organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1757-o1758

Ethyl 4-anilino-2-methyl-5-oxo-1-phenyl-2,5-di­hydro-1H-pyrrole-2-carboxyl­ate

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, eDepartment of Organic Chemistry, Faculty of Science, Institute of Biotechnology, Granada University, Granada E-18071, Spain, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 4 November 2013; accepted 6 November 2013; online 9 November 2013)

In the title compound, C20H20N2O3, the central 2,5-di­hydro-1H-pyrrole ring [r.m.s. deviation = 0.014 (1) Å] is oriented at dihedral angles of 77.81 (6) and 25.33 (6)°, respectively, to the attached phenyl ring and the aniline phenyl ring. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, mol­ecules are linked through pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(10) ring motif. Two weak C—H⋯π inter­actions are also observed.

Related literature

For the synthesis of pyrrolone compounds, see: Shiraki et al. (1996[Shiraki, R., Sumino, A., Tadano, K.-I. & Ogawa, S. (1996). J. Org. Chem. 61, 2845-2852.]). For the biological activity of lactams, see: Alvi et al. (1998[Alvi, K. A., Casey, A. & Nair, B. G. (1998). J. Antibiot. 51, 515-517.]); Li et al. (2002[Li, W.-R., Lin, S. T., Hsu, N.-M. & Chern, M.-S. (2002). J. Org. Chem. 67, 4702-4706.]); Mase et al. (1999[Mase, N., Nishi, T., Takamori, Y., Yoda, H. & Takabe, K. (1999). Tetrahedron Asymmetry, 10, 4469-4471.]); Wiedhopf et al. (1973[Wiedhopf, R. M., Trumbull, E. R. & Cole, J. R. (1973). J. Pharm. Sci. 62, 1206-1207.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N2O3

  • Mr = 336.38

  • Triclinic, [P \overline 1]

  • a = 5.9071 (6) Å

  • b = 11.3474 (12) Å

  • c = 14.1716 (14) Å

  • α = 111.467 (2)°

  • β = 101.113 (3)°

  • γ = 95.328 (3)°

  • V = 853.45 (15) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 100 K

  • 0.34 × 0.29 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.783, Tmax = 0.860

  • 18887 measured reflections

  • 3367 independent reflections

  • 3156 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.096

  • S = 1.04

  • 3367 reflections

  • 232 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C8–C13 and C15–C20 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3 0.898 (17) 2.443 (16) 2.8247 (14) 105.9 (12)
N2—H2N⋯O3i 0.898 (17) 2.033 (17) 2.9135 (14) 166.3 (14)
C1—H1BCg2ii 0.98 2.91 3.6177 (15) 130
C12—H12⋯Cg3iii 0.95 2.84 3.4865 (14) 126
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x, -y, -z+1; (iii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Dihydropyrrolone compounds have been reported to display importantant biological activities with better hydrolytic stability. Dihydropyrrolones are known as lactams such as Pulchellalactam, which inhibits CD45 protein, a receptor-like transmembrane protein tyrosine phosphatase, and therefore could be of therapeutic value targeting autoimmune and chronic anti-inflammatory diseases (Alvi et al., 1998; Li et al., 2002). γ-Lactam PI-091 has been reported to display potent activity against platelet aggregation (Shiraki et al., 1996) and jatropham has been proven to be an antitumor alkaloid (Mase et al., 1999; Wiedhopf et al., 1973). Numerous methods to synthesize pyrrol-2-ones have been reported in the literature and the majority of these require multiple steps with low yields. However, one direct conversion strategy has been demonstrated in synthesis of γ-lactam PI-091 (Shiraki et al., 1996). Based on this concept, we herein report the synthesis and crystal structure of the title compound.

In the title compound, the central 2,5-dihydro-1H-pyrrole ring (N1/C4–C7) makes dihedral angles of 77.81 (6) and 25.33 (6)° with the two phenyl rings (C8–C13 and C15–C20), respectively (Fig. 1). All bond lengths and bond angles are normal (Allen et al., 1987).

In the crystal structure, pairs of adjacent molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming inversion dimers with R22(10) ring motifs (Bernstein et al., 1995; Fig. 2). Two weak C—H···π interactions are observed.

Related literature top

For the synthesis of pyrrolone compounds, see: Shiraki et al. (1996). For the biological activity of lactams, see: Alvi et al. (1998); Li et al. (2002); Mase et al. (1999); Wiedhopf et al. (1973). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

In a 50 ml round bottom flask, a mixture of 186 mg of aniline (2 mmol) and 232 mg of ethyl pyruvate (2 mmol) were taken in presence of 8 mol % of Fe3O4 nanoparticles in 15 ml ethanol/water (v/v) or glacial acetic acid was stirred well and irradited in microwave for 30 minutes. The progress of the reaction was monitored by TLC. After completion, the solid product was filtered off, washed with water and recrystallized from ethanol. Single crystals suitable for X-ray analysis were obtained by slow evaporation method of an ethanolic solution of the title compound at room temperature.

Refinement top

The C-bound H-atoms were positioned geometrically, with C—H = 0.95, 0.98 and 0.99 Å for aromatic, methyl and methylene H, respectively, and allowed to ride on their respective parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for the other H atoms. The N-bound H-atom was located in a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the molecular packing and hydrogen bonding (dotted lines) of the title compound along the a axis. H atoms not involved in H bonding are omitted for clarity.
Ethyl 4-anilino-2-methyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrrole-2-carboxylate top
Crystal data top
C20H20N2O3Z = 2
Mr = 336.38F(000) = 356
Triclinic, P1Dx = 1.309 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 5.9071 (6) ÅCell parameters from 9891 reflections
b = 11.3474 (12) Åθ = 3.5–72.5°
c = 14.1716 (14) ŵ = 0.72 mm1
α = 111.467 (2)°T = 100 K
β = 101.113 (3)°Cubs, colourless
γ = 95.328 (3)°0.34 × 0.29 × 0.21 mm
V = 853.45 (15) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3367 independent reflections
Radiation source: sealed tube3156 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 72.6°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.783, Tmax = 0.860k = 1414
18887 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.3108P] WHERE P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.32 e Å3
3367 reflectionsΔρmin = 0.17 e Å3
232 parameters
Crystal data top
C20H20N2O3γ = 95.328 (3)°
Mr = 336.38V = 853.45 (15) Å3
Triclinic, P1Z = 2
a = 5.9071 (6) ÅCu Kα radiation
b = 11.3474 (12) ŵ = 0.72 mm1
c = 14.1716 (14) ÅT = 100 K
α = 111.467 (2)°0.34 × 0.29 × 0.21 mm
β = 101.113 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3367 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3156 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.860Rint = 0.035
18887 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.32 e Å3
3367 reflectionsΔρmin = 0.17 e Å3
232 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25546 (15)0.15386 (9)0.65884 (6)0.0278 (3)
