organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Formyl-2-nitro­phenyl 2-chloro­benzoate

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 3 October 2013; accepted 15 November 2013; online 23 November 2013)

In the title compound, C14H8ClNO5, the benzene rings form a dihedral angle of 19.55 (9)°. The mean plane of the central ester group [r.m.s. deviation = 0.024 Å] forms dihedral angles of 53.28 (13) and 36.93 (16)°, respectively, with the nitro- and chloro-substituted rings. The nitro group forms a dihedral angle of 19.24 (19)° with the benzene ring to which it is attached. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming C(7) chains, which run along [100].

Related literature

For industrial applications of nitro­aromatic compounds, see: Ju & Parales (2010[Ju, K. S. & Parales, R. E. (2010). Microbiol. Mol. Biol. Rev. 74, 250-272.]). For similar structures, see: Moreno-Fuquen et al. (2013a[Moreno-Fuquen, R., Hernandez, G., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013a). Acta Cryst. E69, o793.],b[Moreno-Fuquen, R., Mosquera, F., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013b). Acta Cryst. E69, o966.]); For information on hydrogen bonds, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]). For hydrogen-bond graph-set motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8ClNO5

  • Mr = 305.66

  • Orthorhombic, P n a 21

  • a = 16.2367 (7) Å

  • b = 7.1047 (2) Å

  • c = 11.4018 (3) Å

  • V = 1315.28 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.22 × 0.19 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 4581 measured reflections

  • 2449 independent reflections

  • 1762 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.120

  • S = 1.03

  • 2449 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack parameter determined using 664 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.05 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O4i 1.10 (6) 2.48 (6) 3.381 (7) 138 (4)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound (I) is part of a series of studies on the structural properties of formyl nitro aryl benzoates, and extends from earlier work from our research group with the synthesis of 4-formyl-2-nitrophenyl 4-bromo benzoate (FBrB) (Moreno-Fuquen et al., 2013a). The nitroaromatic compounds and their derivatives constitute a main class of industrial chemicals and are widely used as intermediates in the synthesis of many varied products, ranging from drugs, pigments, pesticides and plant growth regulators to the explosives (Ju & Parales, 2010). The molecular structure of (I) is shown in Fig. 1. Bond lengths and bond angles of (I) correlate closely with the analogue compound (FBrB) and with other aryl benzoates reported in the literature (Moreno-Fuquen et al., 2013b) with the exception of the dihedral angle between the benzene rings which is 19.55 (9)°. This behavior may be motivated by the presence of the chlorine atom in the ortho position thereby avoiding greater repulsion with the nitro group in the other benzene ring. The ester group (C1-C7(O1)-O2-C8) is twisted away from the nitro-substituted and chloro-substituted benzene rings by 53.28 (13)° and 36.93 (16)° respectively. The nitro group forms a dihedral angle of 19.24 (19)° with the benzene ring to which it is attached. The crystal packing shows no classical hydrogen bonds and it is stabilized by weak C—H···O intermolecular hydrogen bonds, forming C(7) chains (Etter, 1990) along [100] (see Fig. 2). The C14 atom of the aldehyde group at (x,y,z) acts as hydrogen-bond donor to O4 atom at (x-1/2,-y+1/2,+z) (see Table 1; Nardelli, 1995). This interaction probably helps to reinforce the separation between nitro and chlorine groups, which are in different rings of the molecule. In the title structure, halogen···halogen interactions are not observed.

Related literature top

For industrial applications of nitroaromatic compounds, see: Ju & Parales (2010). For similar structures, see: Moreno-Fuquen et al. (2013a,b); For information on hydrogen bonds, see: Nardelli (1995). For hydrogen-bond graph-set motifs, see: Etter (1990).

Experimental top

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title compound was obtained through a two-step reaction. First, 2-chlorobenzoic acid (0.200 g, 1.278 mmol) was placed in reflux with thionyl chloride (5 mL) in chloroform for an hour. Then, the excess of thionyl chloride was distilled to purify the 2-chlorobenzoyl chloride obtained as a pale-yellow translucent liquid. The same reaction flask was rearranged and an equimolar solution (0.213 g) of 4-hydroxy-3-nitrobenzaldehyde in acetonitrile was dropped inside it with 0.1 mL of pyridine. The reaction mixture was taken to room temperature with constant stirring for about an hour. A colorless solid was obtained after leaving the solvent to evaporate. After some difficulties in the crystallization process giving poor quality of crystals grown in different solvents (acetonitrile, dichloromethane, acetone), a colorless crystal of good quality (with some remnant amorphous solid) was obtained from a solution of the title compound in chloroform. IR spectra were recorded on a FT-IR SHIMADZU IR-Affinity-1 spectrophotometer. Colourless crystals; m.p 386 (1)K. IR (KBr) 3427.96 cm-1, 3081.33 cm-1 (aromatic C—H); 1758.36 cm-1 (ester CO); 1698.30 cm-1 (benzaldehyde CO), 1216.94 cm-1 (ester C—O); 1533.94 cm-1, 1347.37 cm-1 (nitro –NO2); 1020.56 cm-1 (CC); 749.93 cm-1(Cl—C).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of chains running along [100] (symmetry code: (i) x-1/2, -y+1/2, z).
4-Formyl-2-nitrophenyl 2-chlorobenzoate top
Crystal data top
C14H8ClNO5Dx = 1.544 Mg m3
Mr = 305.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 4580 reflections
a = 16.2367 (7) Åθ = 3.1–26.0°
b = 7.1047 (2) ŵ = 0.31 mm1
c = 11.4018 (3) ÅT = 293 K
V = 1315.28 (8) Å3Prism, colourless
Z = 40.22 × 0.19 × 0.03 mm
F(000) = 624
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.030
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 3.1°
CCD rotation images, thick slices scansh = 2019
4581 measured reflectionsk = 88
2449 independent reflectionsl = 1412
1762 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0719P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.20 e Å3
2449 reflectionsΔρmin = 0.19 e Å3
194 parametersAbsolute structure: Flack parameter determined using 664 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.05 (5)
Crystal data top
C14H8ClNO5V = 1315.28 (8) Å3
Mr = 305.66Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 16.2367 (7) ŵ = 0.31 mm1
b = 7.1047 (2) ÅT = 293 K
c = 11.4018 (3) Å0.22 × 0.19 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
1762 reflections with I > 2σ(I)
4581 measured reflectionsRint = 0.030
2449 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120Δρmax = 0.20 e Å3
S = 1.03Δρmin = 0.19 e Å3
2449 reflectionsAbsolute structure: Flack parameter determined using 664 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
194 parametersAbsolute structure parameter: 0.05 (5)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22510 (10)0.32842 (19)0.13842 (11)0.0778 (5)
N10.3173 (2)0.2738 (6)0.7453 (3)0.0584 (9)
O10.2028 (2)0.1765 (5)0.3854 (3)0.0738 (10)
O20.27033 (18)0.3692 (4)0.5103 (3)0.0553 (8)
O30.3734 (2)0.3131 (6)0.6813 (4)0.0923 (13)
O40.3268 (3)0.1925 (6)0.8386 (3)0.0919 (13)
O50.0483 (3)0.3553 (6)0.9720 (4)0.0923 (13)
C10.3298 (3)0.3250 (5)0.3259 (4)0.0510 (11)
C20.4090 (3)0.3457 (6)0.3744 (5)0.0613 (12)
H20.41630.33700.45520.074*
C30.4757 (3)0.3789 (7)0.3028 (6)0.0732 (14)
H30.52800.39080.33520.088*
C40.4654 (4)0.3944 (7)0.1839 (5)0.0787 (17)
H40.51090.41630.13620.094*
C50.3891 (4)0.3780 (7)0.1347 (5)0.0733 (15)
H50.38270.39070.05400.088*
C60.3205 (3)0.3422 (6)0.2056 (4)0.0587 (12)
C70.2598 (3)0.2788 (7)0.4038 (4)0.0534 (11)
C80.2101 (3)0.3581 (6)0.5953 (4)0.0474 (10)
C90.1291 (3)0.4003 (7)0.5704 (4)0.0556 (11)
H90.11350.42760.49380.067*
C100.0713 (3)0.4020 (6)0.6588 (4)0.0564 (11)
H100.01660.42850.64110.068*
C110.0937 (3)0.3646 (5)0.7739 (4)0.0510 (10)
C120.1744 (3)0.3209 (5)0.7998 (4)0.0488 (10)
H120.18970.29370.87660.059*
C130.2326 (3)0.3176 (5)0.7108 (4)0.0452 (10)
C140.0319 (4)0.3748 (8)0.8689 (6)0.0731 (14)
H140.029 (4)0.423 (8)0.840 (5)0.098 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0968 (11)0.0838 (8)0.0528 (7)0.0064 (7)0.0095 (8)0.0049 (6)
N10.051 (2)0.076 (2)0.048 (2)0.003 (2)0.0027 (18)0.0013 (19)
O10.079 (2)0.080 (2)0.062 (2)0.018 (2)0.0142 (18)0.0172 (16)
O20.0544 (18)0.075 (2)0.0363 (16)0.0051 (15)0.0054 (13)0.0026 (14)
O30.047 (2)0.156 (4)0.074 (3)0.006 (2)0.0005 (18)0.027 (2)
O40.076 (3)0.142 (4)0.058 (2)0.024 (2)0.0046 (18)0.028 (2)
O50.093 (3)0.128 (3)0.056 (3)0.002 (2)0.027 (2)0.0030 (19)
C10.062 (3)0.050 (2)0.041 (2)0.004 (2)0.007 (2)0.0024 (17)
C20.065 (3)0.062 (3)0.057 (3)0.000 (2)0.007 (2)0.001 (2)
C30.067 (4)0.071 (3)0.081 (4)0.005 (3)0.013 (3)0.008 (2)
C40.087 (4)0.072 (3)0.077 (4)0.022 (3)0.034 (3)0.015 (3)
C50.105 (5)0.064 (3)0.051 (3)0.008 (3)0.028 (3)0.007 (2)
C60.073 (3)0.054 (3)0.050 (3)0.004 (2)0.003 (2)0.0065 (18)
C70.061 (3)0.058 (3)0.042 (3)0.002 (2)0.004 (2)0.0011 (19)
C80.049 (3)0.051 (2)0.043 (2)0.0021 (18)0.0048 (18)0.0021 (16)
C90.054 (3)0.067 (3)0.047 (2)0.006 (2)0.005 (2)0.0046 (19)
C100.048 (2)0.062 (2)0.060 (3)0.002 (2)0.004 (2)0.004 (2)
C110.048 (3)0.053 (2)0.051 (3)0.003 (2)0.0101 (19)0.0063 (19)
C120.054 (3)0.051 (2)0.041 (2)0.0049 (19)0.005 (2)0.0009 (16)
C130.044 (2)0.050 (2)0.041 (2)0.0013 (18)0.0014 (19)0.0004 (16)
C140.061 (3)0.082 (3)0.076 (4)0.011 (3)0.022 (3)0.011 (3)
Geometric parameters (Å, º) top
Cl1—C61.731 (5)C4—C51.365 (8)
N1—O31.200 (5)C4—H40.9300
N1—O41.221 (5)C5—C61.400 (7)
N1—C131.464 (6)C5—H50.9300
O1—C71.195 (6)C8—C91.378 (6)
O2—C81.380 (5)C8—C131.396 (6)
O2—C71.385 (6)C9—C101.376 (6)
O5—C141.213 (7)C9—H90.9300
C1—C61.385 (7)C10—C111.388 (6)
C1—C21.408 (7)C10—H100.9300
C1—C71.480 (6)C11—C121.378 (6)
C2—C31.377 (7)C11—C141.479 (7)
C2—H20.9300C12—C131.387 (6)
C3—C41.370 (9)C12—H120.9300
C3—H30.9300C14—H141.10 (6)
O3—N1—O4122.9 (4)O1—C7—C1128.7 (4)
O3—N1—C13120.1 (4)O2—C7—C1109.1 (4)
O4—N1—C13116.9 (4)C9—C8—O2121.3 (4)
C8—O2—C7120.1 (3)C9—C8—C13119.3 (4)
C6—C1—C2118.7 (5)O2—C8—C13119.3 (4)
C6—C1—C7122.0 (4)C10—C9—C8120.1 (4)
C2—C1—C7119.3 (4)C10—C9—H9120.0
C3—C2—C1120.2 (5)C8—C9—H9120.0
C3—C2—H2119.9C9—C10—C11120.8 (4)
C1—C2—H2119.9C9—C10—H10119.6
C4—C3—C2120.4 (6)C11—C10—H10119.6
C4—C3—H3119.8C12—C11—C10119.7 (4)
C2—C3—H3119.8C12—C11—C14120.0 (5)
C5—C4—C3120.7 (5)C10—C11—C14120.3 (5)
C5—C4—H4119.7C11—C12—C13119.6 (4)
C3—C4—H4119.7C11—C12—H12120.2
C4—C5—C6120.0 (5)C13—C12—H12120.2
C4—C5—H5120.0C12—C13—C8120.6 (4)
C6—C5—H5120.0C12—C13—N1116.6 (4)
C1—C6—C5120.1 (5)C8—C13—N1122.9 (4)
C1—C6—Cl1122.1 (4)O5—C14—C11123.7 (6)
C5—C6—Cl1117.8 (4)O5—C14—H14122 (3)
O1—C7—O2122.1 (4)C11—C14—H14114 (3)
C6—C1—C2—C31.2 (6)O2—C8—C9—C10175.0 (4)
C7—C1—C2—C3176.6 (4)C13—C8—C9—C100.1 (6)
C1—C2—C3—C40.9 (7)C8—C9—C10—C111.1 (6)
C2—C3—C4—C50.2 (8)C9—C10—C11—C121.6 (6)
C3—C4—C5—C61.0 (8)C9—C10—C11—C14177.4 (4)
C2—C1—C6—C50.5 (6)C10—C11—C12—C131.0 (6)
C7—C1—C6—C5177.2 (4)C14—C11—C12—C13177.9 (4)
C2—C1—C6—Cl1177.3 (3)C11—C12—C13—C80.1 (6)
C7—C1—C6—Cl15.0 (6)C11—C12—C13—N1178.8 (3)
C4—C5—C6—C10.6 (7)C9—C8—C13—C120.4 (6)
C4—C5—C6—Cl1178.5 (4)O2—C8—C13—C12174.6 (4)
C8—O2—C7—O16.5 (7)C9—C8—C13—N1179.2 (4)
C8—O2—C7—C1175.7 (4)O2—C8—C13—N14.1 (6)
C6—C1—C7—O136.0 (7)O3—N1—C13—C12161.5 (4)
C2—C1—C7—O1141.7 (5)O4—N1—C13—C1220.5 (6)
C6—C1—C7—O2146.4 (4)O3—N1—C13—C817.3 (6)
C2—C1—C7—O235.9 (5)O4—N1—C13—C8160.7 (4)
C7—O2—C8—C951.7 (6)C12—C11—C14—O53.7 (7)
C7—O2—C8—C13133.4 (4)C10—C11—C14—O5175.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O4i1.10 (6)2.48 (6)3.381 (7)138 (4)
Symmetry code: (i) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O4i1.10 (6)2.48 (6)3.381 (7)138 (4)
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

RMF thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJu, K. S. & Parales, R. E. (2010). Microbiol. Mol. Biol. Rev. 74, 250–272.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Hernandez, G., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013a). Acta Cryst. E69, o793.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Mosquera, F., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013b). Acta Cryst. E69, o966.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds