metal-organic compounds
Bis(2,9-dimethyl-1,10-phenanthroline)copper(I) pentacyanidonitrosoferrate(II)
aNational Taras Shevchenko University, Department of Inorganic Chemistry, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and bInstitute for Scintillation Materials, "Institute for Single Crystals", National Academy of Sciences of Ukraine, Lenina ave. 60, Kharkov 61001, Ukraine
*Correspondence e-mail: kozachuk_o@yahoo.com
The 14H12N2)2]2[Fe(CN)5(NO)], consists of a [Cu(dmp)2]+ cation (dmp is 2,9-dimethyl-1,10-phenanthroline) and half an [Fe(CN)5(NO)]2− anion. The anion is disordered across an inversion center with the FeII ion slightly offset (ca 0.205Å) from the inversion center in the direction of the disordered trans-coordinating CN/NO ligands. The anion has a distorted octahedral coordination geometry. The CuI ion is coordinated by two phenanthroline ligands in a distorted tetrahedral geometry. The dihedral angle between the phenanthroline ligands is 77.16 (4) Å. In the crystal, the cations are connected to the anions by weak C—H⋯N hydrogen bonds. In addition, weak π–π stacking interactions are observed, with centroid–centroid distances in the range 3.512 (3)–3.859 (3) Å.
of the title complex [Cu(CCCDC reference: 712222
Related literature
For background to the direct synthesis of coordination compounds, see: Kokozay & Vassilyeva (2002); Nesterova et al. (2008). For the direct synthesis of heterometallic Cu-containing complexes, see: Buvaylo et al. (2005); Nesterova et al. (2004, 2005); Pryma et al. (2003). For the application of anionic complexes in the preparation of heterometallic compounds, see: Nikitina et al. (2008, 2009). For the structures of related complexes, see: Blake et al. (1998); Chen et al. (2002); Morpurgo et al. (1984); Cuttell et al. (2002); King et al. (2005); Soria et al. (2002); Shevyakova et al. (2002); Peresypkina & Vostrikova (2012).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 712222
10.1107/S1600536813031760/lh5667sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813031760/lh5667Isup2.hkl
Copper powder (0.04 g, 0.63 mmol), NH4Br (0.123 g, 1.25 mmol), Na2[Fe(CN)5(NO)].2H2O (0.188 g, 0.63 mmol) and dmp (0.262 g, 1.26 mmol) in DMF (30 ml) were heated to 333–343 K and stirred magnetically until total dissolution of copper was observed (2.5 h). Red needle-shaped crystals suitable for X-ray crystallography was isolated from the resulting dark-red solution with addition of 2-propanol and diethyl ether in a few days. The crystals (0.1 g, yield 30%) were filtered off, washed with dry methanol, and finally dried in vacuo at room temperature.
All non-hydrogen atoms were refined isotropically. All hydrogen atoms were placed at calculated position and refined in a riding-model approximation. The symmetry realted Fe atoms are offset from an inversion centre by 0.214 Å and were refined with multiplicity 0.5. Atoms of disordered CN and NO groups occupy close positions and also were refined with multiplicity 0.5.
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C14H12N2)2]2[Fe(CN)5(NO)] | Z = 1 |
Mr = 1176.06 | F(000) = 604 |
Triclinic, P1 | Dx = 1.473 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.371 (3) Å | Cell parameters from 4215 reflections |
b = 13.741 (3) Å | θ = 2.7–24.8° |
c = 15.065 (4) Å | µ = 1.12 mm−1 |
α = 115.269 (4)° | T = 293 K |
β = 95.327 (3)° | Needle-shaped, red |
γ = 101.323 (4)° | 0.50 × 0.40 × 0.20 mm |
V = 1325.9 (7) Å3 |
Oxford Diffraction Xcalibur3 diffractometer | 5112 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3100 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 26.0°, θmin = 2.9° |
ω–scans | h = −8→9 |
Absorption correction: numerical (CrysAlis PRO; Oxford Diffraction, 2010) | k = −16→16 |
Tmin = 0.604, Tmax = 0.807 | l = −18→15 |
8613 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0468P)2] where P = (Fo2 + 2Fc2)/3 |
5112 reflections | (Δ/σ)max = 0.001 |
377 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
[Cu(C14H12N2)2]2[Fe(CN)5(NO)] | γ = 101.323 (4)° |
Mr = 1176.06 | V = 1325.9 (7) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.371 (3) Å | Mo Kα radiation |
b = 13.741 (3) Å | µ = 1.12 mm−1 |
c = 15.065 (4) Å | T = 293 K |
α = 115.269 (4)° | 0.50 × 0.40 × 0.20 mm |
β = 95.327 (3)° |
Oxford Diffraction Xcalibur3 diffractometer | 5112 independent reflections |
Absorption correction: numerical (CrysAlis PRO; Oxford Diffraction, 2010) | 3100 reflections with I > 2σ(I) |
Tmin = 0.604, Tmax = 0.807 | Rint = 0.048 |
8613 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.38 e Å−3 |
5112 reflections | Δρmin = −0.31 e Å−3 |
377 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.24477 (7) | 0.18237 (4) | 0.30785 (3) | 0.04709 (18) | |
Fe1 | 0.9747 (13) | 0.5030 (13) | 0.0033 (11) | 0.0423 (14) | 0.50 |
N1 | 0.3564 (4) | 0.2540 (2) | 0.2232 (2) | 0.0377 (7) | |
N2 | 0.1731 (4) | 0.0423 (2) | 0.1741 (2) | 0.0369 (7) | |
N3 | 0.3933 (4) | 0.1682 (2) | 0.4241 (2) | 0.0379 (7) | |
N4 | 0.1040 (4) | 0.2617 (2) | 0.4159 (2) | 0.0377 (7) | |
C1 | 0.4355 (5) | 0.3608 (3) | 0.2474 (3) | 0.0464 (10) | |
C2 | 0.5081 (5) | 0.3909 (3) | 0.1771 (3) | 0.0551 (11) | |
H2 | 0.5610 | 0.4656 | 0.1954 | 0.066* | |
C3 | 0.5025 (5) | 0.3129 (4) | 0.0833 (3) | 0.0542 (11) | |
H3 | 0.5561 | 0.3335 | 0.0383 | 0.065* | |
C4 | 0.4148 (5) | 0.2001 (3) | 0.0542 (3) | 0.0407 (9) | |
C5 | 0.3423 (4) | 0.1751 (3) | 0.1269 (3) | 0.0345 (8) | |
C6 | 0.2450 (4) | 0.0621 (3) | 0.1008 (3) | 0.0336 (8) | |
C7 | 0.2248 (5) | −0.0217 (3) | 0.0027 (3) | 0.0381 (9) | |
C8 | 0.3039 (5) | 0.0072 (4) | −0.0683 (3) | 0.0481 (10) | |
H8 | 0.2923 | −0.0483 | −0.1331 | 0.058* | |
C9 | 0.3950 (5) | 0.1129 (4) | −0.0439 (3) | 0.0492 (10) | |
H9 | 0.4457 | 0.1292 | −0.0918 | 0.059* | |
C10 | 0.1271 (5) | −0.1296 (3) | −0.0187 (3) | 0.0458 (10) | |
H10 | 0.1092 | −0.1876 | −0.0829 | 0.055* | |
C11 | 0.0583 (5) | −0.1498 (3) | 0.0538 (3) | 0.0460 (10) | |
H11 | −0.0052 | −0.2220 | 0.0394 | 0.055* | |
C12 | 0.0824 (5) | −0.0622 (3) | 0.1510 (3) | 0.0383 (9) | |
C13 | 0.4435 (6) | 0.4460 (3) | 0.3521 (3) | 0.0654 (12) | |
H13A | 0.5696 | 0.4934 | 0.3804 | 0.098* | |
H13B | 0.4081 | 0.4091 | 0.3919 | 0.098* | |
H13C | 0.3580 | 0.4902 | 0.3512 | 0.098* | |
C14 | 0.0096 (6) | −0.0831 (3) | 0.2332 (3) | 0.0559 (11) | |
H14A | 0.0870 | −0.1209 | 0.2545 | 0.084* | |
H14B | −0.1182 | −0.1286 | 0.2086 | 0.084* | |
H14C | 0.0137 | −0.0133 | 0.2888 | 0.084* | |
C15 | 0.5321 (5) | 0.1207 (3) | 0.4270 (3) | 0.0454 (10) | |
C16 | 0.6193 (6) | 0.1264 (3) | 0.5157 (3) | 0.0547 (11) | |
H16 | 0.7197 | 0.0947 | 0.5157 | 0.066* | |
C17 | 0.5581 (6) | 0.1786 (3) | 0.6032 (3) | 0.0549 (11) | |
H17 | 0.6176 | 0.1830 | 0.6625 | 0.066* | |
C18 | 0.4051 (5) | 0.2251 (3) | 0.6023 (3) | 0.0451 (10) | |
C19 | 0.3273 (5) | 0.2190 (3) | 0.5108 (3) | 0.0394 (9) | |
C20 | 0.1730 (5) | 0.2687 (3) | 0.5074 (3) | 0.0358 (9) | |
C21 | 0.1046 (5) | 0.3217 (3) | 0.5935 (3) | 0.0420 (9) | |
C22 | 0.1808 (6) | 0.3230 (3) | 0.6840 (3) | 0.0528 (11) | |
H22 | 0.1298 | 0.3551 | 0.7405 | 0.063* | |
C23 | 0.3275 (6) | 0.2779 (3) | 0.6893 (3) | 0.0548 (11) | |
H23 | 0.3780 | 0.2813 | 0.7498 | 0.066* | |
C24 | −0.0412 (6) | 0.3721 (3) | 0.5857 (3) | 0.0516 (11) | |
H24 | −0.0922 | 0.4082 | 0.6412 | 0.062* | |
C25 | −0.1066 (6) | 0.3674 (3) | 0.4963 (3) | 0.0516 (10) | |
H25 | −0.2005 | 0.4022 | 0.4912 | 0.062* | |
C26 | −0.0338 (5) | 0.3106 (3) | 0.4117 (3) | 0.0417 (9) | |
C27 | 0.5909 (6) | 0.0609 (4) | 0.3308 (3) | 0.0619 (12) | |
H27A | 0.5252 | −0.0168 | 0.3005 | 0.093* | |
H27B | 0.7245 | 0.0690 | 0.3432 | 0.093* | |
H27C | 0.5611 | 0.0917 | 0.2866 | 0.093* | |
C28 | −0.1065 (6) | 0.3050 (4) | 0.3126 (3) | 0.0544 (11) | |
H28A | −0.0458 | 0.2601 | 0.2627 | 0.082* | |
H28B | −0.0798 | 0.3788 | 0.3182 | 0.082* | |
H28C | −0.2404 | 0.2723 | 0.2937 | 0.082* | |
C29 | 1.0149 (5) | 0.4533 (3) | 0.1060 (3) | 0.0446 (9) | |
N5 | 1.0271 (5) | 0.4286 (3) | 0.1677 (3) | 0.0631 (10) | |
C30 | 1.1809 (6) | 0.6397 (3) | 0.0926 (3) | 0.0440 (9) | |
N6 | 1.2879 (5) | 0.7213 (3) | 0.1470 (3) | 0.0626 (10) | |
C31 | 0.812 (5) | 0.559 (2) | 0.036 (2) | 0.070 (5) | 0.50 |
N7 | 0.681 (4) | 0.603 (2) | 0.0546 (17) | 0.070 (5) | 0.50 |
N8 | 0.805 (3) | 0.5579 (11) | 0.0446 (12) | 0.026 (3) | 0.50 |
O1 | 0.688 (3) | 0.5921 (16) | 0.0752 (11) | 0.055 (3) | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0659 (3) | 0.0491 (3) | 0.0278 (3) | 0.0167 (2) | 0.0157 (2) | 0.0169 (2) |
Fe1 | 0.057 (4) | 0.0453 (14) | 0.0274 (15) | 0.012 (3) | 0.009 (3) | 0.0199 (12) |
N1 | 0.0449 (17) | 0.0362 (18) | 0.0314 (17) | 0.0069 (14) | 0.0073 (14) | 0.0166 (14) |
N2 | 0.0400 (16) | 0.0401 (18) | 0.0323 (17) | 0.0114 (14) | 0.0067 (14) | 0.0176 (14) |
N3 | 0.0423 (16) | 0.0398 (18) | 0.0323 (17) | 0.0120 (15) | 0.0089 (15) | 0.0162 (14) |
N4 | 0.0433 (17) | 0.0362 (17) | 0.0302 (17) | 0.0064 (14) | 0.0041 (15) | 0.0143 (14) |
C1 | 0.047 (2) | 0.045 (2) | 0.045 (2) | 0.0067 (19) | 0.006 (2) | 0.0210 (19) |
C2 | 0.059 (2) | 0.046 (3) | 0.064 (3) | 0.005 (2) | 0.015 (2) | 0.032 (2) |
C3 | 0.056 (2) | 0.065 (3) | 0.053 (3) | 0.009 (2) | 0.019 (2) | 0.038 (2) |
C4 | 0.0384 (19) | 0.057 (3) | 0.034 (2) | 0.0162 (19) | 0.0086 (18) | 0.0255 (19) |
C5 | 0.0341 (18) | 0.043 (2) | 0.0300 (19) | 0.0145 (17) | 0.0068 (16) | 0.0184 (17) |
C6 | 0.0358 (18) | 0.040 (2) | 0.0295 (19) | 0.0158 (17) | 0.0084 (17) | 0.0175 (16) |
C7 | 0.0377 (19) | 0.048 (2) | 0.030 (2) | 0.0209 (18) | 0.0048 (17) | 0.0153 (17) |
C8 | 0.050 (2) | 0.063 (3) | 0.027 (2) | 0.017 (2) | 0.0100 (19) | 0.0155 (19) |
C9 | 0.046 (2) | 0.080 (3) | 0.031 (2) | 0.022 (2) | 0.0159 (19) | 0.030 (2) |
C10 | 0.047 (2) | 0.048 (3) | 0.036 (2) | 0.020 (2) | 0.0036 (19) | 0.0117 (19) |
C11 | 0.045 (2) | 0.037 (2) | 0.053 (3) | 0.0118 (18) | 0.004 (2) | 0.017 (2) |
C12 | 0.042 (2) | 0.039 (2) | 0.039 (2) | 0.0130 (18) | 0.0068 (18) | 0.0210 (18) |
C13 | 0.081 (3) | 0.043 (3) | 0.058 (3) | 0.010 (2) | 0.013 (3) | 0.013 (2) |
C14 | 0.067 (3) | 0.048 (3) | 0.061 (3) | 0.015 (2) | 0.022 (2) | 0.031 (2) |
C15 | 0.049 (2) | 0.045 (2) | 0.042 (2) | 0.005 (2) | 0.001 (2) | 0.024 (2) |
C16 | 0.054 (2) | 0.055 (3) | 0.058 (3) | 0.017 (2) | 0.003 (2) | 0.029 (2) |
C17 | 0.067 (3) | 0.055 (3) | 0.041 (3) | 0.008 (2) | −0.005 (2) | 0.027 (2) |
C18 | 0.058 (2) | 0.041 (2) | 0.033 (2) | 0.006 (2) | 0.004 (2) | 0.0179 (18) |
C19 | 0.052 (2) | 0.034 (2) | 0.029 (2) | 0.0044 (18) | 0.0058 (18) | 0.0152 (16) |
C20 | 0.047 (2) | 0.033 (2) | 0.0260 (19) | 0.0058 (17) | 0.0075 (18) | 0.0142 (16) |
C21 | 0.053 (2) | 0.039 (2) | 0.031 (2) | 0.0065 (19) | 0.0102 (19) | 0.0147 (17) |
C22 | 0.072 (3) | 0.054 (3) | 0.026 (2) | 0.009 (2) | 0.014 (2) | 0.0142 (19) |
C23 | 0.080 (3) | 0.053 (3) | 0.026 (2) | 0.009 (2) | 0.006 (2) | 0.0180 (19) |
C24 | 0.064 (3) | 0.050 (3) | 0.035 (2) | 0.013 (2) | 0.022 (2) | 0.0115 (19) |
C25 | 0.058 (2) | 0.050 (3) | 0.050 (3) | 0.023 (2) | 0.017 (2) | 0.020 (2) |
C26 | 0.046 (2) | 0.040 (2) | 0.039 (2) | 0.0096 (19) | 0.0086 (19) | 0.0193 (18) |
C27 | 0.067 (3) | 0.070 (3) | 0.060 (3) | 0.031 (2) | 0.027 (2) | 0.032 (2) |
C28 | 0.062 (2) | 0.065 (3) | 0.041 (2) | 0.024 (2) | 0.009 (2) | 0.026 (2) |
C29 | 0.055 (2) | 0.045 (2) | 0.037 (2) | 0.0171 (19) | 0.015 (2) | 0.0185 (19) |
N5 | 0.093 (3) | 0.067 (3) | 0.044 (2) | 0.028 (2) | 0.020 (2) | 0.0347 (19) |
C30 | 0.058 (2) | 0.048 (3) | 0.033 (2) | 0.021 (2) | 0.009 (2) | 0.0222 (19) |
N6 | 0.069 (2) | 0.062 (3) | 0.052 (2) | 0.016 (2) | −0.003 (2) | 0.025 (2) |
C31 | 0.087 (9) | 0.109 (9) | 0.050 (8) | 0.044 (7) | 0.017 (7) | 0.061 (7) |
N7 | 0.087 (9) | 0.109 (9) | 0.050 (8) | 0.044 (7) | 0.017 (7) | 0.061 (7) |
N8 | 0.039 (5) | 0.022 (4) | 0.011 (5) | 0.012 (4) | 0.009 (4) | −0.001 (4) |
O1 | 0.082 (6) | 0.087 (7) | 0.027 (5) | 0.057 (5) | 0.026 (5) | 0.036 (5) |
Cu1—N2 | 2.034 (3) | C13—H13A | 0.9600 |
Cu1—N4 | 2.039 (3) | C13—H13B | 0.9600 |
Cu1—N1 | 2.053 (3) | C13—H13C | 0.9600 |
Cu1—N3 | 2.079 (3) | C14—H14A | 0.9600 |
Fe1—Fe1i | 0.410 (15) | C14—H14B | 0.9600 |
Fe1—C31 | 1.56 (4) | C14—H14C | 0.9600 |
Fe1—N8 | 1.625 (19) | C15—C16 | 1.392 (5) |
Fe1—C30i | 1.908 (15) | C15—C27 | 1.484 (5) |
Fe1—C31i | 1.96 (4) | C16—C17 | 1.373 (6) |
Fe1—C29 | 1.961 (16) | C16—H16 | 0.9300 |
Fe1—C29i | 1.981 (16) | C17—C18 | 1.403 (5) |
Fe1—C30 | 1.998 (15) | C17—H17 | 0.9300 |
Fe1—N8i | 2.03 (2) | C18—C19 | 1.404 (5) |
N1—C1 | 1.341 (4) | C18—C23 | 1.435 (5) |
N1—C5 | 1.370 (4) | C19—C20 | 1.446 (5) |
N2—C12 | 1.334 (4) | C20—C21 | 1.388 (5) |
N2—C6 | 1.372 (4) | C21—C24 | 1.410 (5) |
N3—C15 | 1.324 (5) | C21—C22 | 1.416 (5) |
N3—C19 | 1.379 (4) | C22—C23 | 1.360 (6) |
N4—C26 | 1.334 (4) | C22—H22 | 0.9300 |
N4—C20 | 1.380 (4) | C23—H23 | 0.9300 |
C1—C2 | 1.404 (5) | C24—C25 | 1.358 (5) |
C1—C13 | 1.497 (5) | C24—H24 | 0.9300 |
C2—C3 | 1.351 (5) | C25—C26 | 1.401 (5) |
C2—H2 | 0.9300 | C25—H25 | 0.9300 |
C3—C4 | 1.409 (5) | C26—C28 | 1.502 (5) |
C3—H3 | 0.9300 | C27—H27A | 0.9600 |
C4—C5 | 1.399 (5) | C27—H27B | 0.9600 |
C4—C9 | 1.421 (5) | C27—H27C | 0.9600 |
C5—C6 | 1.439 (5) | C28—H28A | 0.9600 |
C6—C7 | 1.403 (5) | C28—H28B | 0.9600 |
C7—C10 | 1.397 (5) | C28—H28C | 0.9600 |
C7—C8 | 1.425 (5) | C29—N5 | 1.120 (4) |
C8—C9 | 1.346 (5) | C29—Fe1i | 1.981 (16) |
C8—H8 | 0.9300 | C30—N6 | 1.140 (5) |
C9—H9 | 0.9300 | C30—Fe1i | 1.908 (15) |
C10—C11 | 1.354 (5) | C31—N7 | 1.23 (5) |
C10—H10 | 0.9300 | C31—Fe1i | 1.96 (4) |
C11—C12 | 1.410 (5) | N8—O1 | 1.11 (3) |
C11—H11 | 0.9300 | N8—Fe1i | 2.03 (2) |
C12—C14 | 1.507 (5) | ||
N2—Cu1—N4 | 135.31 (11) | C8—C9—H9 | 119.6 |
N2—Cu1—N1 | 82.52 (12) | C4—C9—H9 | 119.6 |
N4—Cu1—N1 | 121.22 (12) | C11—C10—C7 | 120.1 (4) |
N2—Cu1—N3 | 114.85 (12) | C11—C10—H10 | 120.0 |
N4—Cu1—N3 | 82.49 (12) | C7—C10—H10 | 120.0 |
N1—Cu1—N3 | 126.67 (11) | C10—C11—C12 | 120.4 (4) |
Fe1i—Fe1—C31 | 165 (5) | C10—C11—H11 | 119.8 |
Fe1i—Fe1—N8 | 166 (5) | C12—C11—H11 | 119.8 |
C31—Fe1—N8 | 4.6 (19) | N2—C12—C11 | 121.3 (3) |
Fe1i—Fe1—C30i | 97 (4) | N2—C12—C14 | 117.4 (3) |
C31—Fe1—C30i | 96.8 (11) | C11—C12—C14 | 121.3 (3) |
N8—Fe1—C30i | 96.8 (7) | C1—C13—H13A | 109.5 |
Fe1i—Fe1—C31i | 12 (4) | C1—C13—H13B | 109.5 |
C31—Fe1—C31i | 176.8 (10) | H13A—C13—H13B | 109.5 |
N8—Fe1—C31i | 175.8 (18) | C1—C13—H13C | 109.5 |
C30i—Fe1—C31i | 86.0 (10) | H13A—C13—H13C | 109.5 |
Fe1i—Fe1—C29 | 87 (4) | H13B—C13—H13C | 109.5 |
C31—Fe1—C29 | 99.8 (13) | C12—C14—H14A | 109.5 |
N8—Fe1—C29 | 95.2 (10) | C12—C14—H14B | 109.5 |
C30i—Fe1—C29 | 93.0 (7) | H14A—C14—H14B | 109.5 |
C31i—Fe1—C29 | 81.6 (11) | C12—C14—H14C | 109.5 |
Fe1i—Fe1—C29i | 81 (4) | H14A—C14—H14C | 109.5 |
C31—Fe1—C29i | 91.8 (14) | H14B—C14—H14C | 109.5 |
N8—Fe1—C29i | 96.4 (10) | N3—C15—C16 | 121.8 (4) |
C30i—Fe1—C29i | 88.4 (6) | N3—C15—C27 | 116.8 (3) |
C31i—Fe1—C29i | 86.7 (11) | C16—C15—C27 | 121.3 (4) |
C29—Fe1—C29i | 168.1 (5) | C17—C16—C15 | 120.5 (4) |
Fe1i—Fe1—C30 | 72 (4) | C17—C16—H16 | 119.8 |
C31—Fe1—C30 | 94.9 (12) | C15—C16—H16 | 119.8 |
N8—Fe1—C30 | 94.9 (9) | C16—C17—C18 | 119.5 (4) |
C30i—Fe1—C30 | 168.2 (5) | C16—C17—H17 | 120.3 |
C31i—Fe1—C30 | 82.3 (9) | C18—C17—H17 | 120.3 |
C29—Fe1—C30 | 86.5 (6) | C17—C18—C19 | 117.0 (3) |
C29i—Fe1—C30 | 89.7 (6) | C17—C18—C23 | 123.4 (4) |
Fe1i—Fe1—N8i | 11 (4) | C19—C18—C23 | 119.6 (4) |
C31—Fe1—N8i | 174.2 (19) | N3—C19—C18 | 122.7 (3) |
N8—Fe1—N8i | 177.2 (10) | N3—C19—C20 | 118.5 (3) |
C30i—Fe1—N8i | 85.9 (6) | C18—C19—C20 | 118.8 (3) |
C31i—Fe1—N8i | 3.6 (15) | N4—C20—C21 | 123.7 (3) |
C29—Fe1—N8i | 85.2 (8) | N4—C20—C19 | 116.3 (3) |
C29i—Fe1—N8i | 83.1 (7) | C21—C20—C19 | 120.1 (3) |
C30—Fe1—N8i | 82.4 (5) | C20—C21—C24 | 117.1 (4) |
C1—N1—C5 | 118.1 (3) | C20—C21—C22 | 120.0 (4) |
C1—N1—Cu1 | 130.8 (2) | C24—C21—C22 | 122.9 (4) |
C5—N1—Cu1 | 111.1 (2) | C23—C22—C21 | 120.9 (4) |
C12—N2—C6 | 118.1 (3) | C23—C22—H22 | 119.6 |
C12—N2—Cu1 | 130.3 (2) | C21—C22—H22 | 119.6 |
C6—N2—Cu1 | 111.5 (2) | C22—C23—C18 | 120.6 (4) |
C15—N3—C19 | 118.5 (3) | C22—C23—H23 | 119.7 |
C15—N3—Cu1 | 131.4 (3) | C18—C23—H23 | 119.7 |
C19—N3—Cu1 | 110.1 (2) | C25—C24—C21 | 119.4 (4) |
C26—N4—C20 | 117.4 (3) | C25—C24—H24 | 120.3 |
C26—N4—Cu1 | 130.0 (2) | C21—C24—H24 | 120.3 |
C20—N4—Cu1 | 112.6 (2) | C24—C25—C26 | 120.5 (4) |
N1—C1—C2 | 121.0 (4) | C24—C25—H25 | 119.7 |
N1—C1—C13 | 117.3 (3) | C26—C25—H25 | 119.7 |
C2—C1—C13 | 121.7 (4) | N4—C26—C25 | 121.9 (4) |
C3—C2—C1 | 121.1 (4) | N4—C26—C28 | 117.5 (3) |
C3—C2—H2 | 119.5 | C25—C26—C28 | 120.6 (4) |
C1—C2—H2 | 119.5 | C15—C27—H27A | 109.5 |
C2—C3—C4 | 119.4 (4) | C15—C27—H27B | 109.5 |
C2—C3—H3 | 120.3 | H27A—C27—H27B | 109.5 |
C4—C3—H3 | 120.3 | C15—C27—H27C | 109.5 |
C5—C4—C3 | 117.0 (3) | H27A—C27—H27C | 109.5 |
C5—C4—C9 | 119.5 (4) | H27B—C27—H27C | 109.5 |
C3—C4—C9 | 123.5 (4) | C26—C28—H28A | 109.5 |
N1—C5—C4 | 123.2 (3) | C26—C28—H28B | 109.5 |
N1—C5—C6 | 117.1 (3) | H28A—C28—H28B | 109.5 |
C4—C5—C6 | 119.7 (3) | C26—C28—H28C | 109.5 |
N2—C6—C7 | 123.2 (3) | H28A—C28—H28C | 109.5 |
N2—C6—C5 | 117.4 (3) | H28B—C28—H28C | 109.5 |
C7—C6—C5 | 119.4 (3) | N5—C29—Fe1 | 174.5 (4) |
C10—C7—C6 | 116.9 (3) | N5—C29—Fe1i | 173.2 (5) |
C10—C7—C8 | 124.0 (3) | N6—C30—Fe1i | 173.6 (4) |
C6—C7—C8 | 119.0 (3) | N6—C30—Fe1 | 174.6 (4) |
C9—C8—C7 | 121.6 (4) | N7—C31—Fe1 | 175 (3) |
C9—C8—H8 | 119.2 | N7—C31—Fe1i | 173 (3) |
C7—C8—H8 | 119.2 | O1—N8—Fe1 | 176.5 (19) |
C8—C9—C4 | 120.8 (4) | O1—N8—Fe1i | 176.7 (16) |
Symmetry code: (i) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17···N6ii | 0.93 | 2.55 | 3.393 (6) | 151 |
Symmetry code: (ii) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17···N6i | 0.93 | 2.55 | 3.393 (6) | 151.2 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Acknowledgements
This work was partly supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005).
References
Blake, A. J., Hill, S. J., Hubberstey, P. & Li, W. S. (1998). J. Chem. Soc. Dalton Trans. pp. 909–915. Web of Science CSD CrossRef Google Scholar
Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978. Web of Science CSD CrossRef Google Scholar
Chen, L. X., Jenning, G., Liu, T., Gosztola, D. J., Hessler, J. P., Scaltrito, D. V. & Meyers, G. J. (2002). J. Am. Chem. Soc. 124, 10861–10867. Web of Science CrossRef PubMed CAS Google Scholar
Cuttell, D. G., Kuang, S. M., Fanwick, P. E., McMillin, D. R. & Walton, R. A. (2002). J. Am. Chem. Soc. 124, 6–7. Web of Science CSD CrossRef PubMed CAS Google Scholar
King, G., Gembicky, M. & Coppens, P. (2005). Acta Cryst. C61, m329–m332. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kokozay, V. N. & Vassilyeva, O. Yu. (2002). Transition Met. Chem. 27, 693–699. Web of Science CrossRef CAS Google Scholar
Morpurgo, G., Dessy, G. & Fares, V. (1984). J. Chem. Soc. Dalton Trans. pp. 785–791. CSD CrossRef Web of Science Google Scholar
Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434. Web of Science CSD CrossRef CAS Google Scholar
Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431–1436. Web of Science CSD CrossRef Google Scholar
Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454. Google Scholar
Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V. & Jezierska, J. (2009). Inorg. Chem. Commun. 12, 101–104. Web of Science CSD CrossRef CAS Google Scholar
Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Peresypkina, E. V. & Vostrikova, K. E. (2012). Dalton Trans. 41, 4100–4106. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shevyakova, I. Yu., Buravov, L. I., Kushch, L. A., Yagubskii, E. B., Khasanov, S. S., Zorina, L. V., Shibaeva, R. P., Drichko, N. V. & Olejniczak, I. (2002). Russ. J. Coord. Chem. 28, 520–529. Web of Science CrossRef Google Scholar
Soria, D. B., Villalba, M. E. C., Piro, O. E. & Aymonino, P. J. (2002). Polyhedron, 21, 1767–1774. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound was obtained as part of our research in the field of direct synthesis of coordination compounds (Buvaylo et al., 2005; Kokozay et al., 2002; Nikitina et al., 2008, 2009; Nesterova et al., 2004, 2005, 2008; Pryma et al.,2003). Complexes of copper chelated with phenanthroline (in particular 2,9-dimethyl-1,10-phenanthroline) have attracted attention due to their longlived excited states and potential use in solar energy conversion (Blake et al., 1998; Chen et al., 2002; Morpurgo et al., 1984; Cuttell et al., 2002; King et al., 2005).
In this paper we present a novel Cu/Fe heterometallic ionic complex [Cu(dmp)2]2[Fe(CN)5NO] which consists of discrete [Cu(dmp)2]+ and [Fe(CN)5NO]2- ions (Fig. 1). The CuI ion adopts a distorted tetrahedral environment by coordinating with four nitrogen atoms from two dmp ligands. The dihedral angle between the two dmp ligands (77.16 (4) Å) as well as the range of Cu—N bond distances of 2.034 (3) - 2.079 (3) Å is in good agreement with the previously reported values for analagous complexes (King et al., 2005 and references therein). The nitroprusside anion lies on an inversion centre and disordered over two positions so that iron atom occupies two very close positions (Fe···Fe distance is 0.410 (15) Å) corresponding to the coordination of two disordered CN and NO groups in the axial sites with very close positions. However, geometric parameters (average Fe—CN and Fe—NO bond distances of 1.96 Å and 1.63 Å respectively) are in a good agreement with literature values (Soria et al. (2002); Shevyakova et al. (2002); Peresypkina et al. (2012).
In the crystal, cations are connected to the anions by weak C—H···N hydrogen bonds. In addition weak π–π stacking interactions with centroid–centroid distances in the range 3.512 (3)–3.859 (3)° are observed (Fig. 2).