metal-organic compounds
Poly[μ3-aqua-aqua-μ5-(4-nitrobenzoato)-caesium]
aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au
In the structure of the title complex, [Cs(C7H4NO2)(H2O)2]n, the caesium salt of 4-nitrobenzoic acid, the irregular CsO9 coordination sphere comprises three bridging nitro O-atom donors, a bidentate carboxylate O,O′-chelate interaction, a triple-bridging water molecule and a monodentate water molecule. A three-dimensional framework polymer is generated, within which there are water–carboxylate O—H⋯O and water–water O—H⋯O hydrogen-bonding interactions.
CCDC reference: 970813
Related literature
For structures of alkali metal salts of 4-nitrobenzoic acid, see: Turowska-Tyrk et al. (1988) (Na); Srivastava & Speakman (1961) (K). For the structures of Na, K and Cs complexes with 4-nitroanthranilic acid, see: Smith & Wermuth (2011); Smith (2013). For the structures of the 4-nitrobenzoic acid polymorphs, see: Groth (1980); Tonogaki et al. (1993); Bolte (2009).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
CCDC reference: 970813
10.1107/S1600536813030638/lh5666sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813030638/lh5666Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813030638/lh5666Isup3.cml
The title compound was synthesized by heating together for 10 minutes, 0.5 mmol of 4-nitrobenzoic acid and 0.5 mmol of CsOH in 15 ml of 10% ethanol–water. Partial room temperature evaporation of the solution gave colourless elongated crystal plates of the title complex from which a specimen was cleaved for the X-ray analysis.
Carbon-bound hydrogen atoms were placed in calculated positions [C—H = 0.95 Å] and allowed to ride in the
with Uiso(H) = 1.2Ueq(C). Hydrogen atoms of the coordinated water molecule were located in a difference Fourier map but were subsequently allowed to ride, with Uiso(H) = 1.5Ueq(O).Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The molecular configuration and atom-numbering scheme for the coordination polyhedron of title complex, with non-H atoms drawn as 40% probability displacement ellipsoids. For symmetry codes: see Table 1. | |
Fig. 2. A partial expansion of the CsO9 coordination sphere in the polymeric structure. For symmetry codes: (vii) x + 1, y, z; (viii) -x, -y, -z + 1. For other symmetry codes, see Fig. 1 and Table 1. | |
Fig. 3. The packing of the structure in the unit cell viewed along a. Hydrogen-bonding associations are shown as dashed lines. |
[Cs(C7H4NO2)(H2O)2] | F(000) = 640 |
Mr = 335.05 | Dx = 2.135 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2366 reflections |
a = 6.0700 (3) Å | θ = 3.5–28.1° |
b = 7.1073 (4) Å | µ = 3.56 mm−1 |
c = 24.2183 (13) Å | T = 200 K |
β = 94.035 (5)° | Plate, colourless |
V = 1042.22 (10) Å3 | 0.28 × 0.18 × 0.05 mm |
Z = 4 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2057 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1836 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.3° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −8→8 |
Tmin = 0.604, Tmax = 0.980 | l = −22→29 |
6334 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0285P)2 + 0.878P] where P = (Fo2 + 2Fc2)/3 |
2057 reflections | (Δ/σ)max = 0.001 |
136 parameters | Δρmax = 0.56 e Å−3 |
0 restraints | Δρmin = −0.67 e Å−3 |
[Cs(C7H4NO2)(H2O)2] | V = 1042.22 (10) Å3 |
Mr = 335.05 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.0700 (3) Å | µ = 3.56 mm−1 |
b = 7.1073 (4) Å | T = 200 K |
c = 24.2183 (13) Å | 0.28 × 0.18 × 0.05 mm |
β = 94.035 (5)° |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2057 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 1836 reflections with I > 2σ(I) |
Tmin = 0.604, Tmax = 0.980 | Rint = 0.036 |
6334 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.15 | Δρmax = 0.56 e Å−3 |
2057 reflections | Δρmin = −0.67 e Å−3 |
136 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cs1 | 0.25378 (4) | 0.19824 (4) | 0.47189 (1) | 0.0259 (1) | |
O1W | 0.2785 (5) | 0.5049 (5) | 0.56462 (14) | 0.0354 (11) | |
O2W | 0.7695 (5) | 0.2283 (5) | 0.51753 (15) | 0.0347 (11) | |
O11 | 0.3802 (5) | 0.0475 (5) | 0.10793 (14) | 0.0333 (11) | |
O12 | 0.0968 (5) | −0.0945 (5) | 0.14338 (15) | 0.0400 (11) | |
O41 | 0.6184 (7) | −0.0192 (5) | 0.40379 (16) | 0.0467 (14) | |
O42 | 0.9117 (7) | 0.0828 (7) | 0.36824 (17) | 0.0576 (16) | |
N41 | 0.7213 (7) | 0.0261 (6) | 0.36407 (17) | 0.0311 (12) | |
C1 | 0.4023 (7) | −0.0137 (5) | 0.20429 (19) | 0.0189 (11) | |
C2 | 0.6135 (7) | 0.0617 (6) | 0.2120 (2) | 0.0236 (14) | |
C3 | 0.7195 (7) | 0.0745 (6) | 0.26440 (19) | 0.0235 (14) | |
C4 | 0.6093 (7) | 0.0113 (6) | 0.30818 (19) | 0.0229 (14) | |
C5 | 0.4009 (7) | −0.0646 (6) | 0.30250 (19) | 0.0250 (14) | |
C6 | 0.2985 (7) | −0.0777 (6) | 0.25023 (19) | 0.0223 (14) | |
C11 | 0.2830 (7) | −0.0201 (6) | 0.1477 (2) | 0.0252 (14) | |
H2 | 0.68620 | 0.10490 | 0.18090 | 0.0280* | |
H3 | 0.86400 | 0.12560 | 0.26980 | 0.0280* | |
H5 | 0.32940 | −0.10700 | 0.33390 | 0.0300* | |
H6 | 0.15490 | −0.13100 | 0.24530 | 0.0270* | |
H11W | 0.37890 | 0.53710 | 0.58680 | 0.0530* | |
H12W | 0.14960 | 0.48830 | 0.58230 | 0.0530* | |
H21W | 0.72670 | 0.30190 | 0.49470 | 0.0520* | |
H22W | 0.79800 | 0.29200 | 0.54650 | 0.0520* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.0259 (2) | 0.0272 (2) | 0.0240 (2) | 0.0000 (1) | −0.0015 (1) | 0.0013 (1) |
O1W | 0.0348 (18) | 0.052 (2) | 0.0189 (19) | −0.0046 (17) | −0.0014 (14) | 0.0006 (16) |
O2W | 0.044 (2) | 0.0296 (17) | 0.030 (2) | −0.0030 (15) | −0.0003 (16) | −0.0028 (15) |
O11 | 0.0334 (18) | 0.049 (2) | 0.0173 (19) | −0.0022 (16) | 0.0010 (14) | 0.0089 (16) |
O12 | 0.0335 (19) | 0.055 (2) | 0.030 (2) | −0.0104 (18) | −0.0092 (15) | 0.0061 (18) |
O41 | 0.065 (3) | 0.056 (2) | 0.018 (2) | 0.002 (2) | −0.0040 (18) | 0.0036 (18) |
O42 | 0.049 (2) | 0.085 (3) | 0.036 (3) | −0.015 (2) | −0.0171 (19) | −0.007 (2) |
N41 | 0.042 (2) | 0.033 (2) | 0.017 (2) | 0.0051 (19) | −0.0076 (19) | −0.0057 (18) |
C1 | 0.020 (2) | 0.0163 (19) | 0.020 (2) | 0.0015 (17) | −0.0021 (18) | −0.0017 (18) |
C2 | 0.027 (2) | 0.021 (2) | 0.023 (3) | −0.0022 (18) | 0.0028 (19) | 0.0012 (19) |
C3 | 0.023 (2) | 0.024 (2) | 0.023 (3) | −0.0029 (19) | −0.0008 (19) | −0.0037 (19) |
C4 | 0.028 (2) | 0.020 (2) | 0.020 (3) | 0.0046 (19) | −0.0041 (19) | −0.0051 (18) |
C5 | 0.034 (2) | 0.024 (2) | 0.018 (3) | 0.001 (2) | 0.008 (2) | 0.0026 (19) |
C6 | 0.023 (2) | 0.021 (2) | 0.023 (3) | −0.0010 (18) | 0.0028 (18) | 0.0009 (19) |
C11 | 0.028 (2) | 0.025 (2) | 0.022 (3) | 0.005 (2) | −0.003 (2) | 0.002 (2) |
Cs1—O1W | 3.126 (3) | O2W—H21W | 0.7900 |
Cs1—O2W | 3.253 (3) | O2W—H22W | 0.8400 |
Cs1—O41 | 3.244 (4) | N41—C4 | 1.475 (6) |
Cs1—O2Wi | 3.220 (3) | C1—C2 | 1.390 (6) |
Cs1—O42i | 3.248 (4) | C1—C6 | 1.393 (6) |
Cs1—O11ii | 3.215 (3) | C1—C11 | 1.505 (7) |
Cs1—O12ii | 3.338 (4) | C2—C3 | 1.385 (7) |
Cs1—O2Wiii | 3.047 (4) | C3—C4 | 1.369 (6) |
Cs1—O41iii | 3.310 (4) | C4—C5 | 1.373 (6) |
O11—C11 | 1.260 (6) | C5—C6 | 1.374 (6) |
O12—C11 | 1.246 (5) | C2—H2 | 0.9500 |
O41—N41 | 1.226 (6) | C3—H3 | 0.9500 |
O42—N41 | 1.221 (6) | C5—H5 | 0.9500 |
O1W—H11W | 0.8200 | C6—H6 | 0.9500 |
O1W—H12W | 0.9300 | ||
O1W—Cs1—O2W | 73.36 (8) | Cs1v—O12—C11 | 87.7 (3) |
O1W—Cs1—O41 | 134.24 (9) | Cs1—O41—N41 | 132.6 (3) |
O1W—Cs1—O2Wi | 72.89 (8) | Cs1—O41—Cs1iii | 81.10 (9) |
O1W—Cs1—O42i | 136.65 (10) | Cs1iii—O41—N41 | 135.6 (3) |
O1W—Cs1—O11ii | 83.74 (9) | Cs1iv—O42—N41 | 134.2 (3) |
O1W—Cs1—O12ii | 106.92 (9) | H11W—O1W—H12W | 110.00 |
O1W—Cs1—O2Wiii | 129.32 (9) | Cs1—O1W—H11W | 132.00 |
O1W—Cs1—O41iii | 67.55 (9) | Cs1—O1W—H12W | 104.00 |
O2W—Cs1—O41 | 61.92 (9) | Cs1iv—O2W—H21W | 94.00 |
O2W—Cs1—O2Wi | 139.38 (9) | Cs1—O2W—H21W | 63.00 |
O2W—Cs1—O42i | 145.77 (10) | Cs1—O2W—H22W | 117.00 |
O2W—Cs1—O11ii | 110.50 (8) | H21W—O2W—H22W | 105.00 |
O2W—Cs1—O12ii | 86.77 (8) | Cs1iii—O2W—H22W | 118.00 |
O2W—Cs1—O2Wiii | 94.93 (9) | Cs1iii—O2W—H21W | 135.00 |
O2W—Cs1—O41iii | 63.75 (10) | Cs1iv—O2W—H22W | 101.00 |
O2Wi—Cs1—O41 | 151.44 (9) | O41—N41—O42 | 123.6 (4) |
O41—Cs1—O42i | 84.76 (11) | O42—N41—C4 | 118.2 (4) |
O11ii—Cs1—O41 | 102.41 (9) | O41—N41—C4 | 118.3 (4) |
O12ii—Cs1—O41 | 63.24 (9) | C2—C1—C11 | 120.9 (4) |
O2Wiii—Cs1—O41 | 66.80 (9) | C2—C1—C6 | 118.9 (4) |
O41—Cs1—O41iii | 98.90 (10) | C6—C1—C11 | 120.1 (4) |
O2Wi—Cs1—O42i | 74.49 (10) | C1—C2—C3 | 120.9 (4) |
O2Wi—Cs1—O11ii | 87.52 (8) | C2—C3—C4 | 117.9 (4) |
O2Wi—Cs1—O12ii | 124.49 (8) | C3—C4—C5 | 123.3 (4) |
O2Wi—Cs1—O2Wiii | 89.33 (9) | N41—C4—C3 | 118.0 (4) |
O2Wi—Cs1—O41iii | 82.79 (10) | N41—C4—C5 | 118.8 (4) |
O11ii—Cs1—O42i | 67.02 (11) | C4—C5—C6 | 118.2 (4) |
O12ii—Cs1—O42i | 70.23 (10) | C1—C6—C5 | 120.9 (4) |
O2Wiii—Cs1—O42i | 77.45 (11) | O11—C11—O12 | 124.7 (4) |
O41iii—Cs1—O42i | 134.58 (11) | O11—C11—C1 | 117.6 (4) |
O11ii—Cs1—O12ii | 39.52 (8) | O12—C11—C1 | 117.7 (4) |
O2Wiii—Cs1—O11ii | 143.86 (9) | C1—C2—H2 | 120.00 |
O11ii—Cs1—O41iii | 151.25 (9) | C3—C2—H2 | 120.00 |
O2Wiii—Cs1—O12ii | 121.77 (9) | C2—C3—H3 | 121.00 |
O12ii—Cs1—O41iii | 150.49 (9) | C4—C3—H3 | 121.00 |
O2Wiii—Cs1—O41iii | 63.27 (9) | C4—C5—H5 | 121.00 |
Cs1—O2W—Cs1iv | 139.38 (12) | C6—C5—H5 | 121.00 |
Cs1—O2W—Cs1iii | 85.07 (8) | C1—C6—H6 | 119.00 |
Cs1iv—O2W—Cs1iii | 90.67 (9) | C5—C6—H6 | 120.00 |
Cs1v—O11—C11 | 93.0 (3) | ||
O1W—Cs1—O2W—Cs1iv | −145.1 (2) | O1W—Cs1—O12ii—C11ii | −76.3 (3) |
O1W—Cs1—O2W—Cs1iii | 129.64 (10) | O2W—Cs1—O12ii—C11ii | −147.8 (3) |
O41—Cs1—O2W—Cs1iv | 24.89 (16) | O41—Cs1—O12ii—C11ii | 152.2 (3) |
O41—Cs1—O2W—Cs1iii | −60.38 (9) | O1W—Cs1—O2Wiii—Cs1iii | −72.49 (11) |
O2Wi—Cs1—O2W—Cs1iv | −179.98 (15) | O2W—Cs1—O2Wiii—Cs1iii | −0.03 (11) |
O2Wi—Cs1—O2W—Cs1iii | 94.74 (13) | O41—Cs1—O2Wiii—Cs1iii | 56.56 (9) |
O42i—Cs1—O2W—Cs1iv | 10.4 (3) | O1W—Cs1—O41iii—Cs1iii | −134.37 (10) |
O42i—Cs1—O2W—Cs1iii | −74.9 (2) | O1W—Cs1—O41iii—N41iii | 80.5 (4) |
O11ii—Cs1—O2W—Cs1iv | −68.59 (19) | O2W—Cs1—O41iii—Cs1iii | −52.52 (9) |
O11ii—Cs1—O2W—Cs1iii | −153.85 (8) | O2W—Cs1—O41iii—N41iii | 162.4 (4) |
O12ii—Cs1—O2W—Cs1iv | −36.36 (18) | O41—Cs1—O41iii—Cs1iii | 0.00 (10) |
O12ii—Cs1—O2W—Cs1iii | −121.63 (9) | O41—Cs1—O41iii—N41iii | −145.1 (4) |
O2Wiii—Cs1—O2W—Cs1iv | 85.26 (18) | Cs1v—O11—C11—C1 | 135.5 (3) |
O2Wiii—Cs1—O2W—Cs1iii | 0.00 (9) | Cs1v—O11—C11—O12 | −43.3 (5) |
O41iii—Cs1—O2W—Cs1iv | 142.2 (2) | Cs1v—O12—C11—O11 | 41.3 (4) |
O41iii—Cs1—O2W—Cs1iii | 56.92 (9) | Cs1v—O12—C11—C1 | −137.5 (3) |
O1W—Cs1—O41—N41 | −79.8 (4) | Cs1—O41—N41—O42 | 99.6 (6) |
O1W—Cs1—O41—Cs1iii | 67.23 (13) | Cs1—O41—N41—C4 | −80.5 (5) |
O2W—Cs1—O41—N41 | −93.3 (4) | Cs1iii—O41—N41—O42 | −30.2 (7) |
O2W—Cs1—O41—Cs1iii | 53.78 (9) | Cs1iii—O41—N41—C4 | 149.7 (3) |
O2Wi—Cs1—O41—N41 | 121.7 (4) | Cs1iv—O42—N41—O41 | −7.8 (8) |
O2Wi—Cs1—O41—Cs1iii | −91.25 (19) | Cs1iv—O42—N41—C4 | 172.3 (3) |
O42i—Cs1—O41—N41 | 78.6 (4) | O41—N41—C4—C5 | −4.5 (6) |
O42i—Cs1—O41—Cs1iii | −134.36 (10) | O41—N41—C4—C3 | 175.5 (4) |
O11ii—Cs1—O41—N41 | 13.5 (4) | O42—N41—C4—C5 | 175.5 (4) |
O11ii—Cs1—O41—Cs1iii | 160.58 (7) | O42—N41—C4—C3 | −4.5 (6) |
O12ii—Cs1—O41—N41 | 8.1 (4) | C11—C1—C2—C3 | 177.4 (4) |
O12ii—Cs1—O41—Cs1iii | 155.17 (11) | C2—C1—C6—C5 | 0.9 (6) |
O2Wiii—Cs1—O41—N41 | 157.2 (4) | C6—C1—C2—C3 | −0.4 (6) |
O2Wiii—Cs1—O41—Cs1iii | −55.78 (8) | C6—C1—C11—O12 | −4.4 (6) |
O41iii—Cs1—O41—N41 | −147.1 (4) | C11—C1—C6—C5 | −176.9 (4) |
O41iii—Cs1—O41—Cs1iii | 0.00 (11) | C2—C1—C11—O11 | −1.0 (6) |
O1W—Cs1—O2Wi—Cs1i | 145.0 (2) | C2—C1—C11—O12 | 177.9 (4) |
O2W—Cs1—O2Wi—Cs1i | 179.97 (17) | C6—C1—C11—O11 | 176.8 (4) |
O41—Cs1—O2Wi—Cs1i | −51.0 (3) | C1—C2—C3—C4 | −0.3 (6) |
O1W—Cs1—O42i—N41i | −63.5 (5) | C2—C3—C4—C5 | 0.4 (7) |
O2W—Cs1—O42i—N41i | 151.9 (4) | C2—C3—C4—N41 | −179.6 (4) |
O41—Cs1—O42i—N41i | 139.1 (5) | C3—C4—C5—C6 | 0.1 (7) |
O1W—Cs1—O11ii—C11ii | 145.7 (3) | N41—C4—C5—C6 | −180.0 (4) |
O2W—Cs1—O11ii—C11ii | 76.1 (3) | C4—C5—C6—C1 | −0.7 (6) |
O41—Cs1—O11ii—C11ii | 11.7 (3) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1, −y, −z+1; (iv) x+1, y, z; (v) −x+1/2, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O12vi | 0.82 | 1.88 | 2.694 (5) | 174 |
O1W—H12W···O11vii | 0.93 | 1.81 | 2.728 (4) | 173 |
O2W—H21W···O1Wviii | 0.79 | 1.99 | 2.749 (5) | 162 |
O2W—H22W···O11vi | 0.84 | 1.91 | 2.753 (5) | 174 |
Symmetry codes: (vi) x+1/2, −y+1/2, z+1/2; (vii) x−1/2, −y+1/2, z+1/2; (viii) −x+1, −y+1, −z+1. |
Cs1—O1W | 3.126 (3) | Cs1—O11ii | 3.215 (3) |
Cs1—O2W | 3.253 (3) | Cs1—O12ii | 3.338 (4) |
Cs1—O41 | 3.244 (4) | Cs1—O2Wiii | 3.047 (4) |
Cs1—O2Wi | 3.220 (3) | Cs1—O41iii | 3.310 (4) |
Cs1—O42i | 3.248 (4) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O12iv | 0.82 | 1.88 | 2.694 (5) | 174 |
O1W—H12W···O11v | 0.93 | 1.81 | 2.728 (4) | 173 |
O2W—H21W···O1Wvi | 0.79 | 1.99 | 2.749 (5) | 162 |
O2W—H22W···O11iv | 0.84 | 1.91 | 2.753 (5) | 174 |
Symmetry codes: (iv) x+1/2, −y+1/2, z+1/2; (v) x−1/2, −y+1/2, z+1/2; (vi) −x+1, −y+1, −z+1. |
Acknowledgements
The author acknowledges financial support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bolte, M. (2009). Private communication (refcode NBZOAC011). CCDC, Cambridge, England. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groth, P. (1980). Acta Chem. Scand. Ser. A, 34, 229–230. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. (2013). Acta Cryst. C69. In the press. doi:10.1107/S0108270113028977. Google Scholar
Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, m1047–m1048. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srivastava, H. N. & Speakman, J. C. (1961). J. Chem. Soc. pp. 1151–1163. Google Scholar
Tonogaki, M., Kawata, T., Ohba, S., Iwata, Y. & Shibuya, I. (1993). Acta Cryst. B49, 1031–1039. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Turowska-Tyrk, I., Krygowski, T. M., Gdaniec, M., Häfelinger, G. & Ritter, G. (1988). J. Mol. Struct. 172, 401–412. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
4-Nitrobenzoic acid (PNBA) has proved to be a useful ligand for the preparation of metal complexes, which are mainly monomeric but rarely involve the nitro group in coordination. With the known alkali metal salts of PNBA, the sodium salt (a trihydrate) (Turowska-Tyrk et al., 1988) and the potassium salt (a 1:1 salt-acid adduct) (Srivastava & Speakman, 1961), coordination polymeric structures are formed, but the structures of the rubidium and caesium salts have not been reported. The reaction of 4-nitrobenzoic acid with caesium hydroxide in aqueous ethanol afforded good crystals of the title Cs complex, [Cs(C7H4NO2)(H2O)2]n and the structure is reported herein.
In this structure (Fig. 1), the irregular CsO9 coordinate polyhedron comprises a bidentate carboxylate O,O'-chelate interaction, three O-donors from an O,O'-bridging nitro group, three O donors from a triple-bridging water molecule (O2W) and a monodentate water molecule (O1W) [Cs—O, 3.047 (4)–3.338 (4) Å] (Table 1). The bridging extensions in the two-dimensional sheet substructures which extend along the (0 0 1) plane include a centrosymmetric water–carboxyl quadruple cage (Fig. 2) (Cs···Csiii = 4.2610 (6) Å] [for symmetry code (iii), see Table 2]. The p-related carboxyl and nitro substituent groups of the PNBA ligand link the sheets across c, and generate an overall a three-dimensional coordination polymer (Fig. 3). This type of structure extension through the p-related benzoate carboxyl and nitro functional groups is similar to that found in other alkali metal complexes with the 4-nitroanthranilate salts of sodium (a dihydrate) and potassium (a monohydrate) (Smith, 2013), and caesium (a monohydrate) (Smith & Wermuth, 2011).
The crystal structure of the title complex polymer is stabilized by intra-sheet water O—H···Ocarboxyl and O—H···Owater hydrogen-bonding interactions (Table 2). No inter-ring π–π interactions are present [minimun ring centroid separation 4.643 (2) Å]. The PABA ligand in the complex is essentially planar [torsion angles C2—C1—C11—O12 = 177.9 (4)° (carboxyl) and C3—C4—N41—O41 = 177.5 (4)° (nitro)]. This conformation is similar to that found in both monoclinic polymorphs of the parent acid [Tonogaki et al., 1993; Groth, 1980; Bolte, 2009].