organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(1-Allyl-1H-indazol-5-yl)-4-methyl­benzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP. 1014, Rabat, Morocco
*Correspondence e-mail: h_abderrafia@yahoo.fr

(Received 12 November 2013; accepted 25 November 2013; online 30 November 2013)

The asymmetric unit of the title compound, C17H17N3O2S, contains two independent mol­ecules linked by an N—H⋯O hydrogen bond. The mol­ecules show different conformations. In the first mol­ecule, the fused five- and six-membered ring system is almost perpendicular to the plane through the atoms forming the allyl group, as indicated by the dihedral angle of 85.1 (4)°. The dihedral angle with the methyl­benzene­sulfonamide group is 78.8 (1)°. On the other hand, in the second mol­ecule, the dihedral angles between the indazole plane and the allyl and methyl­benzene­sulfonamide groups are 80.3 (3) and 41.5 (1)°, respectively. In the crystal, mol­ecules are further linked by N—H⋯N and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For the biological activity of sulfonamides, see: Bouissane et al. (2006[Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]); El-Sayed et al. (2011[El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714-3720.]); Mustafa et al. (2012[Mustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535-2539.]). For similar compounds, see: Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2013[Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190-o191.]); Chicha et al. (2013[Chicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17N3O2S

  • Mr = 327.40

  • Triclinic, [P \overline 1]

  • a = 8.8200 (4) Å

  • b = 10.4769 (5) Å

  • c = 19.7407 (10) Å

  • α = 80.211 (1)°

  • β = 78.984 (1)°

  • γ = 69.784 (1)°

  • V = 1669.51 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.42 × 0.35 × 0.28 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.693, Tmax = 0.747

  • 31703 measured reflections

  • 6791 independent reflections

  • 5368 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.02

  • 6791 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6N⋯O1 0.79 2.11 2.900 (2) 176
N3—H3N⋯N5i 0.80 2.19 2.983 (2) 175
C21—H21⋯O4ii 0.93 2.49 3.245 (2) 138
C7—H7⋯O2iii 0.93 2.48 3.358 (2) 158
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamides are an important class of compounds which are widely used in the design of diverse classes of drug candidates. These compounds exhibit a wide range of biological activities such as anticancer, anti-inflammatory, and antiviral functions (Bouissane, et al., 2006; El-Sayed, et al., 2011; Mustafa, et al. 2012). The present work is a continuation of the investigation of sulfonamides derivatives published recently by our team (Abbassi, et al., 2012; Abbassi, et al., 2013; Chicha, et al., 2013).

The two independent molecules forming the asymmetric unit of the title compound are linked by a weak hydrogen bond (C13–H13···O4) and have different conformations as shown in Fig.1. Each molecule is built up from fused five- and six-membered rings linked to a methylbenzenesulfonamide and allyl groups. In the first molecule, the indazole ring system makes dihedral angles of 78.8 (1)° and 85.1 (4)° with the plane through the methylbenzenesulfonamide group and that through the allyl group, respectively. In the second molecule, the indazole system is almost perpendicular to the plane through the atoms forming the allyl group, as indicated by the dihedral angle of 80.3 (3)°. The dihedral angle between the indazole ring and the benzene ring belonging to the methylbenzenesulfonamide is 41.5 (1)°. In addition, the most important difference between the two conformations of molecules is the orientation of their allyl substituents (Fig.2). In the crystal, molecules are linked by N—H···N, N—H···O and C—H···O hydrogen bonds, forming a three-dimensional network (Table 1).

Related literature top

For the biological activity of sulfonamides, see: Bouissane et al. (2006); El-Sayed et al. (2011); Mustafa et al. (2012). For similar compounds, see: Abbassi et al. (2012, 2013); Chicha et al. (2013).

Experimental top

A mixture of 1-allyl-5-nitroindazole (250 mg, 1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 ml of absolute ethanol was heated to 333 K for 6 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methylbenzenesulfonyl chloride (240 mg, 1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with ethyl acetate: hexane 1:9). The title compound was recrystallized from ethanol at room temperature (yield: 75%, m.p. 374 K).

