organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1802-o1803

1-(2-Bromo­meth­yl-1-phenyl­sulfonyl-1H-indol-3-yl)propan-1-one

aResearch Scholar (Chemistry), Bharathiyar University, Coimbatore 641 046, Tamilnadu, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, cDepartment of Sciences, Chemistry and Materials Research Lab, Amrita Vishwa Vidyapeetham University, Ettimadai, Coimbatore 641 112, India, and dDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ryamuna1@gmail.com, chakkaravarthi_2005@yahoo.com

(Received 13 November 2013; accepted 16 November 2013; online 23 November 2013)

In the title compound, C18H16BrNO3S, the dihedral angle between the phenyl ring and the indole ring system is 89.91 (11)°. The mol­ecular structure features weak C—H⋯O and C—H⋯Br hydrogen bonds. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming chains along the a-axis direction. The chains are further linked by C—H⋯π inter­actions, forming a layer parallel to the ab plane.

Related literature

For the biological activity of indole derivatives, see: Chai et al. (2006[Chai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.]); Nieto et al. (2005[Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.]). For related structures, see: Chakkaravarthi et al. (2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o749.], 2010[Chakkaravarthi, G., Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2010). Acta Cryst. E66, o2957.]). For details of the configuration at the S atom, see: Bassindale (1984[Bassindale, A. (1984). In The Third Dimension in Organic Chemistry. New York: John Wiley and Sons.]). For details of N-atom hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16BrNO3S

  • Mr = 406.29

  • Monoclinic, P 21 /c

  • a = 10.2772 (7) Å

  • b = 8.6610 (6) Å

  • c = 18.8980 (14) Å

  • β = 90.676 (2)°

  • V = 1682.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.58 mm−1

  • T = 295 K

  • 0.38 × 0.34 × 0.30 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.397, Tmax = 0.461

  • 25944 measured reflections

  • 7303 independent reflections

  • 3726 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.133

  • S = 1.00

  • 7303 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Br1 0.93 2.89 3.815 (2) 171
C13—H13⋯O2 0.93 2.39 2.978 (3) 121
C15—H15B⋯O1 0.97 2.15 2.833 (3) 126
C2—H2⋯O3i 0.93 2.59 3.191 (3) 123
C15—H15ACg3ii 0.97 2.74 3.486 (3) 134
C18—H18BCg2iii 0.96 2.66 3.616 (3) 174
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+2; (iii) -x, -y, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indole derivatives exhibit antihepatitis B virus (Chai et al., 2006) and antibacterial (Nieto et al., 2005) activities. We herein report the crystal structure of the title compound (I) (Fig. 1). The bond distances of (I) are comparable with the reported similar structures (Chakkaravarthi et al., 2008, 2010). The bond angles around atom S1 show significant deviation from ideal tetrahedral value [O1—S1—O2 = 120.16 (13)° and N1—S1—C1 = 105.11 (10)°] due to Thorpe-Ignold effect (Bassindale, 1984). The sum of the bond angles around N1 (358.05°) indicates the sp2 hybridization of N1 atom (Beddoes et al., 1986).

The indole ring system is planar, with the dihedral angle between the two rings (N1/C7/C8/C9/C14) and (C9–C14) is 2.00 (12)°. The phenyl ring (C1–C6) makes the dihedral angle of 89.91 (11)° with the indole ring system. The molecular structure is stabilized by weak intramolecular C—H···O and C—H···Br hydrogen bonds (Table 1). The crystal structure exhibit weak intermolecular C—H···O and C—H···π (Table 1 & Fig. 2) interactions.

Related literature top

For the biological activity of indole derivatives, see: Chai et al. (2006); Nieto et al. (2005). For related structures, see: Chakkaravarthi et al. (2008, 2010). For details of the configuration at the S atom, see: Bassindale (1984). For details of N-atom hybridization, see: Beddoes et al. (1986).

Experimental top

A mixture of 1-[2-methyl-1-(phenylsulfonyl)-1H-indol-3-yl]propan-1-one (15 g, 45.87 mmol) and N-bromosuccinimide (9.8 g, 55 mmol) in dry CCl4 (250 ml) containing a catalytic amount of 2,2'-azobis(isobutyronitrile) (50 mg) was refluxed for 3 h. Then, the reaction mixture was cooled to room temperature, filtered off the floated succinimide through Na2SO4 pad and washed with CCl4 (20 ml). Removal of the solvent followed by trituration of the crude product with MeOH (50 ml) gave the title compound, suitable for X-ray diffraction quality.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the b axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involving hydrogen bonding have been omitted.
1-(2-Bromomethyl-1-phenylsulfonyl-1H-indol-3-yl)propan-1-one top
Crystal data top
C18H16BrNO3SF(000) = 824
Mr = 406.29Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5675 reflections
a = 10.2772 (7) Åθ = 2.6–28.2°
b = 8.6610 (6) ŵ = 2.58 mm1
c = 18.8980 (14) ÅT = 295 K
β = 90.676 (2)°Block, colourless
V = 1682.0 (2) Å30.38 × 0.34 × 0.30 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
7303 independent reflections
Radiation source: fine-focus sealed tube3726 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scanθmax = 35.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1615
Tmin = 0.397, Tmax = 0.461k = 1313
25944 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.8633P]
where P = (Fo2 + 2Fc2)/3
7303 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
C18H16BrNO3SV = 1682.0 (2) Å3
Mr = 406.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2772 (7) ŵ = 2.58 mm1
b = 8.6610 (6) ÅT = 295 K
c = 18.8980 (14) Å0.38 × 0.34 × 0.30 mm
β = 90.676 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
7303 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3726 reflections with I > 2σ(I)
Tmin = 0.397, Tmax = 0.461Rint = 0.036
25944 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.00Δρmax = 1.11 e Å3
7303 reflectionsΔρmin = 0.90 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3590 (2)0.2855 (3)1.15387 (11)0.0316 (4)
C20.4906 (2)0.2669 (3)1.14030 (14)0.0388 (5)
H20.53490.33871.11300.047*
C30.5545 (2)0.1404 (3)1.16792 (14)0.0478 (6)
H30.64290.12761.15990.057*
C40.4891 (3)0.0341 (4)1.20682 (14)0.0527 (7)
H40.53340.05081.22510.063*
C50.3573 (3)0.0506 (4)1.21952 (16)0.0594 (8)
H50.31340.02361.24560.071*
C60.2917 (2)0.1775 (3)1.19338 (14)0.0468 (6)
H60.20350.19061.20210.056*
C70.03158 (18)0.3688 (2)1.08099 (11)0.0276 (4)
C80.0180 (2)0.2867 (2)1.02518 (11)0.0290 (4)
C90.0851 (2)0.2600 (2)0.97521 (11)0.0304 (4)
C100.0935 (2)0.1861 (3)0.90938 (12)0.0407 (5)
H100.02170.13590.88980.049*
C110.2110 (3)0.1894 (3)0.87400 (14)0.0492 (7)
H110.21730.14070.83030.059*
C120.3188 (3)0.2635 (3)0.90221 (14)0.0491 (7)
H120.39570.26460.87680.059*
C130.3152 (2)0.3356 (3)0.96705 (13)0.0411 (6)
H130.38800.38470.98610.049*
C140.19702 (19)0.3317 (3)1.00296 (11)0.0306 (4)
C150.0399 (2)0.4324 (3)1.14247 (12)0.0358 (5)
H15A0.12350.47171.12640.043*
H15B0.00900.51791.16250.043*
C160.1576 (2)0.2394 (3)1.02006 (13)0.0355 (5)
C170.2006 (2)0.1315 (3)0.96217 (14)0.0419 (6)
H17A0.14400.04180.96210.050*
H17B0.19220.18290.91690.050*
C180.3408 (3)0.0787 (4)0.97091 (16)0.0561 (7)
H18A0.34940.02681.01550.084*
H18B0.36390.00930.93320.084*
H18C0.39750.16680.96960.084*
N10.16494 (16)0.3982 (2)1.06867 (9)0.0299 (4)
O10.21453 (16)0.5195 (2)1.18571 (10)0.0523 (5)
O20.36972 (17)0.5470 (2)1.08811 (11)0.0523 (5)
O30.23528 (17)0.2863 (3)1.06323 (11)0.0571 (5)
S10.28085 (5)0.45547 (7)1.12687 (3)0.03548 (14)
Br10.06733 (3)0.27582 (4)1.215850 (15)0.06069 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (9)0.0409 (12)0.0268 (10)0.0035 (9)0.0028 (8)0.0044 (9)
C20.0273 (10)0.0475 (14)0.0417 (13)0.0015 (9)0.0007 (9)0.0020 (11)
C30.0305 (11)0.0644 (18)0.0484 (15)0.0119 (11)0.0046 (10)0.0013 (13)
C40.0490 (14)0.0675 (19)0.0415 (14)0.0214 (14)0.0025 (12)0.0139 (13)
C50.0545 (16)0.072 (2)0.0515 (16)0.0105 (15)0.0129 (13)0.0290 (15)
C60.0332 (11)0.0619 (17)0.0456 (15)0.0068 (11)0.0090 (10)0.0126 (13)
C70.0253 (8)0.0293 (11)0.0281 (10)0.0034 (8)0.0001 (8)0.0040 (8)
C80.0285 (9)0.0303 (11)0.0281 (10)0.0006 (8)0.0007 (8)0.0036 (8)
C90.0324 (10)0.0318 (11)0.0270 (10)0.0045 (8)0.0001 (8)0.0047 (8)
C100.0456 (13)0.0457 (14)0.0307 (12)0.0055 (11)0.0012 (10)0.0033 (10)
C110.0534 (15)0.0605 (17)0.0339 (13)0.0191 (13)0.0064 (11)0.0038 (12)
C120.0409 (12)0.0657 (18)0.0411 (14)0.0144 (12)0.0138 (11)0.0046 (13)
C130.0302 (10)0.0525 (15)0.0409 (13)0.0053 (10)0.0052 (10)0.0047 (11)
C140.0283 (9)0.0341 (11)0.0294 (10)0.0056 (8)0.0008 (8)0.0040 (9)
C150.0331 (10)0.0424 (13)0.0321 (11)0.0050 (9)0.0036 (9)0.0016 (10)
C160.0308 (10)0.0373 (13)0.0383 (12)0.0023 (9)0.0034 (9)0.0044 (10)
C170.0404 (12)0.0399 (14)0.0452 (14)0.0030 (10)0.0091 (11)0.0015 (11)
C180.0482 (15)0.0594 (18)0.0606 (18)0.0179 (13)0.0115 (13)0.0020 (15)
N10.0244 (7)0.0356 (10)0.0296 (9)0.0016 (7)0.0013 (7)0.0002 (8)
O10.0429 (9)0.0590 (12)0.0548 (11)0.0097 (8)0.0095 (8)0.0286 (9)
O20.0412 (9)0.0383 (10)0.0774 (14)0.0094 (8)0.0049 (9)0.0062 (10)
O30.0341 (9)0.0783 (14)0.0593 (13)0.0117 (9)0.0086 (8)0.0156 (11)
S10.0297 (2)0.0333 (3)0.0434 (3)0.0002 (2)0.0058 (2)0.0068 (2)
Br10.04826 (16)0.0928 (3)0.04125 (16)0.01267 (15)0.01231 (12)0.02479 (15)
Geometric parameters (Å, º) top
C1—C61.386 (3)C11—C121.382 (4)
C1—C21.389 (3)C11—H110.9300
C1—S11.750 (2)C12—C131.376 (4)
C2—C31.376 (4)C12—H120.9300
C2—H20.9300C13—C141.399 (3)
C3—C41.361 (4)C13—H130.9300
C3—H30.9300C14—N11.411 (3)
C4—C51.385 (4)C15—Br11.963 (2)
C4—H40.9300C15—H15A0.9700
C5—C61.378 (4)C15—H15B0.9700
C5—H50.9300C16—O31.218 (3)
C6—H60.9300C16—C171.502 (3)
C7—C81.366 (3)C17—C181.522 (3)
C7—N11.416 (2)C17—H17A0.9700
C7—C151.488 (3)C17—H17B0.9700
C8—C91.446 (3)C18—H18A0.9600
C8—C161.494 (3)C18—H18B0.9600
C9—C101.403 (3)C18—H18C0.9600
C9—C141.403 (3)N1—S11.6864 (18)
C10—C111.387 (4)O1—S11.4236 (18)
C10—H100.9300O2—S11.4193 (19)
C6—C1—C2121.0 (2)C12—C13—C14117.0 (2)
C6—C1—S1119.62 (17)C12—C13—H13121.5
C2—C1—S1119.21 (19)C14—C13—H13121.5
C3—C2—C1118.9 (2)C13—C14—C9122.8 (2)
C3—C2—H2120.6C13—C14—N1129.1 (2)
C1—C2—H2120.6C9—C14—N1108.08 (17)
C4—C3—C2120.5 (2)C7—C15—Br1111.86 (16)
C4—C3—H3119.8C7—C15—H15A109.2
C2—C3—H3119.8Br1—C15—H15A109.2
C3—C4—C5120.9 (2)C7—C15—H15B109.2
C3—C4—H4119.5Br1—C15—H15B109.2
C5—C4—H4119.5H15A—C15—H15B107.9
C6—C5—C4119.7 (3)O3—C16—C8120.1 (2)
C6—C5—H5120.2O3—C16—C17120.4 (2)
C4—C5—H5120.2C8—C16—C17119.5 (2)
C5—C6—C1119.1 (2)C16—C17—C18112.2 (2)
C5—C6—H6120.5C16—C17—H17A109.2
C1—C6—H6120.5C18—C17—H17A109.2
C8—C7—N1108.64 (18)C16—C17—H17B109.2
C8—C7—C15127.79 (19)C18—C17—H17B109.2
N1—C7—C15123.36 (19)H17A—C17—H17B107.9
C7—C8—C9108.54 (18)C17—C18—H18A109.5
C7—C8—C16122.81 (19)C17—C18—H18B109.5
C9—C8—C16128.6 (2)H18A—C18—H18B109.5
C10—C9—C14118.3 (2)C17—C18—H18C109.5
C10—C9—C8134.9 (2)H18A—C18—H18C109.5
C14—C9—C8106.79 (19)H18B—C18—H18C109.5
C11—C10—C9118.8 (2)C14—N1—C7107.94 (17)
C11—C10—H10120.6C14—N1—S1121.55 (14)
C9—C10—H10120.6C7—N1—S1128.56 (14)
C12—C11—C10121.5 (2)O2—S1—O1120.16 (13)
C12—C11—H11119.3O2—S1—N1106.36 (11)
C10—C11—H11119.3O1—S1—N1106.44 (9)
C13—C12—C11121.6 (2)O2—S1—C1108.93 (11)
C13—C12—H12119.2O1—S1—C1108.79 (11)
C11—C12—H12119.2N1—S1—C1105.11 (10)
C6—C1—C2—C31.2 (4)N1—C7—C15—Br1103.6 (2)
S1—C1—C2—C3173.4 (2)C7—C8—C16—O37.0 (4)
C1—C2—C3—C41.2 (4)C9—C8—C16—O3171.7 (2)
C2—C3—C4—C50.1 (5)C7—C8—C16—C17171.8 (2)
C3—C4—C5—C61.0 (5)C9—C8—C16—C179.5 (3)
C4—C5—C6—C10.9 (5)O3—C16—C17—C186.7 (4)
C2—C1—C6—C50.2 (4)C8—C16—C17—C18172.2 (2)
S1—C1—C6—C5174.4 (2)C13—C14—N1—C7177.2 (2)
N1—C7—C8—C90.5 (2)C9—C14—N1—C70.8 (2)
C15—C7—C8—C9175.3 (2)C13—C14—N1—S117.4 (3)
N1—C7—C8—C16178.40 (19)C9—C14—N1—S1164.61 (15)
C15—C7—C8—C163.7 (3)C8—C7—N1—C140.2 (2)
C7—C8—C9—C10179.2 (2)C15—C7—N1—C14174.9 (2)
C16—C8—C9—C100.4 (4)C8—C7—N1—S1163.90 (16)
C7—C8—C9—C141.0 (2)C15—C7—N1—S121.1 (3)
C16—C8—C9—C14177.8 (2)C14—N1—S1—O249.4 (2)
C14—C9—C10—C111.1 (3)C7—N1—S1—O2148.47 (19)
C8—C9—C10—C11176.9 (2)C14—N1—S1—O1178.65 (18)
C9—C10—C11—C120.0 (4)C7—N1—S1—O119.2 (2)
C10—C11—C12—C130.8 (4)C14—N1—S1—C166.04 (19)
C11—C12—C13—C140.5 (4)C7—N1—S1—C196.1 (2)
C12—C13—C14—C90.7 (4)C6—C1—S1—O2179.4 (2)
C12—C13—C14—N1178.4 (2)C2—C1—S1—O24.7 (2)
C10—C9—C14—C131.5 (3)C6—C1—S1—O146.8 (2)
C8—C9—C14—C13177.0 (2)C2—C1—S1—O1127.98 (19)
C10—C9—C14—N1179.7 (2)C6—C1—S1—N166.9 (2)
C8—C9—C14—N11.1 (2)C2—C1—S1—N1118.35 (19)
C8—C7—C15—Br182.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Br10.932.893.815 (2)171
C13—H13···O20.932.392.978 (3)121
C15—H15B···O10.972.152.833 (3)126
C2—H2···O3i0.932.593.191 (3)123
C15—H15A···Cg3ii0.972.743.486 (3)134
C18—H18B···Cg2iii0.962.663.616 (3)174
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+2; (iii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Br10.932.893.815 (2)171
C13—H13···O20.932.392.978 (3)121
C15—H15B···O10.972.152.833 (3)126
C2—H2···O3i0.932.593.191 (3)123
C15—H15A···Cg3ii0.972.743.486 (3)134
C18—H18B···Cg2iii0.962.663.616 (3)174
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+2; (iii) x, y, z+2.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBassindale, A. (1984). In The Third Dimension in Organic Chemistry. New York: John Wiley and Sons.  Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o749.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2010). Acta Cryst. E66, o2957.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1802-o1803
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds