organic compounds
Ethyl 4-anilino-2-methyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrrole-2-carboxylate
aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, eDepartment of Organic Chemistry, Faculty of Science, Institute of Biotechnology, Granada University, Granada E-18071, Spain, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
In the title compound, C20H20N2O3, the central 2,5-dihydro-1H-pyrrole ring [r.m.s. deviation = 0.014 (1) Å] is oriented at dihedral angles of 77.81 (6) and 25.33 (6)°, respectively, to the attached phenyl ring and the aniline phenyl ring. An intramolecular N—H⋯O hydrogen bond occurs. In the crystal, molecules are linked through pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(10) ring motif. Two weak C—H⋯π interactions are also observed.
CCDC reference: 970430
Related literature
For the synthesis of pyrrolone compounds, see: Shiraki et al. (1996). For the biological activity of see: Alvi et al. (1998); Li et al. (2002); Mase et al. (1999); Wiedhopf et al. (1973). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Supporting information
CCDC reference: 970430
10.1107/S1600536813030390/is5318sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813030390/is5318Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813030390/is5318Isup3.cml
In a 50 ml round bottom flask, a mixture of 186 mg of aniline (2 mmol) and 232 mg of ethyl pyruvate (2 mmol) were taken in presence of 8 mol % of Fe3O4 nanoparticles in 15 ml ethanol/water (v/v) or glacial acetic acid was stirred well and irradited in microwave for 30 minutes. The progress of the reaction was monitored by TLC. After completion, the solid product was filtered off, washed with water and recrystallized from ethanol. Single crystals suitable for X-ray analysis were obtained by slow evaporation method of an ethanolic solution of the title compound at room temperature.
The C-bound H-atoms were positioned geometrically, with C—H = 0.95, 0.98 and 0.99 Å for aromatic, methyl and methylene H, respectively, and allowed to ride on their respective parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for the other H atoms. The N-bound H-atom was located in a difference Fourier map and refined freely.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. | |
Fig. 2. View of the molecular packing and hydrogen bonding (dotted lines) of the title compound along the a axis. H atoms not involved in H bonding are omitted for clarity. |
C20H20N2O3 | Z = 2 |
Mr = 336.38 | F(000) = 356 |
Triclinic, P1 | Dx = 1.309 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54178 Å |
a = 5.9071 (6) Å | Cell parameters from 9891 reflections |
b = 11.3474 (12) Å | θ = 3.5–72.5° |
c = 14.1716 (14) Å | µ = 0.72 mm−1 |
α = 111.467 (2)° | T = 100 K |
β = 101.113 (3)° | Cubs, colourless |
γ = 95.328 (3)° | 0.34 × 0.29 × 0.21 mm |
V = 853.45 (15) Å3 |
Bruker APEXII CCD diffractometer | 3367 independent reflections |
Radiation source: sealed tube | 3156 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ϕ and ω scans | θmax = 72.6°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −7→7 |
Tmin = 0.783, Tmax = 0.860 | k = −14→14 |
18887 measured reflections | l = −17→17 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0487P)2 + 0.3108P] WHERE P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.096 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.32 e Å−3 |
3367 reflections | Δρmin = −0.17 e Å−3 |
232 parameters |
C20H20N2O3 | γ = 95.328 (3)° |
Mr = 336.38 | V = 853.45 (15) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.9071 (6) Å | Cu Kα radiation |
b = 11.3474 (12) Å | µ = 0.72 mm−1 |
c = 14.1716 (14) Å | T = 100 K |
α = 111.467 (2)° | 0.34 × 0.29 × 0.21 mm |
β = 101.113 (3)° |
Bruker APEXII CCD diffractometer | 3367 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3156 reflections with I > 2σ(I) |
Tmin = 0.783, Tmax = 0.860 | Rint = 0.035 |
18887 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.32 e Å−3 |
3367 reflections | Δρmin = −0.17 e Å−3 |
232 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.25546 (15) | 0.15386 (9) | 0.65884 (6) | 0.0278 (3) | |
O2 | 0.56211 (15) | 0.05034 (9) | 0.64918 (7) | 0.0284 (3) | |
O3 | 0.76449 (14) | −0.06561 (7) | 0.91641 (6) | 0.0245 (2) | |
N1 | 0.46752 (16) | −0.03089 (9) | 0.80378 (7) | 0.0188 (2) | |
N2 | 0.88879 (16) | 0.20496 (9) | 1.01844 (7) | 0.0198 (3) | |
C1 | 0.0420 (2) | 0.20985 (14) | 0.52705 (10) | 0.0347 (4) | |
C2 | 0.2691 (2) | 0.17212 (13) | 0.56318 (10) | 0.0321 (4) | |
C3 | 0.41016 (19) | 0.09001 (10) | 0.69110 (8) | 0.0202 (3) | |
C4 | 0.37187 (18) | 0.07904 (10) | 0.79249 (8) | 0.0185 (3) | |
C5 | 0.53286 (19) | 0.19157 (10) | 0.88320 (8) | 0.0186 (3) | |
C6 | 0.69734 (18) | 0.14945 (10) | 0.93602 (8) | 0.0174 (3) | |
C7 | 0.65363 (18) | 0.00576 (10) | 0.88708 (8) | 0.0179 (3) | |
C8 | 0.38731 (19) | −0.16263 (10) | 0.73392 (8) | 0.0195 (3) | |
C9 | 0.5140 (2) | −0.22001 (12) | 0.66212 (11) | 0.0326 (4) | |
C10 | 0.4452 (2) | −0.34902 (13) | 0.59739 (12) | 0.0386 (4) | |
C11 | 0.2505 (2) | −0.42071 (11) | 0.60400 (10) | 0.0279 (3) | |
C12 | 0.1241 (2) | −0.36303 (11) | 0.67556 (9) | 0.0262 (3) | |
C13 | 0.1920 (2) | −0.23334 (11) | 0.74107 (9) | 0.0241 (3) | |
C14 | 0.11531 (19) | 0.07087 (11) | 0.79771 (9) | 0.0235 (3) | |
C15 | 0.97223 (19) | 0.33611 (10) | 1.07830 (8) | 0.0189 (3) | |
C16 | 1.2078 (2) | 0.37409 (11) | 1.13371 (9) | 0.0229 (3) | |
C17 | 1.2957 (2) | 0.50213 (12) | 1.19811 (10) | 0.0258 (3) | |
C18 | 1.1522 (2) | 0.59446 (11) | 1.20871 (10) | 0.0263 (3) | |
C19 | 0.9195 (2) | 0.55647 (11) | 1.15397 (10) | 0.0273 (3) | |
C20 | 0.8280 (2) | 0.42848 (11) | 1.08897 (9) | 0.0233 (3) | |
H1A | −0.08820 | 0.14030 | 0.51190 | 0.0520* | |
H1B | 0.04340 | 0.22560 | 0.46360 | 0.0520* | |
H1C | 0.02220 | 0.28840 | 0.58200 | 0.0520* | |
H2A | 0.28960 | 0.09150 | 0.50930 | 0.0390* | |
H2B | 0.40280 | 0.24060 | 0.57730 | 0.0390* | |
H2N | 0.981 (3) | 0.1504 (14) | 1.0297 (11) | 0.025 (3)* | |
H5 | 0.51940 | 0.27930 | 0.90030 | 0.0220* | |
H9 | 0.64740 | −0.17100 | 0.65730 | 0.0390* | |
H10 | 0.53200 | −0.38860 | 0.54820 | 0.0460* | |
H11 | 0.20380 | −0.50930 | 0.55940 | 0.0340* | |
H12 | −0.00960 | −0.41220 | 0.68000 | 0.0310* | |
H13 | 0.10520 | −0.19370 | 0.79020 | 0.0290* | |
H14A | 0.01820 | 0.00030 | 0.73480 | 0.0350* | |
H14B | 0.06470 | 0.15210 | 0.80210 | 0.0350* | |
H14C | 0.09850 | 0.05490 | 0.85970 | 0.0350* | |
H16 | 1.30760 | 0.31200 | 1.12720 | 0.0270* | |
H17 | 1.45580 | 0.52720 | 1.23550 | 0.0310* | |
H18 | 1.21320 | 0.68220 | 1.25280 | 0.0320* | |
H19 | 0.82040 | 0.61890 | 1.16090 | 0.0330* | |
H20 | 0.66770 | 0.40400 | 1.05190 | 0.0280* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0344 (5) | 0.0343 (5) | 0.0224 (4) | 0.0158 (4) | 0.0085 (4) | 0.0168 (4) |
O2 | 0.0282 (4) | 0.0362 (5) | 0.0246 (4) | 0.0117 (4) | 0.0100 (3) | 0.0131 (4) |
O3 | 0.0252 (4) | 0.0189 (4) | 0.0263 (4) | 0.0053 (3) | −0.0017 (3) | 0.0091 (3) |
N1 | 0.0187 (4) | 0.0161 (4) | 0.0194 (4) | 0.0038 (3) | 0.0006 (4) | 0.0064 (4) |
N2 | 0.0209 (5) | 0.0171 (4) | 0.0189 (5) | 0.0058 (4) | 0.0009 (4) | 0.0057 (4) |
C1 | 0.0423 (8) | 0.0358 (7) | 0.0282 (6) | 0.0081 (6) | 0.0000 (6) | 0.0190 (6) |
C2 | 0.0427 (7) | 0.0380 (7) | 0.0222 (6) | 0.0129 (6) | 0.0085 (5) | 0.0176 (5) |
C3 | 0.0206 (5) | 0.0180 (5) | 0.0183 (5) | 0.0022 (4) | 0.0009 (4) | 0.0053 (4) |
C4 | 0.0191 (5) | 0.0172 (5) | 0.0192 (5) | 0.0051 (4) | 0.0031 (4) | 0.0074 (4) |
C5 | 0.0210 (5) | 0.0162 (5) | 0.0178 (5) | 0.0041 (4) | 0.0048 (4) | 0.0057 (4) |
C6 | 0.0188 (5) | 0.0170 (5) | 0.0165 (5) | 0.0036 (4) | 0.0059 (4) | 0.0057 (4) |
C7 | 0.0177 (5) | 0.0184 (5) | 0.0178 (5) | 0.0038 (4) | 0.0048 (4) | 0.0069 (4) |
C8 | 0.0199 (5) | 0.0171 (5) | 0.0191 (5) | 0.0033 (4) | −0.0004 (4) | 0.0069 (4) |
C9 | 0.0248 (6) | 0.0221 (6) | 0.0442 (8) | 0.0011 (5) | 0.0142 (5) | 0.0034 (5) |
C10 | 0.0354 (7) | 0.0237 (6) | 0.0481 (8) | 0.0039 (5) | 0.0205 (6) | −0.0003 (6) |
C11 | 0.0303 (6) | 0.0177 (5) | 0.0285 (6) | 0.0010 (5) | 0.0018 (5) | 0.0043 (5) |
C12 | 0.0291 (6) | 0.0229 (6) | 0.0245 (6) | −0.0031 (5) | 0.0035 (5) | 0.0104 (5) |
C13 | 0.0298 (6) | 0.0232 (6) | 0.0197 (5) | 0.0022 (5) | 0.0065 (5) | 0.0092 (5) |
C14 | 0.0189 (5) | 0.0255 (6) | 0.0277 (6) | 0.0056 (4) | 0.0056 (4) | 0.0121 (5) |
C15 | 0.0225 (5) | 0.0175 (5) | 0.0166 (5) | 0.0032 (4) | 0.0052 (4) | 0.0066 (4) |
C16 | 0.0217 (5) | 0.0221 (6) | 0.0242 (6) | 0.0055 (4) | 0.0051 (4) | 0.0081 (5) |
C17 | 0.0211 (5) | 0.0247 (6) | 0.0275 (6) | −0.0004 (4) | 0.0036 (5) | 0.0080 (5) |
C18 | 0.0302 (6) | 0.0174 (5) | 0.0271 (6) | −0.0003 (5) | 0.0055 (5) | 0.0059 (5) |
C19 | 0.0302 (6) | 0.0191 (6) | 0.0306 (6) | 0.0077 (5) | 0.0056 (5) | 0.0076 (5) |
C20 | 0.0219 (5) | 0.0207 (6) | 0.0238 (6) | 0.0048 (4) | 0.0024 (4) | 0.0063 (5) |
O1—C2 | 1.4601 (16) | C16—C17 | 1.3857 (19) |
O1—C3 | 1.3317 (15) | C17—C18 | 1.3920 (19) |
O2—C3 | 1.2025 (15) | C18—C19 | 1.3825 (18) |
O3—C7 | 1.2237 (14) | C19—C20 | 1.3904 (18) |
N1—C4 | 1.4639 (16) | C1—H1A | 0.9800 |
N1—C7 | 1.3530 (14) | C1—H1B | 0.9800 |
N1—C8 | 1.4296 (15) | C1—H1C | 0.9800 |
N2—C6 | 1.3638 (14) | C2—H2A | 0.9900 |
N2—C15 | 1.3985 (16) | C2—H2B | 0.9900 |
N2—H2N | 0.898 (17) | C5—H5 | 0.9500 |
C1—C2 | 1.4991 (19) | C9—H9 | 0.9500 |
C3—C4 | 1.5434 (15) | C10—H10 | 0.9500 |
C4—C5 | 1.5130 (16) | C11—H11 | 0.9500 |
C4—C14 | 1.5274 (16) | C12—H12 | 0.9500 |
C5—C6 | 1.3418 (16) | C13—H13 | 0.9500 |
C6—C7 | 1.4938 (17) | C14—H14A | 0.9800 |
C8—C9 | 1.3851 (17) | C14—H14B | 0.9800 |
C8—C13 | 1.3848 (17) | C14—H14C | 0.9800 |
C9—C10 | 1.383 (2) | C16—H16 | 0.9500 |
C10—C11 | 1.3845 (19) | C17—H17 | 0.9500 |
C11—C12 | 1.3825 (17) | C18—H18 | 0.9500 |
C12—C13 | 1.3912 (18) | C19—H19 | 0.9500 |
C15—C20 | 1.3953 (17) | C20—H20 | 0.9500 |
C15—C16 | 1.3994 (16) | ||
C2—O1—C3 | 116.61 (9) | C2—C1—H1A | 110.00 |
C4—N1—C7 | 112.22 (10) | C2—C1—H1B | 109.00 |
C4—N1—C8 | 125.67 (9) | C2—C1—H1C | 109.00 |
C7—N1—C8 | 122.05 (10) | H1A—C1—H1B | 109.00 |
C6—N2—C15 | 127.95 (10) | H1A—C1—H1C | 109.00 |
C15—N2—H2N | 116.7 (10) | H1B—C1—H1C | 109.00 |
C6—N2—H2N | 114.9 (10) | O1—C2—H2A | 111.00 |
O1—C2—C1 | 106.07 (10) | O1—C2—H2B | 111.00 |
O1—C3—O2 | 124.92 (11) | C1—C2—H2A | 110.00 |
O2—C3—C4 | 125.00 (11) | C1—C2—H2B | 111.00 |
O1—C3—C4 | 110.04 (9) | H2A—C2—H2B | 109.00 |
N1—C4—C14 | 111.56 (10) | C4—C5—H5 | 125.00 |
C3—C4—C5 | 107.20 (9) | C6—C5—H5 | 125.00 |
N1—C4—C5 | 102.09 (9) | C8—C9—H9 | 120.00 |
C5—C4—C14 | 113.07 (9) | C10—C9—H9 | 120.00 |
C3—C4—C14 | 112.87 (9) | C9—C10—H10 | 120.00 |
N1—C4—C3 | 109.43 (9) | C11—C10—H10 | 120.00 |
C4—C5—C6 | 110.17 (10) | C10—C11—H11 | 120.00 |
C5—C6—C7 | 108.54 (9) | C12—C11—H11 | 120.00 |
N2—C6—C5 | 135.95 (11) | C11—C12—H12 | 120.00 |
N2—C6—C7 | 115.49 (10) | C13—C12—H12 | 120.00 |
O3—C7—N1 | 126.32 (11) | C8—C13—H13 | 120.00 |
O3—C7—C6 | 126.75 (10) | C12—C13—H13 | 120.00 |
N1—C7—C6 | 106.93 (10) | C4—C14—H14A | 109.00 |
N1—C8—C9 | 118.96 (11) | C4—C14—H14B | 109.00 |
C9—C8—C13 | 120.50 (11) | C4—C14—H14C | 109.00 |
N1—C8—C13 | 120.48 (10) | H14A—C14—H14B | 110.00 |
C8—C9—C10 | 119.68 (12) | H14A—C14—H14C | 109.00 |
C9—C10—C11 | 120.31 (12) | H14B—C14—H14C | 109.00 |
C10—C11—C12 | 119.85 (13) | C15—C16—H16 | 120.00 |
C11—C12—C13 | 120.27 (12) | C17—C16—H16 | 120.00 |
C8—C13—C12 | 119.38 (11) | C16—C17—H17 | 120.00 |
N2—C15—C16 | 117.97 (11) | C18—C17—H17 | 120.00 |
C16—C15—C20 | 119.22 (11) | C17—C18—H18 | 121.00 |
N2—C15—C20 | 122.73 (10) | C19—C18—H18 | 121.00 |
C15—C16—C17 | 120.08 (12) | C18—C19—H19 | 119.00 |
C16—C17—C18 | 120.79 (11) | C20—C19—H19 | 119.00 |
C17—C18—C19 | 118.93 (12) | C15—C20—H20 | 120.00 |
C18—C19—C20 | 121.14 (12) | C19—C20—H20 | 120.00 |
C15—C20—C19 | 119.84 (11) | ||
C3—O1—C2—C1 | 163.94 (11) | O2—C3—C4—N1 | −25.34 (16) |
C2—O1—C3—O2 | 2.26 (18) | C3—C4—C5—C6 | −113.96 (11) |
C2—O1—C3—C4 | −179.93 (10) | C14—C4—C5—C6 | 121.00 (11) |
C7—N1—C8—C13 | 101.78 (13) | N1—C4—C5—C6 | 1.02 (12) |
C7—N1—C4—C5 | 0.49 (12) | C4—C5—C6—N2 | 176.18 (12) |
C8—N1—C4—C5 | −176.44 (10) | C4—C5—C6—C7 | −2.01 (13) |
C7—N1—C4—C14 | −120.55 (10) | C5—C6—C7—O3 | −177.72 (11) |
C8—N1—C4—C14 | 62.53 (13) | N2—C6—C7—N1 | −176.31 (9) |
C4—N1—C8—C9 | 101.29 (14) | C5—C6—C7—N1 | 2.30 (12) |
C7—N1—C4—C3 | 113.83 (10) | N2—C6—C7—O3 | 3.68 (17) |
C8—N1—C4—C3 | −63.10 (13) | N1—C8—C9—C10 | 176.91 (12) |
C4—N1—C7—C6 | −1.65 (12) | C9—C8—C13—C12 | 0.19 (18) |
C4—N1—C7—O3 | 178.36 (11) | C13—C8—C9—C10 | −0.23 (19) |
C8—N1—C7—O3 | −4.58 (18) | N1—C8—C13—C12 | −176.91 (11) |
C4—N1—C8—C13 | −81.57 (14) | C8—C9—C10—C11 | 0.1 (2) |
C8—N1—C7—C6 | 175.41 (9) | C9—C10—C11—C12 | 0.1 (2) |
C7—N1—C8—C9 | −75.36 (15) | C10—C11—C12—C13 | −0.12 (19) |
C15—N2—C6—C7 | 179.61 (10) | C11—C12—C13—C8 | −0.02 (19) |
C6—N2—C15—C16 | −158.37 (11) | N2—C15—C16—C17 | −176.86 (11) |
C15—N2—C6—C5 | 1.5 (2) | C20—C15—C16—C17 | −0.13 (18) |
C6—N2—C15—C20 | 25.02 (18) | N2—C15—C20—C19 | 176.70 (11) |
O1—C3—C4—C5 | −93.17 (11) | C16—C15—C20—C19 | 0.13 (17) |
O1—C3—C4—N1 | 156.85 (9) | C15—C16—C17—C18 | 0.00 (19) |
O2—C3—C4—C14 | −150.20 (12) | C16—C17—C18—C19 | 0.1 (2) |
O1—C3—C4—C14 | 31.99 (13) | C17—C18—C19—C20 | −0.1 (2) |
O2—C3—C4—C5 | 84.64 (14) | C18—C19—C20—C15 | 0.00 (19) |
Cg2 and Cg3 are the centroids of the C8–C13 and C15–C20 phenyl rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O3 | 0.898 (17) | 2.443 (16) | 2.8247 (14) | 105.9 (12) |
N2—H2N···O3i | 0.898 (17) | 2.033 (17) | 2.9135 (14) | 166.3 (14) |
C1—H1B···Cg2ii | 0.98 | 2.91 | 3.6177 (15) | 130 |
C12—H12···Cg3iii | 0.95 | 2.84 | 3.4865 (14) | 126 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x, −y, −z+1; (iii) −x+1, −y, −z+2. |
Cg2 and Cg3 are the centroids of the C8–C13 and C15–C20 phenyl rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O3 | 0.898 (17) | 2.443 (16) | 2.8247 (14) | 105.9 (12) |
N2—H2N···O3i | 0.898 (17) | 2.033 (17) | 2.9135 (14) | 166.3 (14) |
C1—H1B···Cg2ii | 0.98 | 2.91 | 3.6177 (15) | 130 |
C12—H12···Cg3iii | 0.95 | 2.84 | 3.4865 (14) | 126 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x, −y, −z+1; (iii) −x+1, −y, −z+2. |
Acknowledgements
Manchester Metropolitan University, Erciyes University and Granada University are gratefully acknowledged for supporting this study. The authors also thank José Romero Garzón, Centro de Instrumentación Científica, Universidad de Granada, for the data collection.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Alvi, K. A., Casey, A. & Nair, B. G. (1998). J. Antibiot. 51, 515–517. CrossRef CAS PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Li, W.-R., Lin, S. T., Hsu, N.-M. & Chern, M.-S. (2002). J. Org. Chem. 67, 4702–4706. Web of Science CrossRef PubMed CAS Google Scholar
Mase, N., Nishi, T., Takamori, Y., Yoda, H. & Takabe, K. (1999). Tetrahedron Asymmetry, 10, 4469–4471. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shiraki, R., Sumino, A., Tadano, K.-I. & Ogawa, S. (1996). J. Org. Chem. 61, 2845–2852. CrossRef PubMed CAS Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wiedhopf, R. M., Trumbull, E. R. & Cole, J. R. (1973). J. Pharm. Sci. 62, 1206–1207. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dihydropyrrolone compounds have been reported to display importantant biological activities with better hydrolytic stability. Dihydropyrrolones are known as lactams such as Pulchellalactam, which inhibits CD45 protein, a receptor-like transmembrane protein tyrosine phosphatase, and therefore could be of therapeutic value targeting autoimmune and chronic anti-inflammatory diseases (Alvi et al., 1998; Li et al., 2002). γ-Lactam PI-091 has been reported to display potent activity against platelet aggregation (Shiraki et al., 1996) and jatropham has been proven to be an antitumor alkaloid (Mase et al., 1999; Wiedhopf et al., 1973). Numerous methods to synthesize pyrrol-2-ones have been reported in the literature and the majority of these require multiple steps with low yields. However, one direct conversion strategy has been demonstrated in synthesis of γ-lactam PI-091 (Shiraki et al., 1996). Based on this concept, we herein report the synthesis and crystal structure of the title compound.
In the title compound, the central 2,5-dihydro-1H-pyrrole ring (N1/C4–C7) makes dihedral angles of 77.81 (6) and 25.33 (6)° with the two phenyl rings (C8–C13 and C15–C20), respectively (Fig. 1). All bond lengths and bond angles are normal (Allen et al., 1987).
In the crystal structure, pairs of adjacent molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming inversion dimers with R22(10) ring motifs (Bernstein et al., 1995; Fig. 2). Two weak C—H···π interactions are observed.