Refinement top

H atoms were located in a difference map and treated as riding with N—H = 0.89 Å, C–H = 0.96 Å (methyl), C–H = 0.97 Å (methylene) and C–H = 0.93 Å (aromatic CH, terminal =CH2), respectively. All hydrogen atoms were refined using a riding model with Uiso(H) = 1.5 Ueq(C) for methyl groups and Uiso(H) = 1.2 Ueq(C,N) for all other hydrogen atoms.

Values of atomic displacements of C1, C2, C14 and C15 which belong to the first molecule (S1, O1, O2, N1 - N3, C1 - C17) and are larger than those observed in the second molecule for corresponding carbons.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The two molecules building the asymmetric unit of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Automatic fit of the two crystallographically independent molecules.
N-(1-Allyl-1H-indazol-5-yl)-4-methylbenzenesulfonamide top
Crystal data top
C17H17N3O2SZ = 4
Mr = 327.40F(000) = 688
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8200 (4) ÅCell parameters from 6791 reflections
b = 10.4769 (5) Åθ = 2.4–26.4°
c = 19.7407 (10) ŵ = 0.21 mm1
α = 80.211 (1)°T = 296 K
β = 78.984 (1)°Block, colourless
γ = 69.784 (1)°0.42 × 0.35 × 0.28 mm
V = 1669.51 (14) Å3
Data collection top
Bruker X8 APEX
diffractometer
6791 independent reflections
Radiation source: fine-focus sealed tube5368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1011
Tmin = 0.693, Tmax = 0.747k = 1313
31703 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.4278P]
where P = (Fo2 + 2Fc2)/3
6791 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H17N3O2Sγ = 69.784 (1)°
Mr = 327.40V = 1669.51 (14) Å3
Triclinic, P1Z = 4
a = 8.8200 (4) ÅMo Kα radiation
b = 10.4769 (5) ŵ = 0.21 mm1
c = 19.7407 (10) ÅT = 296 K
α = 80.211 (1)°0.42 × 0.35 × 0.28 mm
β = 78.984 (1)°
Data collection top
Bruker X8 APEX
diffractometer
6791 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5368 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.747Rint = 0.031
31703 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
6791 reflectionsΔρmin = 0.28 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5331 (4)1.4103 (5)1.1048 (2)0.1376 (14)
H1A0.47621.34601.13750.165*
H1B0.53621.50091.10070.165*
C20.6054 (3)1.3750 (3)1.06626 (16)0.0943 (8)
H20.66101.44191.03410.113*
C30.6085 (3)1.2319 (3)1.06826 (13)0.0859 (7)
H3A0.52921.16941.09660.103*
H3B0.71561.22761.08940.103*
C40.6237 (3)1.1553 (3)0.90373 (15)0.0899 (8)
H40.67961.14730.87010.108*
C50.4527 (3)1.1281 (2)0.89489 (11)0.0631 (5)
C60.4237 (3)1.1507 (2)0.95842 (10)0.0567 (5)
C70.2677 (3)1.1323 (2)0.97123 (10)0.0626 (5)
H70.25001.14601.01400.075*
C80.1409 (3)1.0934 (2)0.91886 (9)0.0561 (5)
H80.03551.08160.92600.067*
C90.1670 (2)1.07082 (18)0.85424 (9)0.0483 (4)
C100.3201 (3)1.0860 (2)0.84226 (10)0.0623 (5)
H100.33631.06880.80000.075*
C110.0714 (2)0.7588 (2)0.81912 (10)0.0537 (4)
C120.0059 (3)0.7344 (2)0.77026 (12)0.0680 (6)
H120.03170.79820.73170.082*
C130.0443 (3)0.6161 (3)0.77871 (15)0.0810 (7)
H130.09770.60110.74600.097*
C140.0053 (3)0.5185 (2)0.83494 (16)0.0806 (7)
C150.0682 (3)0.5455 (3)0.88345 (15)0.0874 (8)
H150.09350.48140.92190.105*
C160.1063 (3)0.6655 (2)0.87706 (12)0.0717 (6)
H160.15430.68260.91110.086*
C170.0423 (4)0.3862 (3)0.8436 (2)0.1211 (12)
H17A0.15490.40540.83940.182*
H17B0.02140.33830.88860.182*
H17C0.02580.33050.80840.182*
C180.0239 (3)0.5553 (3)0.40309 (16)0.0876 (8)
H18A0.11030.56650.43930.105*
H18B0.03320.46880.38940.105*
C190.0165 (3)0.6589 (2)0.37214 (12)0.0632 (5)
H190.10360.64380.33620.076*
C200.0659 (2)0.80224 (19)0.38962 (10)0.0522 (4)
H20A0.12730.85590.35270.063*
H20B0.14230.80190.43200.063*
C210.2282 (2)0.96925 (19)0.36555 (9)0.0511 (4)
H210.29111.01940.33830.061*
C220.2391 (2)0.91991 (17)0.43648 (8)0.0428 (4)
C230.3346 (2)0.92338 (17)0.48490 (8)0.0442 (4)
H230.41180.96840.47290.053*
C240.3107 (2)0.85819 (16)0.55050 (8)0.0419 (4)
C250.1910 (2)0.79282 (18)0.56925 (9)0.0484 (4)
H250.17680.75070.61430.058*
C260.0952 (2)0.78944 (18)0.52319 (9)0.0488 (4)
H260.01580.74670.53610.059*
C270.1216 (2)0.85298 (16)0.45583 (8)0.0407 (4)
C280.5359 (2)0.58393 (18)0.63513 (9)0.0463 (4)
C290.5396 (2)0.5001 (2)0.58778 (10)0.0552 (5)
H290.57730.51880.54110.066*
C300.4874 (3)0.3886 (2)0.60989 (11)0.0619 (5)
H300.48890.33300.57750.074*
C310.4327 (2)0.3571 (2)0.67903 (11)0.0590 (5)
C320.4335 (3)0.4411 (2)0.72592 (11)0.0726 (6)
H320.39940.42070.77280.087*
C330.4837 (3)0.5539 (2)0.70484 (10)0.0665 (6)
H330.48250.60950.73710.080*
C340.3732 (3)0.2362 (3)0.70195 (15)0.0841 (7)
H34A0.25620.26750.71150.126*
H34B0.41740.18670.74320.126*
H34C0.40810.17720.66580.126*
N10.5718 (2)1.18978 (19)0.99908 (10)0.0694 (5)
N20.6939 (2)1.1936 (2)0.96546 (12)0.0855 (6)
N30.03312 (19)1.03964 (16)0.79882 (7)0.0523 (4)
H3N0.05941.05180.76110.063*
N40.05029 (18)0.86568 (15)0.39871 (7)0.0470 (3)
N50.1175 (2)0.93510 (16)0.34324 (7)0.0521 (4)
N60.40966 (19)0.85977 (15)0.60082 (7)0.0487 (4)
H6N0.36150.87000.63880.058*
O10.22363 (18)0.91011 (16)0.73713 (7)0.0677 (4)
O20.20026 (17)0.91093 (16)0.86333 (7)0.0688 (4)
O30.67127 (17)0.72657 (15)0.53792 (8)0.0677 (4)
O40.6511 (2)0.76466 (16)0.66010 (8)0.0748 (4)
S10.12954 (6)0.90722 (5)0.80483 (2)0.05223 (14)
S20.58344 (6)0.73592 (5)0.60662 (2)0.05151 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.092 (2)0.163 (4)0.149 (3)0.015 (2)0.001 (2)0.071 (3)
C20.0788 (17)0.105 (2)0.0888 (19)0.0081 (15)0.0001 (15)0.0433 (17)
C30.0829 (16)0.099 (2)0.0613 (14)0.0196 (14)0.0163 (12)0.0202 (13)
C40.0640 (14)0.117 (2)0.0809 (17)0.0096 (14)0.0194 (13)0.0214 (16)
C50.0589 (12)0.0669 (13)0.0564 (12)0.0073 (10)0.0145 (9)0.0089 (10)
C60.0649 (12)0.0509 (11)0.0464 (10)0.0117 (9)0.0036 (9)0.0046 (8)
C70.0738 (13)0.0749 (14)0.0397 (10)0.0214 (11)0.0072 (9)0.0148 (9)
C80.0629 (11)0.0668 (12)0.0418 (10)0.0212 (10)0.0109 (8)0.0104 (9)
C90.0598 (11)0.0455 (10)0.0361 (9)0.0112 (8)0.0090 (8)0.0054 (7)
C100.0628 (12)0.0757 (14)0.0446 (10)0.0091 (10)0.0179 (9)0.0141 (9)
C110.0500 (10)0.0561 (11)0.0461 (10)0.0064 (8)0.0039 (8)0.0082 (8)
C120.0773 (14)0.0674 (14)0.0587 (12)0.0190 (11)0.0152 (11)0.0090 (10)
C130.0810 (16)0.0753 (16)0.0906 (18)0.0244 (13)0.0089 (14)0.0253 (14)
C140.0586 (13)0.0602 (14)0.109 (2)0.0098 (11)0.0117 (13)0.0202 (14)
C150.0765 (16)0.0666 (15)0.0922 (19)0.0075 (13)0.0019 (14)0.0186 (13)
C160.0676 (13)0.0738 (15)0.0627 (13)0.0123 (11)0.0157 (11)0.0060 (11)
C170.096 (2)0.0656 (17)0.186 (4)0.0242 (15)0.022 (2)0.0225 (19)
C180.0931 (18)0.0565 (14)0.113 (2)0.0224 (13)0.0220 (16)0.0035 (13)
C190.0685 (13)0.0618 (13)0.0663 (13)0.0244 (10)0.0145 (10)0.0131 (10)
C200.0522 (10)0.0506 (10)0.0589 (11)0.0191 (8)0.0206 (9)0.0003 (8)
C210.0652 (11)0.0579 (11)0.0378 (9)0.0308 (9)0.0112 (8)0.0015 (8)
C220.0522 (9)0.0408 (9)0.0368 (8)0.0165 (7)0.0081 (7)0.0034 (7)
C230.0528 (10)0.0440 (9)0.0401 (9)0.0199 (8)0.0102 (7)0.0032 (7)
C240.0502 (9)0.0379 (8)0.0354 (8)0.0087 (7)0.0091 (7)0.0069 (6)
C250.0555 (10)0.0491 (10)0.0356 (9)0.0142 (8)0.0053 (7)0.0016 (7)
C260.0500 (10)0.0489 (10)0.0469 (10)0.0193 (8)0.0063 (8)0.0025 (8)
C270.0449 (9)0.0374 (8)0.0393 (8)0.0107 (7)0.0093 (7)0.0050 (7)
C280.0499 (10)0.0464 (9)0.0412 (9)0.0119 (8)0.0129 (7)0.0018 (7)
C290.0680 (12)0.0533 (11)0.0410 (9)0.0129 (9)0.0123 (9)0.0054 (8)
C300.0750 (13)0.0516 (11)0.0620 (12)0.0168 (10)0.0230 (10)0.0072 (9)
C310.0508 (11)0.0517 (11)0.0723 (13)0.0131 (9)0.0212 (10)0.0055 (10)
C320.0875 (16)0.0749 (15)0.0500 (12)0.0296 (13)0.0003 (11)0.0029 (10)
C330.0954 (16)0.0643 (13)0.0425 (10)0.0284 (12)0.0078 (10)0.0098 (9)
C340.0725 (15)0.0758 (16)0.109 (2)0.0343 (13)0.0311 (14)0.0193 (14)
N10.0679 (11)0.0688 (12)0.0599 (11)0.0126 (9)0.0029 (9)0.0103 (9)
N20.0631 (12)0.0942 (16)0.0848 (15)0.0095 (11)0.0043 (11)0.0130 (12)
N30.0643 (9)0.0581 (9)0.0312 (7)0.0139 (8)0.0103 (7)0.0054 (6)
N40.0537 (8)0.0483 (8)0.0432 (8)0.0204 (7)0.0141 (6)0.0000 (6)
N50.0657 (10)0.0584 (9)0.0375 (8)0.0261 (8)0.0145 (7)0.0008 (7)
N60.0615 (9)0.0488 (8)0.0349 (7)0.0134 (7)0.0111 (6)0.0074 (6)
O10.0662 (9)0.0856 (10)0.0476 (8)0.0247 (8)0.0051 (6)0.0126 (7)
O20.0656 (9)0.0885 (11)0.0535 (8)0.0167 (8)0.0229 (7)0.0129 (7)
O30.0603 (8)0.0687 (9)0.0640 (9)0.0187 (7)0.0032 (7)0.0018 (7)
O40.0865 (11)0.0710 (10)0.0846 (11)0.0340 (8)0.0475 (9)0.0018 (8)
S10.0529 (3)0.0649 (3)0.0371 (2)0.0147 (2)0.00791 (19)0.0086 (2)
S20.0554 (3)0.0524 (3)0.0496 (3)0.0189 (2)0.0165 (2)0.0002 (2)
Geometric parameters (Å, º) top
C1—C21.252 (4)C20—N41.451 (2)
C1—H1A0.9300C20—H20A0.9700
C1—H1B0.9300C20—H20B0.9700
C2—C31.502 (4)C21—N51.317 (2)
C2—H20.9300C21—C221.417 (2)
C3—N11.450 (3)C21—H210.9300
C3—H3A0.9700C22—C231.402 (2)
C3—H3B0.9700C22—C271.404 (2)
C4—N21.317 (3)C23—C241.372 (2)
C4—C51.417 (3)C23—H230.9300
C4—H40.9300C24—C251.409 (2)
C5—C61.400 (3)C24—N61.448 (2)
C5—C101.406 (3)C25—C261.367 (2)
C6—N11.364 (3)C25—H250.9300
C6—C71.388 (3)C26—C271.398 (2)
C7—C81.368 (3)C26—H260.9300
C7—H70.9300C27—N41.359 (2)
C8—C91.410 (2)C28—C291.376 (3)
C8—H80.9300C28—C331.384 (3)
C9—C101.365 (3)C28—S21.7592 (18)
C9—N31.435 (2)C29—C301.375 (3)
C10—H100.9300C29—H290.9300
C11—C161.380 (3)C30—C311.382 (3)
C11—C121.384 (3)C30—H300.9300
C11—S11.762 (2)C31—C321.383 (3)
C12—C131.370 (3)C31—C341.503 (3)
C12—H120.9300C32—C331.375 (3)
C13—C141.383 (4)C32—H320.9300
C13—H130.9300C33—H330.9300
C14—C151.369 (4)C34—H34A0.9600
C14—C171.506 (4)C34—H34B0.9600
C15—C161.390 (4)C34—H34C0.9600
C15—H150.9300N1—N21.355 (3)
C16—H160.9300N3—S11.6219 (16)
C17—H17A0.9600N3—H3N0.7979
C17—H17B0.9600N4—N51.363 (2)
C17—H17C0.9600N6—S21.6396 (16)
C18—C191.280 (3)N6—H6N0.7925
C18—H18A0.9300O1—S11.4337 (14)
C18—H18B0.9300O2—S11.4253 (14)
C19—C201.493 (3)O3—S21.4283 (15)
C19—H190.9300O4—S21.4260 (14)
C2—C1—H1A120.0N5—C21—H21124.3
C2—C1—H1B120.0C22—C21—H21124.3
H1A—C1—H1B120.0C23—C22—C27120.20 (15)
C1—C2—C3124.6 (4)C23—C22—C21135.59 (16)
C1—C2—H2117.7C27—C22—C21104.21 (15)
C3—C2—H2117.7C24—C23—C22117.89 (15)
N1—C3—C2111.3 (2)C24—C23—H23121.1
N1—C3—H3A109.4C22—C23—H23121.1
C2—C3—H3A109.4C23—C24—C25121.15 (15)
N1—C3—H3B109.4C23—C24—N6118.47 (15)
C2—C3—H3B109.4C25—C24—N6120.37 (14)
H3A—C3—H3B108.0C26—C25—C24122.00 (16)
N2—C4—C5111.7 (2)C26—C25—H25119.0
N2—C4—H4124.2C24—C25—H25119.0
C5—C4—H4124.2C25—C26—C27117.11 (16)
C6—C5—C10119.11 (19)C25—C26—H26121.4
C6—C5—C4104.1 (2)C27—C26—H26121.4
C10—C5—C4136.8 (2)N4—C27—C26131.53 (16)
N1—C6—C7131.43 (19)N4—C27—C22106.84 (14)
N1—C6—C5106.56 (19)C26—C27—C22121.63 (15)
C7—C6—C5122.02 (18)C29—C28—C33120.04 (18)
C8—C7—C6117.81 (18)C29—C28—S2120.13 (14)
C8—C7—H7121.1C33—C28—S2119.67 (14)
C6—C7—H7121.1C30—C29—C28119.62 (18)
C7—C8—C9121.28 (19)C30—C29—H29120.2
C7—C8—H8119.4C28—C29—H29120.2
C9—C8—H8119.4C29—C30—C31121.56 (19)
C10—C9—C8120.84 (17)C29—C30—H30119.2
C10—C9—N3119.27 (16)C31—C30—H30119.2
C8—C9—N3119.79 (17)C30—C31—C32117.79 (19)
C9—C10—C5118.93 (18)C30—C31—C34120.7 (2)
C9—C10—H10120.5C32—C31—C34121.5 (2)
C5—C10—H10120.5C33—C32—C31121.6 (2)
C16—C11—C12120.0 (2)C33—C32—H32119.2
C16—C11—S1120.87 (17)C31—C32—H32119.2
C12—C11—S1119.12 (16)C32—C33—C28119.35 (19)
C13—C12—C11119.9 (2)C32—C33—H33120.3
C13—C12—H12120.0C28—C33—H33120.3
C11—C12—H12120.0C31—C34—H34A109.5
C12—C13—C14121.3 (3)C31—C34—H34B109.5
C12—C13—H13119.4H34A—C34—H34B109.5
C14—C13—H13119.4C31—C34—H34C109.5
C15—C14—C13118.1 (2)H34A—C34—H34C109.5
C15—C14—C17120.2 (3)H34B—C34—H34C109.5
C13—C14—C17121.7 (3)N2—N1—C6111.58 (18)
C14—C15—C16122.1 (2)N2—N1—C3120.2 (2)
C14—C15—H15119.0C6—N1—C3128.1 (2)
C16—C15—H15119.0C4—N2—N1106.1 (2)
C11—C16—C15118.6 (2)C9—N3—S1123.01 (12)
C11—C16—H16120.7C9—N3—H3N114.5
C15—C16—H16120.7S1—N3—H3N110.5
C14—C17—H17A109.5C27—N4—N5111.13 (13)
C14—C17—H17B109.5C27—N4—C20128.27 (15)
H17A—C17—H17B109.5N5—N4—C20120.10 (14)
C14—C17—H17C109.5C21—N5—N4106.45 (14)
H17A—C17—H17C109.5C24—N6—S2118.67 (11)
H17B—C17—H17C109.5C24—N6—H6N114.2
C19—C18—H18A120.0S2—N6—H6N108.4
C19—C18—H18B120.0O2—S1—O1118.84 (9)
H18A—C18—H18B120.0O2—S1—N3109.12 (8)
C18—C19—C20124.7 (2)O1—S1—N3104.33 (8)
C18—C19—H19117.6O2—S1—C11108.08 (9)
C20—C19—H19117.6O1—S1—C11107.75 (9)
N4—C20—C19111.89 (16)N3—S1—C11108.31 (9)
N4—C20—H20A109.2O4—S2—O3120.18 (10)
C19—C20—H20A109.2O4—S2—N6105.67 (9)
N4—C20—H20B109.2O3—S2—N6106.80 (8)
C19—C20—H20B109.2O4—S2—C28108.23 (9)
H20A—C20—H20B107.9O3—S2—C28108.43 (9)
N5—C21—C22111.35 (15)N6—S2—C28106.79 (8)
C1—C2—C3—N1132.5 (3)C29—C30—C31—C34178.9 (2)
N2—C4—C5—C61.2 (3)C30—C31—C32—C331.3 (3)
N2—C4—C5—C10179.8 (3)C34—C31—C32—C33178.2 (2)
C10—C5—C6—N1179.90 (19)C31—C32—C33—C280.5 (4)
C4—C5—C6—N10.6 (2)C29—C28—C33—C321.0 (3)
C10—C5—C6—C70.3 (3)S2—C28—C33—C32174.52 (18)
C4—C5—C6—C7178.9 (2)C7—C6—N1—N2179.6 (2)
N1—C6—C7—C8179.2 (2)C5—C6—N1—N20.0 (2)
C5—C6—C7—C81.3 (3)C7—C6—N1—C34.1 (4)
C6—C7—C8—C90.8 (3)C5—C6—N1—C3176.4 (2)
C7—C8—C9—C100.6 (3)C2—C3—N1—N2100.4 (3)
C7—C8—C9—N3175.55 (18)C2—C3—N1—C675.7 (3)
C8—C9—C10—C51.6 (3)C5—C4—N2—N11.2 (3)
N3—C9—C10—C5174.58 (18)C6—N1—N2—C40.8 (3)
C6—C5—C10—C91.1 (3)C3—N1—N2—C4177.5 (2)
C4—C5—C10—C9179.9 (3)C10—C9—N3—S1124.00 (18)
C16—C11—C12—C131.5 (3)C8—C9—N3—S159.8 (2)
S1—C11—C12—C13176.62 (18)C26—C27—N4—N5179.05 (18)
C11—C12—C13—C140.9 (4)C22—C27—N4—N51.07 (19)
C12—C13—C14—C152.2 (4)C26—C27—N4—C207.3 (3)
C12—C13—C14—C17178.1 (2)C22—C27—N4—C20172.87 (17)
C13—C14—C15—C161.0 (4)C19—C20—N4—C2781.8 (2)
C17—C14—C15—C16179.2 (2)C19—C20—N4—N589.4 (2)
C12—C11—C16—C152.6 (3)C22—C21—N5—N41.4 (2)
S1—C11—C16—C15175.51 (17)C27—N4—N5—C211.5 (2)
C14—C15—C16—C111.3 (4)C20—N4—N5—C21174.08 (16)
C18—C19—C20—N4129.8 (2)C23—C24—N6—S290.15 (17)
N5—C21—C22—C23178.45 (19)C25—C24—N6—S290.84 (18)
N5—C21—C22—C270.7 (2)C9—N3—S1—O256.27 (17)
C27—C22—C23—C240.9 (2)C9—N3—S1—O1175.74 (14)
C21—C22—C23—C24178.2 (2)C9—N3—S1—C1161.16 (16)
C22—C23—C24—C251.6 (3)C16—C11—S1—O24.08 (19)
C22—C23—C24—N6179.38 (14)C12—C11—S1—O2177.84 (16)
C23—C24—C25—C260.9 (3)C16—C11—S1—O1125.51 (17)
N6—C24—C25—C26179.90 (16)C12—C11—S1—O152.57 (18)
C24—C25—C26—C270.5 (3)C16—C11—S1—N3122.18 (17)
C25—C26—C27—N4178.88 (17)C12—C11—S1—N359.74 (18)
C25—C26—C27—C221.3 (3)C24—N6—S2—O4179.54 (13)
C23—C22—C27—N4179.55 (15)C24—N6—S2—O351.40 (15)
C21—C22—C27—N40.22 (19)C24—N6—S2—C2864.46 (14)
C23—C22—C27—C260.6 (3)C29—C28—S2—O4150.75 (16)
C21—C22—C27—C26179.88 (16)C33—C28—S2—O433.78 (19)
C33—C28—C29—C301.6 (3)C29—C28—S2—O318.86 (18)
S2—C28—C29—C30173.83 (15)C33—C28—S2—O3165.67 (17)
C28—C29—C30—C310.8 (3)C29—C28—S2—N695.90 (16)
C29—C30—C31—C320.6 (3)C33—C28—S2—N679.58 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6N···O10.792.112.900 (2)176
N3—H3N···N5i0.802.192.983 (2)175
C21—H21···O4ii0.932.493.245 (2)138
C7—H7···O2iii0.932.483.358 (2)158
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6N···O10.792.112.900 (2)176.2
N3—H3N···N5i0.802.192.983 (2)174.6
C21—H21···O4ii0.932.493.245 (2)138.1
C7—H7···O2iii0.932.483.358 (2)157.7
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x, y+2, z+2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535–2539.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds