metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m655-m656

catena-Poly[[aqua­lithium(I)]-μ-3-carb­­oxy-5,6-di­methyl­pyrazine-2-carboxyl­ato-κ4O2,N1:O3,N4]

aInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 31 October 2013; accepted 6 November 2013; online 13 November 2013)

The asymmetric unit of the title compound, [Li(C8H6N2O4)(H2O)]n, comprises three Li cations, two of which are located on a twofold rotation axis, two carboxylate anions and three water mol­ecules, of which two are situated on the twofold rotation axis being aqua ligands. Both carboxylate anions are in μ2-bridging mode. All Li ions show a trigonal–bipyramidal coordination mode; the two located in special positions are bridged through N,O-bonding sites generating a polymeric ribbon along the c-axis direction. The Li cation in a general position creates an independent polymeric ribbon through N,O-bonding sites of the two symmetry-related ligands; the trigonal–bipyramidal coordination is completed by an aqua ligand. In both carboxylate anions, a carboxyl­ate and a carb­oxy­lic acid group form an intra­molecular hydrogen bond. The polymeric ribbons running along [001] are inter­connected by hydrogen bonds in which the water mol­ecules act as donors and carboxyl­ate O atoms act as acceptors, giving rise to a three-dimensional architecture.

Related literature

For the structures of lithium complexes with pyrazine-2,3-di­carboxyl­ate ligands, see: Tombul et al. (2008[Tombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491-m492.]); Tombul & Güven (2009)[Tombul, M. & Guven, K. (2009). Acta Cryst. E65, m1704-m1705.]; Starosta & Leciejewicz (2011[Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m1133-m1134.], 2013[Starosta, W. & Leciejewicz, J. (2013). Acta Cryst. E69, m62.]). The structure of 5,6-di­methyl­pyrazine-2,3-di­carb­oxy­lic acid dihydrate was reported by Vishwershwar et al. (2001[Vishwershwar, P., Nangia, A. & Lynch, V. M. (2001). Chem. Commun. pp. 179-180.]).

[Scheme 1]

Experimental

Crystal data
  • [Li(C8H7N2O4)(H2O)]

  • Mr = 220.11

  • Monoclinic, C 2/c

  • a = 16.9052 (2) Å

  • b = 16.7980 (2) Å

  • c = 14.3805 (2) Å

  • β = 97.272 (1)°

  • V = 4050.83 (9) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 1.02 mm−1

  • T = 293 K

  • 0.24 × 0.07 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), using a multifaceted crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.738, Tmax = 0.958

  • 37580 measured reflections

  • 3808 independent reflections

  • 2898 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 0.97

  • 3808 reflections

  • 319 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Selected bond lengths (Å)

Li11—O15 1.915 (4)
Li11—O11 1.9473 (19)
Li11—O11i 1.9472 (19)
Li11—N11i 2.3128 (14)
Li11—N11 2.3129 (14)
Li12—O16 1.884 (4)
Li12—O13 1.920 (2)
Li12—O13ii 1.920 (2)
Li12—N14ii 2.3446 (12)
Li12—N14 2.3446 (12)
Li21—O25 1.902 (3)
Li21—O21 1.923 (3)
Li21—O24iii 1.949 (3)
Li21—N21 2.276 (3)
Li21—N24iii 2.324 (3)
Symmetry codes: (i) [-x, y, -z+{\script{3\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) [x, -y, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O22—H221⋯O23 1.18 (3) 1.19 (3) 2.3693 (18) 177 (3)
O12—H121⋯O14 1.14 (3) 1.24 (3) 2.3777 (18) 177 (3)
O16—H161⋯O22iv 0.82 (3) 2.01 (3) 2.8268 (18) 173 (3)
O15—H151⋯O24iv 0.85 (3) 2.22 (4) 2.989 (2) 150 (3)
O15—H151⋯O23iv 0.85 (3) 2.34 (3) 3.1201 (14) 153 (3)
O25—H251⋯O12v 0.91 (3) 2.03 (3) 2.938 (2) 174 (2)
O25—H252⋯O14ii 0.80 (3) 2.20 (3) 2.975 (2) 163 (3)
O25—H252⋯O13ii 0.80 (3) 2.43 (3) 3.078 (2) 139 (3)
Symmetry codes: (ii) [-x, y, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit of the title compound contains three Li cations (two of them located on the rotation twofold axes), two ligand and three water molecules (two of them located on the rotation twofold axes). Two water-coordinated Li ions bridged by a ligand via both N,O bonding sites form the type 1 molecular ribbon; the type 2 ribbon is built of units composed of a water-coordinated Li cation and a ligand which also uses its N,O bonding sites (Fig.1, Table 1). Both ligands act in µ2 bridging mode. All three Li cations show slightly distorted trigonal bipyramidal coordination geometry. The Li11 cation is situated in the equatorial plane composed of O11, O11ii and O15 atoms; N11 and N11ii atoms are in the apical positions. The equatorial plane of Li12 coordination is formed by O13, O13iii and O16 atoms and N14and N14iii atoms are at the apices; Li12 is coplanar with the equatorial ligand plane. However, Li21 cation is 0.0142 (2) Å out of the equatorial plane of O21, O21i and O25 atoms; N21 and N21i are at the apices. The Li—O and Li—N bond distances (Table 2), fall in the range observed in the structures of other Li complexes with diazine carboxylate ligands. Methyl carbon and pyrazine ring atoms of both ligands are coplanar with r.m.s of 0.0062 (1) Å in the ligand 1 and 0.0193 (2) Å in the ligand 2. The carboxylic groups C11/O11/O12 and C18/O13/O14 form with the ligand 1 ring dihedral angles of 6.1 (1)° and 10.9 (1)°, respectively. The dihedral angles between ligand 2 ring and carboxyl groups C27/O21/O22 and C28/O23/O24 are 1.2 (1)° and 9.0 (1)°, respectively. In both ligands the second carboxyl O atoms remain protonated and act as donors in the short intramolecular hydrogen bonds. Bond distances and bond angles within the ligand molecules do not differ from those reported in the structure of the parent acid (Vishwershwar et al., 2001). Two ribbons of the same type form pairs which propagate in the [001] direction. The planes of ribbon 1 and ribbon 2 pairs are inclined 91.9 (3)° each to the other (Fig. 2). They are held together by a system of hydrogen bonds in which water molecules act as donors and carboxyl O atoms as acceptors (Table 3).

Molecular ribbons built of Li ions bridged by pyrazine-2,3-dicarboxylate ligand via its both N,O bonding sites constitute the building units of four catenated polymeric structures of Li complexes with this ligand. In all of them, Li coordination is trigonal bipyramidal (Tombul et al., 2008), (Tombul & Güven, 2009), (Starosta & Leciejewicz, 2011), (Starosta & Leciejewicz, 2013).

Related literature top

For the structures of lithium complexes with pyrazine-2,3-dicarboxylate ligands, see: Tombul et al. (2008); Tombul & Güven (2009); Starosta & Leciejewicz (2011); Starosta & Leciejewicz (2013). The structure of 5,6-dimethylpyrazine-2,3-dicarboxylic acid dihtdrate was reported by Vishwershwar et al. (2001).

Experimental top

To 50 mL of a solution of 5,6-dimethylpyrazine-2,3-dicarboxylic acid dihydrate in doubly distilled water an 1 N solution of LiOH was added by drops until pH reached 5.5. Then, the solution was boiled under reflux with stirring for 5 h. After cooling to room temperature, the solution was left to crystallize. The material which was found after evaporation to dryness was recrystallized from cold water. The obtained single-crystal blocks were washed with cold ethanol and dried in air.

Refinement top

Hydrogen atoms belonging to water molecules and the carboxylic group were located in a difference map and refined isotropically while twelve methyl H atoms were located at calculated positions and treated as riding on the parent C atoms with C—H=0.96 Å.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structural units of the title complex with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: (i) -x, y, -z + 3/2; (ii) -x, y, -z + 1/2; (iii): x, -y, z + 1/2.
[Figure 2] Fig. 2. The packing of molecular ribbons viewed along the [001] direction.
catena-Poly[[aqualithium(I)]-µ-3-carboxy-5,6-dimethylpyrazine-2-carboxylato-κ4O2,N1:O3,N4] top
Crystal data top
[Li(C8H7N2O4)(H2O)]Z = 16
Mr = 220.11F(000) = 1824
Monoclinic, C2/cDx = 1.444 Mg m3
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54178 Å
a = 16.9052 (2) ŵ = 1.02 mm1
b = 16.7980 (2) ÅT = 293 K
c = 14.3805 (2) ÅPlate, colourless
β = 97.272 (1)°0.24 × 0.07 × 0.02 mm
V = 4050.83 (9) Å3
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3808 independent reflections
Radiation source: Enhance (Cu) X-ray Source2898 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 10.4922 pixels mm-1θmax = 70.1°, θmin = 3.7°
rotation method, ω scansh = 2020
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010), using a multifaceted crystal model (Clark & Reid, 1995)]
k = 2020
Tmin = 0.738, Tmax = 0.958l = 1517
37580 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0785P)2]
where P = (Fo2 + 2Fc2)/3
3808 reflections(Δ/σ)max < 0.001
319 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
[Li(C8H7N2O4)(H2O)]V = 4050.83 (9) Å3
Mr = 220.11Z = 16
Monoclinic, C2/cCu Kα radiation
a = 16.9052 (2) ŵ = 1.02 mm1
b = 16.7980 (2) ÅT = 293 K
c = 14.3805 (2) Å0.24 × 0.07 × 0.02 mm
β = 97.272 (1)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3808 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010), using a multifaceted crystal model (Clark & Reid, 1995)]
2898 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.958Rint = 0.039
37580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.18 e Å3
3808 reflectionsΔρmin = 0.19 e Å3
319 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.66 (release 28-04-2010 CrysAlis171 .NET) (compiled Apr 28 2010,14:27:37) Analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O210.40317 (10)0.10768 (8)0.21913 (9)0.0790 (4)
O220.44031 (11)0.17638 (7)0.10322 (10)0.0800 (5)
H2210.4499 (17)0.1704 (18)0.023 (2)0.120 (10)*
O240.42558 (9)0.07834 (9)0.17086 (8)0.0700 (4)
O230.46000 (10)0.16051 (7)0.05594 (9)0.0715 (4)
N210.36865 (7)0.02096 (7)0.12139 (8)0.0424 (3)
C220.39606 (8)0.04057 (8)0.07412 (10)0.0401 (3)
C230.40339 (8)0.03291 (8)0.02084 (10)0.0404 (3)
N240.38516 (7)0.03671 (7)0.06538 (8)0.0440 (3)
C250.36067 (9)0.09750 (8)0.01817 (11)0.0459 (3)
C260.35079 (9)0.08917 (9)0.07754 (11)0.0447 (3)
C270.41428 (11)0.11261 (10)0.13755 (12)0.0545 (4)
C280.43074 (10)0.09444 (10)0.08791 (11)0.0501 (4)
C290.34350 (14)0.17437 (11)0.07011 (14)0.0694 (5)
H2910.35710.16920.13260.104*
H2930.37460.21630.03820.104*
H2920.28780.18680.07270.104*
C300.31919 (13)0.15546 (10)0.13190 (13)0.0660 (5)
H3020.31410.13750.19420.099*
H3010.26790.17170.10140.099*
H3030.35530.19980.13490.099*
O110.09821 (8)0.12180 (9)0.68432 (9)0.0681 (4)
O120.16977 (7)0.06333 (9)0.56697 (9)0.0686 (4)
H1210.1667 (15)0.0483 (16)0.4900 (19)0.100 (8)*
O130.08820 (9)0.05683 (9)0.29824 (8)0.0707 (4)
O140.16205 (7)0.02872 (9)0.40804 (9)0.0681 (4)
N110.02790 (7)0.13911 (7)0.59970 (8)0.0420 (3)
C120.03649 (8)0.10845 (8)0.54690 (10)0.0389 (3)
C130.03376 (8)0.09184 (8)0.45215 (10)0.0401 (3)
N140.03342 (8)0.10634 (7)0.41328 (8)0.0444 (3)
C150.09685 (9)0.13481 (9)0.46587 (11)0.0464 (3)
C160.09424 (9)0.15177 (9)0.56170 (11)0.0454 (3)
C170.10577 (9)0.09773 (9)0.60402 (11)0.0483 (4)
C180.09889 (10)0.05765 (9)0.38036 (12)0.0504 (4)
C190.17054 (12)0.14820 (14)0.41993 (14)0.0704 (5)
H1910.16170.12970.35630.106*
H1930.21430.11940.45340.106*
H1920.18290.20400.42070.106*
C200.16447 (11)0.18443 (13)0.62319 (13)0.0666 (5)
H2030.15120.19090.68570.100*
H2010.17890.23510.59940.100*
H2020.20860.14830.62400.100*
O150.00000.27959 (11)0.75000.0753 (6)
O250.25338 (8)0.01032 (11)0.27697 (12)0.0805 (5)
Li110.00000.1656 (2)0.75000.0537 (9)
Li210.36552 (17)0.01282 (17)0.2742 (2)0.0548 (6)
Li120.00000.1074 (2)0.25000.0558 (9)
O160.00000.21954 (12)0.25000.1067 (11)
H1610.0175 (17)0.2467 (17)0.2957 (18)0.105 (9)*
H1510.016 (2)0.310 (2)0.709 (2)0.160 (15)*
H2510.2275 (17)0.0304 (16)0.323 (2)0.105 (9)*
H2520.220 (2)0.0018 (19)0.233 (2)0.120 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O210.1200 (12)0.0716 (8)0.0510 (7)0.0362 (8)0.0324 (8)0.0182 (6)
O220.1352 (13)0.0487 (6)0.0592 (8)0.0289 (7)0.0239 (8)0.0074 (6)
O240.0872 (9)0.0831 (8)0.0404 (7)0.0274 (7)0.0114 (6)0.0068 (6)
O230.1044 (11)0.0566 (7)0.0541 (7)0.0250 (7)0.0130 (7)0.0077 (6)
N210.0435 (6)0.0453 (6)0.0380 (6)0.0021 (5)0.0043 (5)0.0027 (5)
C220.0396 (7)0.0425 (7)0.0381 (7)0.0009 (6)0.0046 (6)0.0022 (6)
C230.0366 (7)0.0443 (7)0.0397 (8)0.0007 (6)0.0028 (6)0.0025 (6)
N240.0439 (6)0.0491 (7)0.0391 (7)0.0010 (5)0.0053 (5)0.0019 (5)
C250.0455 (8)0.0444 (7)0.0474 (9)0.0011 (6)0.0041 (7)0.0015 (6)
C260.0451 (8)0.0436 (7)0.0447 (8)0.0015 (6)0.0030 (6)0.0043 (6)
C270.0681 (10)0.0500 (8)0.0465 (9)0.0109 (7)0.0124 (8)0.0059 (7)
C280.0506 (8)0.0575 (9)0.0420 (9)0.0052 (7)0.0057 (7)0.0085 (7)
C290.0900 (14)0.0540 (9)0.0656 (12)0.0134 (9)0.0150 (10)0.0126 (8)
C300.0877 (13)0.0502 (9)0.0603 (11)0.0150 (9)0.0105 (10)0.0088 (8)
O110.0600 (7)0.0964 (9)0.0515 (7)0.0178 (7)0.0216 (6)0.0156 (7)
O120.0442 (6)0.1023 (10)0.0612 (8)0.0187 (6)0.0142 (6)0.0090 (7)
O130.0803 (9)0.0879 (9)0.0423 (7)0.0275 (7)0.0018 (6)0.0057 (6)
O140.0529 (7)0.0927 (9)0.0578 (7)0.0220 (6)0.0031 (6)0.0094 (7)
N110.0428 (6)0.0435 (6)0.0399 (6)0.0034 (5)0.0060 (5)0.0022 (5)
C120.0402 (7)0.0363 (6)0.0405 (8)0.0005 (5)0.0055 (6)0.0034 (5)
C130.0427 (7)0.0367 (6)0.0407 (8)0.0013 (5)0.0047 (6)0.0029 (6)
N140.0493 (7)0.0442 (6)0.0411 (7)0.0022 (5)0.0107 (6)0.0021 (5)
C150.0447 (8)0.0474 (8)0.0487 (8)0.0029 (6)0.0115 (7)0.0027 (6)
C160.0437 (8)0.0467 (7)0.0459 (8)0.0045 (6)0.0068 (7)0.0050 (6)
C170.0431 (8)0.0536 (8)0.0494 (9)0.0010 (6)0.0102 (7)0.0003 (7)
C180.0527 (9)0.0500 (8)0.0474 (9)0.0041 (7)0.0019 (7)0.0003 (7)
C190.0571 (11)0.0933 (14)0.0649 (12)0.0168 (10)0.0236 (9)0.0071 (10)
C200.0524 (10)0.0911 (13)0.0556 (10)0.0229 (9)0.0045 (8)0.0006 (9)
O150.0985 (15)0.0525 (9)0.0844 (14)0.0000.0487 (12)0.000
O250.0477 (7)0.1254 (13)0.0678 (9)0.0029 (7)0.0043 (7)0.0356 (9)
Li110.058 (2)0.056 (2)0.048 (2)0.0000.0099 (18)0.000
Li210.0579 (15)0.0626 (15)0.0455 (14)0.0016 (13)0.0125 (12)0.0005 (12)
Li120.071 (2)0.051 (2)0.046 (2)0.0000.0093 (19)0.000
O160.194 (3)0.0423 (9)0.0687 (14)0.0000.0406 (17)0.000
Geometric parameters (Å, º) top
O21—C271.214 (2)C27—Li212.786 (3)
Li11—O151.915 (4)C29—H2910.9600
Li11—O111.9473 (19)C29—H2930.9600
Li11—O11i1.9472 (19)C29—H2920.9600
Li11—N11i2.3128 (14)C30—H3020.9600
Li11—N112.3129 (14)C30—H3010.9600
Li12—O161.884 (4)C30—H3030.9600
Li12—O131.920 (2)O11—C171.215 (2)
Li12—O13ii1.920 (2)O12—C171.282 (2)
Li12—N14ii2.3446 (12)O12—H1211.14 (3)
Li12—N142.3446 (12)O13—C181.217 (2)
Li21—O251.902 (3)O14—C181.282 (2)
Li21—O211.923 (3)O14—H1211.24 (3)
Li21—O24iii1.949 (3)N11—C161.3255 (19)
Li21—N212.276 (3)N11—C121.3481 (19)
Li21—N24iii2.324 (3)C12—C131.397 (2)
O22—C271.281 (2)C12—C171.524 (2)
O22—H2211.18 (3)C13—N141.3499 (19)
O24—C281.215 (2)C13—C181.523 (2)
O24—Li21iv1.949 (3)N14—C151.321 (2)
O23—C281.277 (2)C15—C161.413 (2)
O23—H2211.19 (3)C15—C191.499 (2)
N21—C261.3242 (19)C16—C201.492 (2)
N21—C221.3509 (18)C19—H1910.9600
C22—C231.393 (2)C19—H1930.9600
C22—C271.523 (2)C19—H1920.9600
C23—N241.3502 (19)C20—H2030.9600
C23—C281.525 (2)C20—H2010.9600
N24—C251.3214 (19)C20—H2020.9600
N24—Li21iv2.324 (3)O15—H1510.85 (3)
C25—C261.414 (2)O25—H2510.91 (3)
C25—C291.502 (2)O25—H2520.80 (3)
C26—C301.497 (2)O16—H1610.82 (3)
C27—O21—Li21123.64 (14)N11—C16—C15120.13 (14)
C27—O22—H221113.5 (14)N11—C16—C20117.77 (14)
C28—O24—Li21iv122.81 (14)C15—C16—C20122.09 (14)
C28—O23—H221111.8 (14)O11—C17—O12121.80 (14)
C26—N21—C22119.64 (13)O11—C17—C12118.52 (14)
C26—N21—Li21130.06 (12)O12—C17—C12119.67 (14)
C22—N21—Li21110.26 (12)O13—C18—O14121.93 (15)
N21—C22—C23120.10 (13)O13—C18—C13118.59 (14)
N21—C22—C27111.27 (12)O14—C18—C13119.45 (14)
C23—C22—C27128.63 (13)C15—C19—H191109.5
N24—C23—C22120.12 (13)C15—C19—H193109.5
N24—C23—C28110.88 (13)H191—C19—H193109.5
C22—C23—C28129.00 (13)C15—C19—H192109.5
C25—N24—C23119.55 (13)H191—C19—H192109.5
C25—N24—Li21iv128.96 (12)H193—C19—H192109.5
C23—N24—Li21iv108.47 (12)C16—C20—H203109.5
N24—C25—C26120.45 (13)C16—C20—H201109.5
N24—C25—C29117.55 (14)H203—C20—H201109.5
C26—C25—C29122.00 (14)C16—C20—H202109.5
N21—C26—C25120.07 (13)H203—C20—H202109.5
N21—C26—C30118.02 (14)H201—C20—H202109.5
C25—C26—C30121.90 (14)Li11—O15—H151127 (2)
O21—C27—O22122.16 (15)Li21—O25—H251125.5 (18)
O21—C27—C22118.70 (14)Li21—O25—H252126 (2)
O22—C27—C22119.14 (14)H251—O25—H252107 (3)
O21—C27—Li2135.08 (10)O15—Li11—O11i112.18 (11)
O22—C27—Li21157.24 (13)O15—Li11—O11112.18 (11)
C22—C27—Li2183.62 (10)O11i—Li11—O11135.6 (2)
O24—C28—O23121.55 (15)O15—Li11—N11i101.08 (10)
O24—C28—C23118.69 (14)O11i—Li11—N11i74.72 (6)
O23—C28—C23119.74 (14)O11—Li11—N11i96.81 (8)
C25—C29—H291109.5O15—Li11—N11101.08 (10)
C25—C29—H293109.5O11i—Li11—N1196.80 (8)
H291—C29—H293109.5O11—Li11—N1174.72 (6)
C25—C29—H292109.5N11i—Li11—N11157.8 (2)
H291—C29—H292109.5O25—Li21—O21114.19 (17)
H293—C29—H292109.5O25—Li21—O24iii116.34 (16)
C26—C30—H302109.5O21—Li21—O24iii129.46 (17)
C26—C30—H301109.5O25—Li21—N2199.20 (13)
H302—C30—H301109.5O21—Li21—N2176.11 (10)
C26—C30—H303109.5O24iii—Li21—N2196.95 (13)
H302—C30—H303109.5O25—Li21—N24iii90.02 (12)
H301—C30—H303109.5O21—Li21—N24iii104.63 (13)
C17—O11—Li11124.56 (11)O24iii—Li21—N24iii74.42 (11)
C17—O12—H121111.3 (13)N21—Li21—N24iii169.57 (15)
C18—O13—Li12124.25 (12)O25—Li21—C27114.39 (14)
C18—O14—H121110.6 (12)O21—Li21—C2721.28 (6)
C16—N11—C12119.61 (13)O24iii—Li21—C27124.99 (14)
C16—N11—Li11129.62 (11)N21—Li21—C2754.84 (7)
C12—N11—Li11110.74 (10)N24iii—Li21—C27125.35 (12)
N11—C12—C13120.10 (12)O16—Li12—O13116.26 (11)
N11—C12—C17111.24 (12)O16—Li12—O13ii116.26 (11)
C13—C12—C17128.65 (13)O13—Li12—O13ii127.5 (2)
N14—C13—C12120.07 (13)O16—Li12—N14ii90.44 (10)
N14—C13—C18111.17 (13)O13—Li12—N14ii104.99 (7)
C12—C13—C18128.75 (13)O13ii—Li12—N14ii74.61 (5)
C15—N14—C13119.52 (13)O16—Li12—N1490.44 (10)
C15—N14—Li12130.23 (11)O13—Li12—N1474.61 (5)
C13—N14—Li12107.90 (10)O13ii—Li12—N14104.99 (7)
N14—C15—C16120.53 (14)N14ii—Li12—N14179.1 (2)
N14—C15—C19117.49 (15)Li12—O16—H161123.6 (19)
C16—C15—C19121.98 (15)
Symmetry codes: (i) x, y, z+3/2; (ii) x, y, z+1/2; (iii) x, y, z+1/2; (iv) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H221···O231.18 (3)1.19 (3)2.3693 (18)177 (3)
O12—H121···O141.14 (3)1.24 (3)2.3777 (18)177 (3)
O16—H161···O22v0.82 (3)2.01 (3)2.8268 (18)173 (3)
O15—H151···O24v0.85 (3)2.22 (4)2.989 (2)150 (3)
O15—H151···O23v0.85 (3)2.34 (3)3.1201 (14)153 (3)
O25—H251···O12vi0.91 (3)2.03 (3)2.938 (2)174 (2)
O25—H252···O14ii0.80 (3)2.20 (3)2.975 (2)163 (3)
O25—H252···O13ii0.80 (3)2.43 (3)3.078 (2)139 (3)
Symmetry codes: (ii) x, y, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z+1.
Selected bond lengths (Å) top
Li11—O151.915 (4)Li12—N14ii2.3446 (12)
Li11—O111.9473 (19)Li12—N142.3446 (12)
Li11—O11i1.9472 (19)Li21—O251.902 (3)
Li11—N11i2.3128 (14)Li21—O211.923 (3)
Li11—N112.3129 (14)Li21—O24iii1.949 (3)
Li12—O161.884 (4)Li21—N212.276 (3)
Li12—O131.920 (2)Li21—N24iii2.324 (3)
Li12—O13ii1.920 (2)
Symmetry codes: (i) x, y, z+3/2; (ii) x, y, z+1/2; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H221···O231.18 (3)1.19 (3)2.3693 (18)177 (3)
O12—H121···O141.14 (3)1.24 (3)2.3777 (18)177 (3)
O16—H161···O22iv0.82 (3)2.01 (3)2.8268 (18)173 (3)
O15—H151···O24iv0.85 (3)2.22 (4)2.989 (2)150 (3)
O15—H151···O23iv0.85 (3)2.34 (3)3.1201 (14)153 (3)
O25—H251···O12v0.91 (3)2.03 (3)2.938 (2)174 (2)
O25—H252···O14ii0.80 (3)2.20 (3)2.975 (2)163 (3)
O25—H252···O13ii0.80 (3)2.43 (3)3.078 (2)139 (3)
Symmetry codes: (ii) x, y, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y, z+1.
 

References

First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m1133–m1134.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2013). Acta Cryst. E69, m62.  CSD CrossRef IUCr Journals Google Scholar
First citationTombul, M. & Guven, K. (2009). Acta Cryst. E65, m1704–m1705.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491–m492.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVishwershwar, P., Nangia, A. & Lynch, V. M. (2001). Chem. Commun. pp. 179–180.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m655-m656
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds