.55 | Dx = 2.234 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7740 reflections |
a = 7.9642 (16) Å | θ = 3.0–27.5° |
b = 12.530 (3) Å | µ = 1.74 mm−1 |
c = 8.7090 (17) Å | T = 293 K |
β = 113.66 (3)° | Block, colorless |
V = 796.0 (3) Å3 | 0.21 × 0.21 × 0.20 mm |
Z = 2 |
Rigaku SCXmini CCD diffractometer | 1831 independent reflections |
Radiation source: fine-focus sealed tube | 1570 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
ω scan | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −10→10 |
Tmin = 0.712, Tmax = 0.722 | k = −16→16 |
8270 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0289P)2 + 0.3351P] where P = (Fo2 + 2Fc2)/3 |
1831 reflections | (Δ/σ)max = 0.001 |
145 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
[Na4Zn(C6H5O7)2] | V = 796.0 (3) Å3 |
Mr = 535.55 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.9642 (16) Å | µ = 1.74 mm−1 |
b = 12.530 (3) Å | T = 293 K |
c = 8.7090 (17) Å | 0.21 × 0.21 × 0.20 mm |
β = 113.66 (3)° |
Rigaku SCXmini CCD diffractometer | 1831 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1570 reflections with I > 2σ(I) |
Tmin = 0.712, Tmax = 0.722 | Rint = 0.048 |
8270 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.15 | Δρmax = 0.37 e Å−3 |
1831 reflections | Δρmin = −0.47 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O7 | 0.4930 (2) | 0.98761 (13) | 0.7363 (2) | 0.0127 (4) | |
O3 | 0.2766 (2) | 0.89905 (13) | 0.4482 (2) | 0.0178 (4) | |
O4 | 0.1751 (2) | 0.77628 (13) | 0.5749 (2) | 0.0175 (4) | |
O6 | 0.8225 (3) | 0.72885 (15) | 0.7149 (2) | 0.0233 (4) | |
O5 | 0.6783 (2) | 0.87114 (13) | 0.5716 (2) | 0.0175 (4) | |
C8 | 0.7041 (3) | 0.8007 (2) | 0.6829 (3) | 0.0141 (5) | |
C4 | 0.2806 (3) | 0.84956 (19) | 0.5774 (3) | 0.0124 (5) | |
C5 | 0.5911 (3) | 0.80021 (19) | 0.7885 (3) | 0.0132 (5) | |
H5A | 0.6748 | 0.8118 | 0.9042 | 0.016* | |
H5B | 0.5407 | 0.7291 | 0.7822 | 0.016* | |
C3 | 0.4328 (3) | 0.87982 (18) | 0.7479 (3) | 0.0118 (5) | |
C2 | 0.3615 (3) | 0.87711 (19) | 0.8861 (3) | 0.0144 (5) | |
H2A | 0.3180 | 0.8056 | 0.8920 | 0.017* | |
H2B | 0.4629 | 0.8916 | 0.9923 | 0.017* | |
O2 | 0.1969 (2) | 0.98895 (14) | 0.9984 (2) | 0.0179 (4) | |
Zn1 | 0.5000 | 1.0000 | 0.5000 | 0.01321 (12) | |
Na2 | −0.05408 (14) | 1.12137 (8) | 0.83937 (13) | 0.0216 (3) | |
Na1 | 0.10230 (14) | 1.11830 (8) | 0.53517 (13) | 0.0222 (3) | |
O1 | 0.1002 (2) | 0.98321 (13) | 0.7212 (2) | 0.0186 (4) | |
C1 | 0.2085 (3) | 0.95534 (19) | 0.8644 (3) | 0.0131 (5) | |
H1 | 0.606 (4) | 1.000 (2) | 0.828 (4) | 0.016* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O7 | 0.0154 (9) | 0.0111 (9) | 0.0118 (9) | −0.0021 (7) | 0.0057 (7) | −0.0007 (7) |
O3 | 0.0185 (9) | 0.0207 (10) | 0.0114 (9) | −0.0038 (8) | 0.0030 (8) | 0.0027 (7) |
O4 | 0.0173 (9) | 0.0160 (9) | 0.0210 (10) | −0.0047 (7) | 0.0095 (8) | −0.0030 (7) |
O6 | 0.0225 (10) | 0.0256 (11) | 0.0245 (11) | 0.0128 (8) | 0.0123 (9) | 0.0071 (8) |
O5 | 0.0223 (10) | 0.0168 (9) | 0.0180 (9) | 0.0037 (7) | 0.0127 (8) | 0.0041 (7) |
C8 | 0.0123 (12) | 0.0156 (13) | 0.0137 (12) | 0.0008 (10) | 0.0045 (10) | −0.0014 (10) |
C4 | 0.0110 (12) | 0.0132 (12) | 0.0151 (12) | 0.0031 (9) | 0.0072 (10) | −0.0014 (9) |
C5 | 0.0145 (12) | 0.0127 (12) | 0.0131 (12) | 0.0023 (10) | 0.0065 (10) | 0.0017 (9) |
C3 | 0.0136 (12) | 0.0104 (11) | 0.0123 (12) | −0.0003 (9) | 0.0062 (10) | 0.0028 (9) |
C2 | 0.0155 (12) | 0.0160 (13) | 0.0134 (13) | 0.0014 (10) | 0.0076 (11) | 0.0024 (10) |
O2 | 0.0176 (9) | 0.0229 (10) | 0.0162 (9) | 0.0018 (8) | 0.0098 (8) | −0.0047 (7) |
Zn1 | 0.0152 (2) | 0.0130 (2) | 0.0124 (2) | 0.00022 (17) | 0.00663 (17) | 0.00209 (16) |
Na2 | 0.0197 (5) | 0.0236 (6) | 0.0216 (6) | 0.0023 (4) | 0.0084 (5) | −0.0013 (4) |
Na1 | 0.0208 (6) | 0.0253 (6) | 0.0223 (6) | −0.0022 (4) | 0.0105 (5) | −0.0007 (4) |
O1 | 0.0178 (9) | 0.0208 (10) | 0.0159 (9) | 0.0024 (7) | 0.0053 (8) | 0.0006 (7) |
C1 | 0.0134 (12) | 0.0113 (11) | 0.0165 (13) | −0.0039 (10) | 0.0080 (11) | −0.0011 (10) |
O7—C3 | 1.450 (3) | O2—Na2 | 2.539 (2) |
O7—Zn1 | 2.0866 (17) | Zn1—O5iv | 2.0742 (17) |
O3—C4 | 1.274 (3) | Zn1—O3iv | 2.0796 (17) |
O3—Zn1 | 2.0796 (17) | Zn1—O7iv | 2.0866 (17) |
O3—Na2i | 2.432 (2) | Na2—O4v | 2.415 (2) |
O4—C4 | 1.239 (3) | Na2—O3i | 2.432 (2) |
O4—Na2ii | 2.415 (2) | Na2—O6vi | 2.478 (2) |
O4—Na1i | 2.417 (2) | Na2—O2vii | 2.548 (2) |
O6—C8 | 1.251 (3) | Na2—O1 | 2.565 (2) |
O6—Na1iii | 2.443 (2) | Na1—O5iv | 2.288 (2) |
O6—Na2iii | 2.478 (2) | Na1—O1 | 2.348 (2) |
O5—C8 | 1.266 (3) | Na1—O4i | 2.417 (2) |
O5—Zn1 | 2.0742 (17) | Na1—O6vi | 2.443 (2) |
O5—Na1iv | 2.288 (2) | Na1—O1i | 2.512 (2) |
C8—C5 | 1.523 (3) | Na1—C4i | 2.833 (3) |
C8—Na1iv | 3.061 (3) | Na1—C8iv | 3.061 (3) |
C4—C3 | 1.540 (3) | O1—C1 | 1.248 (3) |
C4—Na1i | 2.833 (3) | O7—H1 | 0.95 (3) |
C5—C3 | 1.534 (3) | C2—H2A | 0.97 |
C3—C2 | 1.523 (3) | C2—H2B | 0.97 |
C2—C1 | 1.516 (3) | C5—H5A | 0.97 |
O2—C1 | 1.279 (3) | C5—H5B | 0.97 |
C3—O7—Zn1 | 106.16 (13) | Na1—Na2—Na1viii | 102.34 (4) |
C4—O3—Zn1 | 112.86 (16) | O4v—Na2—Na2vii | 113.39 (6) |
C4—O3—Na2i | 127.44 (16) | O3i—Na2—Na2vii | 120.36 (6) |
Zn1—O3—Na2i | 119.59 (8) | O6vi—Na2—Na2vii | 125.52 (7) |
C4—O4—Na2ii | 160.44 (17) | O2—Na2—Na2vii | 38.48 (4) |
C4—O4—Na1i | 96.18 (14) | O2vii—Na2—Na2vii | 38.32 (4) |
Na2ii—O4—Na1i | 98.47 (7) | O1—Na2—Na2vii | 76.31 (5) |
C8—O6—Na1iii | 119.97 (16) | Na1—Na2—Na2vii | 120.15 (4) |
C8—O6—Na2iii | 154.24 (17) | Na1viii—Na2—Na2vii | 114.57 (5) |
Na1iii—O6—Na2iii | 85.80 (7) | O5iv—Na1—O1 | 122.68 (8) |
C8—O5—Zn1 | 130.84 (16) | O5iv—Na1—O4i | 122.16 (7) |
C8—O5—Na1iv | 115.86 (16) | O1—Na1—O4i | 114.15 (7) |
Zn1—O5—Na1iv | 112.04 (8) | O5iv—Na1—O6vi | 112.02 (8) |
O6—C8—O5 | 123.2 (2) | O1—Na1—O6vi | 82.02 (7) |
O6—C8—C5 | 116.0 (2) | O4i—Na1—O6vi | 84.37 (8) |
O5—C8—C5 | 120.8 (2) | O5iv—Na1—O1i | 89.47 (7) |
O4—C4—O3 | 124.7 (2) | O1—Na1—O1i | 93.91 (7) |
O4—C4—C3 | 117.7 (2) | O4i—Na1—O1i | 76.45 (7) |
O3—C4—C3 | 117.6 (2) | O6vi—Na1—O1i | 156.79 (8) |
C8—C5—C3 | 119.2 (2) | O5iv—Na1—C4i | 137.95 (8) |
O7—C3—C2 | 108.32 (19) | O1—Na1—C4i | 92.09 (8) |
O7—C3—C5 | 110.93 (19) | O4i—Na1—C4i | 25.78 (6) |
C2—C3—C5 | 109.63 (19) | O6vi—Na1—C4i | 94.17 (8) |
O7—C3—C4 | 108.45 (18) | O1i—Na1—C4i | 63.03 (7) |
C2—C3—C4 | 110.9 (2) | O5iv—Na1—C8iv | 21.85 (6) |
C5—C3—C4 | 108.56 (19) | O1—Na1—C8iv | 144.32 (8) |
C1—C2—C3 | 115.0 (2) | O4i—Na1—C8iv | 100.39 (7) |
C1—O2—Na2 | 92.67 (15) | O6vi—Na1—C8iv | 111.12 (7) |
C1—O2—Na2vii | 122.64 (15) | O1i—Na1—C8iv | 85.42 (7) |
Na2—O2—Na2vii | 103.20 (7) | C4i—Na1—C8iv | 118.60 (8) |
O5iv—Zn1—O5 | 180.0 | O5iv—Na1—Na1i | 112.02 (7) |
O5iv—Zn1—O3iv | 90.85 (7) | O1—Na1—Na1i | 49.04 (5) |
O5—Zn1—O3iv | 89.15 (7) | O4i—Na1—Na1i | 96.43 (6) |
O5iv—Zn1—O3 | 89.15 (7) | O6vi—Na1—Na1i | 126.69 (7) |
O5—Zn1—O3 | 90.85 (7) | O1i—Na1—Na1i | 44.88 (5) |
O3iv—Zn1—O3 | 180.000 (1) | C4i—Na1—Na1i | 71.49 (6) |
O5iv—Zn1—O7iv | 86.09 (7) | C8iv—Na1—Na1i | 120.93 (7) |
O5—Zn1—O7iv | 93.91 (7) | O5iv—Na1—Na2 | 155.15 (7) |
O3iv—Zn1—O7iv | 79.02 (7) | O1—Na1—Na2 | 49.81 (5) |
O3—Zn1—O7iv | 100.98 (7) | O4i—Na1—Na2 | 74.74 (5) |
O5iv—Zn1—O7 | 93.91 (7) | O6vi—Na1—Na2 | 47.54 (5) |
O5—Zn1—O7 | 86.09 (7) | O1i—Na1—Na2 | 113.50 (6) |
O3iv—Zn1—O7 | 100.98 (7) | C4i—Na1—Na2 | 65.27 (6) |
O3—Zn1—O7 | 79.02 (7) | C8iv—Na1—Na2 | 157.96 (6) |
O7iv—Zn1—O7 | 180.000 (1) | Na1i—Na1—Na2 | 81.11 (4) |
O5iv—Zn1—Na1 | 35.88 (5) | O5iv—Na1—Zn1 | 32.08 (5) |
O5—Zn1—Na1 | 144.12 (5) | O1—Na1—Zn1 | 90.68 (6) |
O3iv—Zn1—Na1 | 115.73 (5) | O4i—Na1—Zn1 | 151.83 (6) |
O3—Zn1—Na1 | 64.27 (5) | O6vi—Na1—Zn1 | 113.43 (6) |
O7iv—Zn1—Na1 | 115.05 (6) | O1i—Na1—Zn1 | 89.37 (5) |
O7—Zn1—Na1 | 64.95 (6) | C4i—Na1—Zn1 | 152.38 (6) |
O5iv—Zn1—Na1iv | 144.12 (5) | C8iv—Na1—Zn1 | 53.66 (5) |
O5—Zn1—Na1iv | 35.88 (5) | Na1i—Na1—Zn1 | 90.01 (4) |
O3iv—Zn1—Na1iv | 64.27 (5) | Na2—Na1—Zn1 | 133.42 (4) |
O3—Zn1—Na1iv | 115.73 (5) | O5iv—Na1—Na2ix | 86.09 (5) |
O7iv—Zn1—Na1iv | 64.95 (6) | O1—Na1—Na2ix | 150.32 (6) |
O7—Zn1—Na1iv | 115.05 (6) | O4i—Na1—Na2ix | 40.74 (5) |
Na1—Zn1—Na1iv | 180.0 | O6vi—Na1—Na2ix | 79.96 (6) |
O4v—Na2—O3i | 100.76 (7) | O1i—Na1—Na2ix | 93.45 (6) |
O4v—Na2—O6vi | 92.41 (7) | C4i—Na1—Na2ix | 66.06 (6) |
O3i—Na2—O6vi | 98.70 (7) | C8iv—Na1—Na2ix | 64.99 (5) |
O4v—Na2—O2 | 132.94 (7) | Na1i—Na1—Na2ix | 131.30 (6) |
O3i—Na2—O2 | 125.58 (7) | Na2—Na1—Na2ix | 101.14 (3) |
O6vi—Na2—O2 | 88.62 (7) | Zn1—Na1—Na2ix | 118.12 (3) |
O4v—Na2—O2vii | 86.70 (7) | C1—O1—Na1 | 134.25 (16) |
O3i—Na2—O2vii | 102.18 (7) | C1—O1—Na1i | 133.31 (16) |
O6vi—Na2—O2vii | 158.90 (8) | Na1—O1—Na1i | 86.09 (7) |
O2—Na2—O2vii | 76.80 (7) | C1—O1—Na2 | 92.17 (15) |
O4v—Na2—O1 | 168.90 (7) | Na1—O1—Na2 | 85.84 (6) |
O3i—Na2—O1 | 77.54 (7) | Na1i—O1—Na2 | 117.27 (8) |
O6vi—Na2—O1 | 77.12 (7) | O1—C1—O2 | 123.1 (2) |
O2—Na2—O1 | 51.60 (6) | O1—C1—C2 | 120.3 (2) |
O2vii—Na2—O1 | 104.40 (7) | O2—C1—C2 | 116.6 (2) |
O4v—Na2—Na1 | 125.09 (6) | Zn1—O7—H1 | 115 (2) |
O3i—Na2—Na1 | 62.16 (5) | C3—O7—H1 | 108.9 (16) |
O6vi—Na2—Na1 | 46.67 (5) | C1—C2—H2A | 109 |
O2—Na2—Na1 | 87.87 (5) | C1—C2—H2B | 109 |
O2vii—Na2—Na1 | 145.37 (6) | C3—C2—H2A | 108 |
O1—Na2—Na1 | 44.35 (5) | C3—C2—H2B | 109 |
O4v—Na2—Na1viii | 40.79 (5) | H2A—C2—H2B | 108 |
O3i—Na2—Na1viii | 123.00 (6) | C3—C5—H5A | 107 |
O6vi—Na2—Na1viii | 57.61 (5) | C3—C5—H5B | 108 |
O2—Na2—Na1viii | 106.39 (6) | C8—C5—H5A | 107 |
O2vii—Na2—Na1viii | 111.68 (5) | C8—C5—H5B | 108 |
O1—Na2—Na1viii | 131.31 (6) | H5A—C5—H5B | 107 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, y−1/2, −z+3/2; (iii) −x+1, y−1/2, −z+3/2; (iv) −x+1, −y+2, −z+1; (v) −x, y+1/2, −z+3/2; (vi) −x+1, y+1/2, −z+3/2; (vii) −x, −y+2, −z+2; (viii) x, −y+5/2, z+1/2; (ix) x, −y+5/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H1···O2x | 0.95 (3) | 1.69 (3) | 2.635 (2) | 174 (3) |
Symmetry code: (x) −x+1, −y+2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H1···O2i | 0.95 (3) | 1.69 (3) | 2.635 (2) | 174 (3) |
Symmetry code: (i) −x+1, −y+2, −z+2. |
Acknowledgements
The authors acknowledge the Air Force Service College for supporting this work.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Liu, Z., Tian, R., Mao, R., Cao, X. & Wang, F. (2012). Acta Cryst. E68, m679–m680. CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Citric acid has been widely used for the construction of coordination polymers due to their diverse coordination modes (Liu et al., 2012). Here, we report a new three-dimensional coordination polymer, [Na4Zn(C6H5O7)2]n, based on citric acid.
As shown in Fig. 1, the asymmetric unit of the title compound consists of half a ZnII ion, two Na+ cations and a citrate anion. The ZnII ion lies on a crystallographic inversion center and is coordinated by six O atoms from two different citrate ligands, forming a distorted octahedral geometry. Three O atoms of each citrate ligand are bonded to the ZnII ion, one of which is the hydroxy O atom and the other two are from different carboxylate groups. Thus, two citrate ligands and one ZnII ion form a [Zn(C6H5O7)2]4- building unit. This unit bridges sixteen Na+ cations (Fig. 2). Na1 exhibits a distorted square-pyramidal geometry, defined by five O atoms from four different citrate ligands. Na2 is surrounded by six O atoms from five different citrate ligands, building a distorted octahedral geometry. The Na+ cations are bridged by carboxylate groups from the citrate ligands into a two-dimensional layer parallel to (100) (Fig. 3). The layers are further assembled into a three-dimensional network through [Zn(C6H5O7)2]4- building units as 'pillars' (Fig. 4).