O20.56211 (15)0.05034 (9)0.64918 (7)0.0284 (3)
O30.76449 (14)0.06561 (7)0.91641 (6)0.0245 (2)
N10.46752 (16)0.03089 (9)0.80378 (7)0.0188 (2)
N20.88879 (16)0.20496 (9)1.01844 (7)0.0198 (3)
C10.0420 (2)0.20985 (14)0.52705 (10)0.0347 (4)
C20.2691 (2)0.17212 (13)0.56318 (10)0.0321 (4)
C30.41016 (19)0.09001 (10)0.69110 (8)0.0202 (3)
C40.37187 (18)0.07904 (10)0.79249 (8)0.0185 (3)
C50.53286 (19)0.19157 (10)0.88320 (8)0.0186 (3)
C60.69734 (18)0.14945 (10)0.93602 (8)0.0174 (3)
C70.65363 (18)0.00576 (10)0.88708 (8)0.0179 (3)
C80.38731 (19)0.16263 (10)0.73392 (8)0.0195 (3)
C90.5140 (2)0.22001 (12)0.66212 (11)0.0326 (4)
C100.4452 (2)0.34902 (13)0.59739 (12)0.0386 (4)
C110.2505 (2)0.42071 (11)0.60400 (10)0.0279 (3)
C120.1241 (2)0.36303 (11)0.67556 (9)0.0262 (3)
C130.1920 (2)0.23334 (11)0.74107 (9)0.0241 (3)
C140.11531 (19)0.07087 (11)0.79771 (9)0.0235 (3)
C150.97223 (19)0.33611 (10)1.07830 (8)0.0189 (3)
C161.2078 (2)0.37409 (11)1.13371 (9)0.0229 (3)
C171.2957 (2)0.50213 (12)1.19811 (10)0.0258 (3)
C181.1522 (2)0.59446 (11)1.20871 (10)0.0263 (3)
C190.9195 (2)0.55647 (11)1.15397 (10)0.0273 (3)
C200.8280 (2)0.42848 (11)1.08897 (9)0.0233 (3)
H1A0.088200.140300.511900.0520*
H1B0.043400.225600.463600.0520*
H1C0.022200.288400.582000.0520*
H2A0.289600.091500.509300.0390*
H2B0.402800.240600.577300.0390*
H2N0.981 (3)0.1504 (14)1.0297 (11)0.025 (3)*
H50.519400.279300.900300.0220*
H90.647400.171000.657300.0390*
H100.532000.388600.548200.0460*
H110.203800.509300.559400.0340*
H120.009600.412200.680000.0310*
H130.105200.193700.790200.0290*
H14A0.018200.000300.734800.0350*
H14B0.064700.152100.802100.0350*
H14C0.098500.054900.859700.0350*
H161.307600.312001.127200.0270*
H171.455800.527201.235500.0310*
H181.213200.682201.252800.0320*
H190.820400.618901.160900.0330*
H200.667700.404001.051900.0280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0344 (5)0.0343 (5)0.0224 (4)0.0158 (4)0.0085 (4)0.0168 (4)
O20.0282 (4)0.0362 (5)0.0246 (4)0.0117 (4)0.0100 (3)0.0131 (4)
O30.0252 (4)0.0189 (4)0.0263 (4)0.0053 (3)0.0017 (3)0.0091 (3)
N10.0187 (4)0.0161 (4)0.0194 (4)0.0038 (3)0.0006 (4)0.0064 (4)
N20.0209 (5)0.0171 (4)0.0189 (5)0.0058 (4)0.0009 (4)0.0057 (4)
C10.0423 (8)0.0358 (7)0.0282 (6)0.0081 (6)0.0000 (6)0.0190 (6)
C20.0427 (7)0.0380 (7)0.0222 (6)0.0129 (6)0.0085 (5)0.0176 (5)
C30.0206 (5)0.0180 (5)0.0183 (5)0.0022 (4)0.0009 (4)0.0053 (4)
C40.0191 (5)0.0172 (5)0.0192 (5)0.0051 (4)0.0031 (4)0.0074 (4)
C50.0210 (5)0.0162 (5)0.0178 (5)0.0041 (4)0.0048 (4)0.0057 (4)
C60.0188 (5)0.0170 (5)0.0165 (5)0.0036 (4)0.0059 (4)0.0057 (4)
C70.0177 (5)0.0184 (5)0.0178 (5)0.0038 (4)0.0048 (4)0.0069 (4)
C80.0199 (5)0.0171 (5)0.0191 (5)0.0033 (4)0.0004 (4)0.0069 (4)
C90.0248 (6)0.0221 (6)0.0442 (8)0.0011 (5)0.0142 (5)0.0034 (5)
C100.0354 (7)0.0237 (6)0.0481 (8)0.0039 (5)0.0205 (6)0.0003 (6)
C110.0303 (6)0.0177 (5)0.0285 (6)0.0010 (5)0.0018 (5)0.0043 (5)
C120.0291 (6)0.0229 (6)0.0245 (6)0.0031 (5)0.0035 (5)0.0104 (5)
C130.0298 (6)0.0232 (6)0.0197 (5)0.0022 (5)0.0065 (5)0.0092 (5)
C140.0189 (5)0.0255 (6)0.0277 (6)0.0056 (4)0.0056 (4)0.0121 (5)
C150.0225 (5)0.0175 (5)0.0166 (5)0.0032 (4)0.0052 (4)0.0066 (4)
C160.0217 (5)0.0221 (6)0.0242 (6)0.0055 (4)0.0051 (4)0.0081 (5)
C170.0211 (5)0.0247 (6)0.0275 (6)0.0004 (4)0.0036 (5)0.0080 (5)
C180.0302 (6)0.0174 (5)0.0271 (6)0.0003 (5)0.0055 (5)0.0059 (5)
C190.0302 (6)0.0191 (6)0.0306 (6)0.0077 (5)0.0056 (5)0.0076 (5)
C200.0219 (5)0.0207 (6)0.0238 (6)0.0048 (4)0.0024 (4)0.0063 (5)
Geometric parameters (Å, º) top
O1—C21.4601 (16)C16—C171.3857 (19)
O1—C31.3317 (15)C17—C181.3920 (19)
O2—C31.2025 (15)C18—C191.3825 (18)
O3—C71.2237 (14)C19—C201.3904 (18)
N1—C41.4639 (16)C1—H1A0.9800
N1—C71.3530 (14)C1—H1B0.9800
N1—C81.4296 (15)C1—H1C0.9800
N2—C61.3638 (14)C2—H2A0.9900
N2—C151.3985 (16)C2—H2B0.9900
N2—H2N0.898 (17)C5—H50.9500
C1—C21.4991 (19)C9—H90.9500
C3—C41.5434 (15)C10—H100.9500
C4—C51.5130 (16)C11—H110.9500
C4—C141.5274 (16)C12—H120.9500
C5—C61.3418 (16)C13—H130.9500
C6—C71.4938 (17)C14—H14A0.9800
C8—C91.3851 (17)C14—H14B0.9800
C8—C131.3848 (17)C14—H14C0.9800
C9—C101.383 (2)C16—H160.9500
C10—C111.3845 (19)C17—H170.9500
C11—C121.3825 (17)C18—H180.9500
C12—C131.3912 (18)C19—H190.9500
C15—C201.3953 (17)C20—H200.9500
C15—C161.3994 (16)
C2—O1—C3116.61 (9)C2—C1—H1A110.00
C4—N1—C7112.22 (10)C2—C1—H1B109.00
C4—N1—C8125.67 (9)C2—C1—H1C109.00
C7—N1—C8122.05 (10)H1A—C1—H1B109.00
C6—N2—C15127.95 (10)H1A—C1—H1C109.00
C15—N2—H2N116.7 (10)H1B—C1—H1C109.00
C6—N2—H2N114.9 (10)O1—C2—H2A111.00
O1—C2—C1106.07 (10)O1—C2—H2B111.00
O1—C3—O2124.92 (11)C1—C2—H2A110.00
O2—C3—C4125.00 (11)C1—C2—H2B111.00
O1—C3—C4110.04 (9)H2A—C2—H2B109.00
N1—C4—C14111.56 (10)C4—C5—H5125.00
C3—C4—C5107.20 (9)C6—C5—H5125.00
N1—C4—C5102.09 (9)C8—C9—H9120.00
C5—C4—C14113.07 (9)C10—C9—H9120.00
C3—C4—C14112.87 (9)C9—C10—H10120.00
N1—C4—C3109.43 (9)C11—C10—H10120.00
C4—C5—C6110.17 (10)C10—C11—H11120.00
C5—C6—C7108.54 (9)C12—C11—H11120.00
N2—C6—C5135.95 (11)C11—C12—H12120.00
N2—C6—C7115.49 (10)C13—C12—H12120.00
O3—C7—N1126.32 (11)C8—C13—H13120.00
O3—C7—C6126.75 (10)C12—C13—H13120.00
N1—C7—C6106.93 (10)C4—C14—H14A109.00
N1—C8—C9118.96 (11)C4—C14—H14B109.00
C9—C8—C13120.50 (11)C4—C14—H14C109.00
N1—C8—C13120.48 (10)H14A—C14—H14B110.00
C8—C9—C10119.68 (12)H14A—C14—H14C109.00
C9—C10—C11120.31 (12)H14B—C14—H14C109.00
C10—C11—C12119.85 (13)C15—C16—H16120.00
C11—C12—C13120.27 (12)C17—C16—H16120.00
C8—C13—C12119.38 (11)C16—C17—H17120.00
N2—C15—C16117.97 (11)C18—C17—H17120.00
C16—C15—C20119.22 (11)C17—C18—H18121.00
N2—C15—C20122.73 (10)C19—C18—H18121.00
C15—C16—C17120.08 (12)C18—C19—H19119.00
C16—C17—C18120.79 (11)C20—C19—H19119.00
C17—C18—C19118.93 (12)C15—C20—H20120.00
C18—C19—C20121.14 (12)C19—C20—H20120.00
C15—C20—C19119.84 (11)
C3—O1—C2—C1163.94 (11)O2—C3—C4—N125.34 (16)
C2—O1—C3—O22.26 (18)C3—C4—C5—C6113.96 (11)
C2—O1—C3—C4179.93 (10)C14—C4—C5—C6121.00 (11)
C7—N1—C8—C13101.78 (13)N1—C4—C5—C61.02 (12)
C7—N1—C4—C50.49 (12)C4—C5—C6—N2176.18 (12)
C8—N1—C4—C5176.44 (10)C4—C5—C6—C72.01 (13)
C7—N1—C4—C14120.55 (10)C5—C6—C7—O3177.72 (11)
C8—N1—C4—C1462.53 (13)N2—C6—C7—N1176.31 (9)
C4—N1—C8—C9101.29 (14)C5—C6—C7—N12.30 (12)
C7—N1—C4—C3113.83 (10)N2—C6—C7—O33.68 (17)
C8—N1—C4—C363.10 (13)N1—C8—C9—C10176.91 (12)
C4—N1—C7—C61.65 (12)C9—C8—C13—C120.19 (18)
C4—N1—C7—O3178.36 (11)C13—C8—C9—C100.23 (19)
C8—N1—C7—O34.58 (18)N1—C8—C13—C12176.91 (11)
C4—N1—C8—C1381.57 (14)C8—C9—C10—C110.1 (2)
C8—N1—C7—C6175.41 (9)C9—C10—C11—C120.1 (2)
C7—N1—C8—C975.36 (15)C10—C11—C12—C130.12 (19)
C15—N2—C6—C7179.61 (10)C11—C12—C13—C80.02 (19)
C6—N2—C15—C16158.37 (11)N2—C15—C16—C17176.86 (11)
C15—N2—C6—C51.5 (2)C20—C15—C16—C170.13 (18)
C6—N2—C15—C2025.02 (18)N2—C15—C20—C19176.70 (11)
O1—C3—C4—C593.17 (11)C16—C15—C20—C190.13 (17)
O1—C3—C4—N1156.85 (9)C15—C16—C17—C180.00 (19)
O2—C3—C4—C14150.20 (12)C16—C17—C18—C190.1 (2)
O1—C3—C4—C1431.99 (13)C17—C18—C19—C200.1 (2)
O2—C3—C4—C584.64 (14)C18—C19—C20—C150.00 (19)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C8–C13 and C15–C20 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O30.898 (17)2.443 (16)2.8247 (14)105.9 (12)
N2—H2N···O3i0.898 (17)2.033 (17)2.9135 (14)166.3 (14)
C1—H1B···Cg2ii0.982.913.6177 (15)130
C12—H12···Cg3iii0.952.843.4865 (14)126
Symmetry codes: (i) x+2, y, z+2; (ii) x, y, z+1; (iii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C8–C13 and C15–C20 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O30.898 (17)2.443 (16)2.8247 (14)105.9 (12)
N2—H2N···O3i0.898 (17)2.033 (17)2.9135 (14)166.3 (14)
C1—H1B···Cg2ii0.982.913.6177 (15)130
C12—H12···Cg3iii0.952.843.4865 (14)126
Symmetry codes: (i) x+2, y, z+2; (ii) x, y, z+1; (iii) x+1, y, z+2.
 

Acknowledgements

Manchester Metropolitan University, Erciyes University and Granada University are gratefully acknowledged for supporting this study. The authors also thank José Romero Garzón, Centro de Instrumentación Científica, Universidad de Granada, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAlvi, K. A., Casey, A. & Nair, B. G. (1998). J. Antibiot. 51, 515–517.  CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, W.-R., Lin, S. T., Hsu, N.-M. & Chern, M.-S. (2002). J. Org. Chem. 67, 4702–4706.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMase, N., Nishi, T., Takamori, Y., Yoda, H. & Takabe, K. (1999). Tetrahedron Asymmetry, 10, 4469–4471.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiraki, R., Sumino, A., Tadano, K.-I. & Ogawa, S. (1996). J. Org. Chem. 61, 2845–2852.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiedhopf, R. M., Trumbull, E. R. & Cole, J. R. (1973). J. Pharm. Sci. 62, 1206–1207.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1757-o1758
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds