organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2-Hy­dr­oxy-6-meth­­oxy­phen­yl)-3-(2,4,6-tri­meth­­oxy­phen­yl)prop-2-en-1-one

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

(Received 6 November 2013; accepted 18 November 2013; online 23 November 2013)

In the title mol­ecule, C19H20O6, the conformation about the C=C bond of the central enone group is E. The dihedral angle formed by the benzene rings is 11.6 (2)°. The hy­droxy group is involved in an intra­molecular O—H⋯O hydrogen bond. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into chains along [010].

Related literature

For the synthesis and biological properties of chalcone deriv­atives, see: Shin et al. (2013[Shin, S. Y., Yoon, H., Hwang, D., Ahn, S., Kim, D.-W., Koh, D., Lee, Y. H. & Lim, Y. (2013). Bioorg. Med. Chem. 21, 7018-7024.]); Yong et al. (2013[Yong, Y., Ahn, S., Hwang, D., Yoon, H., Jo, G., Kim, Y. H., Kim, S. H., Koh, D. & Lim, Y. (2013). Magn. Reson. Chem. 51, 364-370.]); Hsieh et al. (2012[Hsieh, C.-T., Hsieh, T.-J., El-Shazly, M., Chuang, D.-W., Tsai, Y.-H., Yen, C.-T., Wu, S.-F., Wu, Y.-C. & Chang, F.-R. (2012). Bioorg. Med. Chem. Lett. 22, 3912-3915.]); Sashidhara et al. (2011[Sashidhara, K. V., Kumar, M., Modukuri, R. M., Sonkar, R., Bhatia, G., Khanna, A. K., Rai, S. V. & Shukla, R. (2011). Bioorg. Med. Chem. Lett. 21, 4480-4484.]); Sharma et al. (2012[Sharma, V., Singh, G., Kaur, H., Saxena, A. K. & Ishar, M. P. S. (2012). Bioorg. Med. Chem. Lett. 22, 6343-6346.]). For related structures, see: Chantrapromma et al. (2013[Chantrapromma, S., Ruanwas, P., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1004-o1005.]); Li et al. (2013[Li, R., Li, D.-D. & Wu, J.-Y. (2013). Acta Cryst. E69, o1405.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20O6

  • Mr = 344.35

  • Monoclinic, P 21 /c

  • a = 7.2509 (11) Å

  • b = 15.670 (2) Å

  • c = 14.529 (2) Å

  • β = 99.579 (3)°

  • V = 1627.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.32 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 11993 measured reflections

  • 4062 independent reflections

  • 1641 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.146

  • S = 0.83

  • 4062 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1 0.84 1.73 2.475 (2) 147
C17—H17⋯O1i 0.95 2.42 3.265 (3) 148
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A variety of chlacones have been isolated from natural sources and synthesized, because they have shown wide spectrum of biological activities including anticancer (Shin et al., 2013), anti-diabetic (Hsieh et al., 2012), anti-inflammatory (Sashidhara et al. 2011), and antimicrobial (Sharma et al., 2012). Chalcones are one of the secondary metabolites found in plants with a C6—C3—C6 skeleton and a C3 skeleton is an α,β-unsaturated carbonyl (enone). In continuation of our research interests to develop novel chalcones which show broad range of biological activities (Shin et al., 2013, Yong et al., 2013), the crystal structure of title compound has been determined.

The molecular structure of the title compound is shown in Fig. 1. The trans configuration of the C2C3 double bond in the central enone group is confirmed by the dihedral angle of C1—C2C3—C4 of 179.5 (2)°. The dihedral angle between the two benzene rings is 11.6 (2)°. The C1O1 double bond [1.254 (3) Å] is slightly longer than the normal value (Allen et al. 1987) as this group is involved in an intramolecular hydrogen bond with the hydroxyl group. Of the three methoxy groups in the B-benzene ring, the two methoxy groups at the ortho positions are slightly more rotated from the ring plane (C6—O2—C5—C7 [9.7 (3)°], C12—O4—C11—C4 [172.8 (2)°]) than the group in the para position (C9—O3—C8—C10 [178.1 (2)°]). In the crystal, weak C—H···O hydrogen bonds link the molecules into one-dimensional chains along [010]. Examples of structures of substituted chalcone compounds have been published (Chantrapromma et al., 2013; Li et al., 2013).

Related literature top

For the synthesis and biological properties of chalcone derivatives, see: Shin et al. (2013); Yong et al. (2013); Hsieh et al. (2012); Sashidhara et al. (2011); Sharma et al. (2012). For related structures, see: Chantrapromma et al. (2013); Li et al. (2013). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a solution of 2-hydroxy-6-methoxyacetophenone (332 mg, 2 mmol) in 20 ml of anhydrous ethanol was added 2,4,6-trimethoxybenzaldehyde (392 mg, 2 mmol) and the temperature was adjusted to around 276–277 K in an ice-bath. To the cooled reaction mixture was added 2 ml of 50% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 48 h. This mixture was poured into iced water (100 ml) and was acidified with 6 N HCl solution. The mixture was extracted with ethylacetate (3×20 ml) and the combined organic layers were dried under MgSO4. Filtration and evaporation of the filtrate gave a residue which was purified by flash chromatography to afford the title compound (255 mg, 34%). Recrystallization of the title compound in ethanol gave single crystals (mp: 401–402 K).

Refinement top

H atoms were placed in calculated positions and refined as riding with C—H = 0.95–0.98 Å, O—H = 0.84 Å and Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl, O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
(E)-1-(2-Hydroxy-6-methoxyphenyl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C19H20O6F(000) = 728
Mr = 344.35Dx = 1.405 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2416 reflections
a = 7.2509 (11) Åθ = 2.6–26.0°
b = 15.670 (2) ŵ = 0.11 mm1
c = 14.529 (2) ÅT = 200 K
β = 99.579 (3)°Block, yellow
V = 1627.8 (4) Å30.32 × 0.19 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1641 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 28.4°, θmin = 1.9°
ϕ and ω scansh = 99
11993 measured reflectionsk = 2017
4062 independent reflectionsl = 1219
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.0623P)2]
where P = (Fo2 + 2Fc2)/3
4062 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C19H20O6V = 1627.8 (4) Å3
Mr = 344.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2509 (11) ŵ = 0.11 mm1
b = 15.670 (2) ÅT = 200 K
c = 14.529 (2) Å0.32 × 0.19 × 0.18 mm
β = 99.579 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1641 reflections with I > 2σ(I)
11993 measured reflectionsRint = 0.060
4062 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 0.83Δρmax = 0.24 e Å3
4062 reflectionsΔρmin = 0.30 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1235 (3)0.18277 (14)0.17106 (17)0.0341 (6)
O10.0997 (2)0.25771 (9)0.20093 (12)0.0470 (5)
C20.2322 (3)0.16860 (14)0.07822 (16)0.0348 (6)
H20.26150.11220.05680.042*
C30.2905 (3)0.23561 (14)0.02317 (17)0.0342 (6)
H30.25590.28960.05040.041*
C40.3967 (3)0.23973 (13)0.07012 (16)0.0310 (6)
C50.4563 (3)0.16888 (14)0.12690 (17)0.0349 (6)
O20.4201 (2)0.09143 (9)0.08508 (11)0.0442 (5)
C60.4501 (4)0.01601 (14)0.14069 (19)0.0481 (7)
H6A0.58300.01150.16760.072*
H6B0.41250.03400.10160.072*
H6C0.37550.01880.19100.072*
C70.5470 (3)0.17725 (15)0.21872 (17)0.0386 (6)
H70.58460.12820.25560.046*
C80.5812 (3)0.25842 (15)0.25526 (17)0.0377 (6)
O30.6695 (2)0.27612 (10)0.34409 (12)0.0483 (5)
C90.7234 (4)0.20637 (16)0.40476 (18)0.0547 (8)
H9A0.61250.17310.41230.082*
H9B0.78380.22780.46570.082*
H9C0.81120.17000.37820.082*
C100.5288 (3)0.33007 (14)0.20224 (17)0.0380 (6)
H100.55500.38530.22800.046*
C110.4386 (3)0.32097 (14)0.11176 (16)0.0339 (6)
O40.3845 (2)0.38954 (9)0.05574 (11)0.0415 (5)
C120.4042 (4)0.47228 (13)0.09820 (18)0.0433 (7)
H12A0.33540.47400.15080.065*
H12B0.35380.51560.05210.065*
H12C0.53690.48390.12070.065*
C130.0480 (3)0.11226 (13)0.23419 (16)0.0327 (6)
C140.0110 (3)0.13084 (14)0.32983 (17)0.0354 (6)
O50.0123 (3)0.21060 (10)0.36318 (11)0.0456 (5)
H50.02500.24450.31920.068*
C150.0686 (3)0.06696 (15)0.39475 (17)0.0401 (6)
H150.10260.08070.45900.048*
C160.0759 (3)0.01563 (15)0.36553 (18)0.0416 (7)
H160.11450.05910.41020.050*
C170.0285 (3)0.03734 (14)0.27249 (18)0.0394 (6)
H170.03700.09500.25340.047*
C180.0315 (3)0.02531 (13)0.20719 (17)0.0337 (6)
O60.0748 (2)0.00753 (9)0.11397 (11)0.0433 (5)
C190.0704 (4)0.07976 (14)0.08470 (18)0.0453 (7)
H19A0.05630.10250.10280.068*
H19B0.10650.08300.01670.068*
H19C0.15800.11340.11450.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0405 (15)0.0230 (12)0.0382 (15)0.0022 (10)0.0044 (12)0.0002 (11)
O10.0698 (13)0.0252 (9)0.0408 (11)0.0004 (8)0.0057 (9)0.0021 (8)
C20.0411 (15)0.0252 (12)0.0363 (15)0.0009 (11)0.0010 (12)0.0031 (11)
C30.0393 (15)0.0252 (12)0.0358 (15)0.0015 (10)0.0005 (12)0.0015 (11)
C40.0351 (14)0.0264 (12)0.0305 (14)0.0018 (10)0.0027 (11)0.0023 (10)
C50.0375 (15)0.0302 (13)0.0370 (15)0.0002 (11)0.0059 (12)0.0011 (11)
O20.0609 (12)0.0265 (9)0.0422 (11)0.0026 (8)0.0008 (9)0.0057 (8)
C60.0554 (18)0.0306 (14)0.0558 (18)0.0047 (12)0.0019 (15)0.0102 (13)
C70.0412 (16)0.0349 (13)0.0384 (16)0.0049 (11)0.0027 (12)0.0068 (12)
C80.0378 (15)0.0411 (15)0.0315 (15)0.0011 (11)0.0020 (12)0.0014 (12)
O30.0615 (13)0.0421 (10)0.0366 (11)0.0061 (9)0.0054 (10)0.0035 (9)
C90.071 (2)0.0501 (17)0.0406 (17)0.0101 (15)0.0033 (15)0.0119 (14)
C100.0449 (16)0.0313 (13)0.0350 (15)0.0016 (11)0.0013 (12)0.0009 (11)
C110.0375 (15)0.0302 (13)0.0324 (14)0.0023 (11)0.0011 (12)0.0008 (11)
O40.0581 (12)0.0245 (9)0.0371 (10)0.0012 (8)0.0060 (9)0.0023 (7)
C120.0537 (17)0.0259 (13)0.0454 (16)0.0018 (11)0.0060 (13)0.0065 (11)
C130.0372 (14)0.0229 (12)0.0354 (14)0.0013 (10)0.0011 (11)0.0018 (10)
C140.0349 (15)0.0276 (13)0.0408 (16)0.0012 (10)0.0018 (12)0.0014 (12)
O50.0611 (13)0.0325 (9)0.0384 (11)0.0022 (8)0.0055 (9)0.0050 (8)
C150.0433 (16)0.0399 (15)0.0340 (15)0.0004 (12)0.0026 (12)0.0026 (12)
C160.0434 (16)0.0380 (15)0.0407 (16)0.0013 (12)0.0009 (13)0.0131 (13)
C170.0442 (16)0.0250 (12)0.0478 (17)0.0009 (11)0.0042 (13)0.0060 (12)
C180.0363 (14)0.0278 (13)0.0365 (15)0.0006 (10)0.0045 (12)0.0013 (11)
O60.0681 (13)0.0248 (9)0.0366 (11)0.0036 (8)0.0079 (9)0.0018 (8)
C190.0591 (18)0.0279 (13)0.0495 (17)0.0022 (12)0.0105 (14)0.0075 (12)
Geometric parameters (Å, º) top
C1—O11.254 (2)C10—C111.375 (3)
C1—C21.461 (3)C10—H100.9500
C1—C131.481 (3)C11—O41.365 (2)
C2—C31.345 (3)O4—C121.433 (2)
C2—H20.9500C12—H12A0.9800
C3—C41.445 (3)C12—H12B0.9800
C3—H30.9500C12—H12C0.9800
C4—C51.408 (3)C13—C141.414 (3)
C4—C111.420 (3)C13—C181.428 (3)
C5—O21.363 (2)C14—O51.340 (2)
C5—C71.392 (3)C14—C151.391 (3)
O2—C61.428 (3)O5—H50.8400
C6—H6A0.9800C15—C161.366 (3)
C6—H6B0.9800C15—H150.9500
C6—H6C0.9800C16—C171.381 (3)
C7—C81.385 (3)C16—H160.9500
C7—H70.9500C17—C181.384 (3)
C8—O31.370 (3)C17—H170.9500
C8—C101.379 (3)C18—O61.367 (3)
O3—C91.418 (3)O6—C191.434 (2)
C9—H9A0.9800C19—H19A0.9800
C9—H9B0.9800C19—H19B0.9800
C9—H9C0.9800C19—H19C0.9800
O1—C1—C2118.9 (2)C8—C10—H10120.2
O1—C1—C13118.0 (2)O4—C11—C10122.1 (2)
C2—C1—C13123.03 (19)O4—C11—C4115.58 (19)
C3—C2—C1119.9 (2)C10—C11—C4122.3 (2)
C3—C2—H2120.1C11—O4—C12117.22 (18)
C1—C2—H2120.1O4—C12—H12A109.5
C2—C3—C4131.2 (2)O4—C12—H12B109.5
C2—C3—H3114.4H12A—C12—H12B109.5
C4—C3—H3114.4O4—C12—H12C109.5
C5—C4—C11115.7 (2)H12A—C12—H12C109.5
C5—C4—C3125.3 (2)H12B—C12—H12C109.5
C11—C4—C3118.84 (19)C14—C13—C18116.1 (2)
O2—C5—C7122.4 (2)C14—C13—C1118.37 (19)
O2—C5—C4115.1 (2)C18—C13—C1125.5 (2)
C7—C5—C4122.5 (2)O5—C14—C15116.3 (2)
C5—O2—C6119.01 (19)O5—C14—C13122.0 (2)
O2—C6—H6A109.5C15—C14—C13121.7 (2)
O2—C6—H6B109.5C14—O5—H5109.5
H6A—C6—H6B109.5C16—C15—C14119.6 (2)
O2—C6—H6C109.5C16—C15—H15120.2
H6A—C6—H6C109.5C14—C15—H15120.2
H6B—C6—H6C109.5C15—C16—C17121.4 (2)
C8—C7—C5118.7 (2)C15—C16—H16119.3
C8—C7—H7120.7C17—C16—H16119.3
C5—C7—H7120.7C16—C17—C18119.7 (2)
O3—C8—C10113.8 (2)C16—C17—H17120.2
O3—C8—C7125.0 (2)C18—C17—H17120.2
C10—C8—C7121.2 (2)O6—C18—C17121.9 (2)
C8—O3—C9117.82 (19)O6—C18—C13116.8 (2)
O3—C9—H9A109.5C17—C18—C13121.3 (2)
O3—C9—H9B109.5C18—O6—C19118.38 (17)
H9A—C9—H9B109.5O6—C19—H19A109.5
O3—C9—H9C109.5O6—C19—H19B109.5
H9A—C9—H9C109.5H19A—C19—H19B109.5
H9B—C9—H9C109.5O6—C19—H19C109.5
C11—C10—C8119.5 (2)H19A—C19—H19C109.5
C11—C10—H10120.2H19B—C19—H19C109.5
O1—C1—C2—C35.9 (4)C3—C4—C11—C10175.9 (2)
C13—C1—C2—C3177.5 (2)C10—C11—O4—C127.6 (3)
C1—C2—C3—C4179.5 (2)C4—C11—O4—C12172.9 (2)
C2—C3—C4—C53.3 (4)O1—C1—C13—C1413.0 (3)
C2—C3—C4—C11179.9 (3)C2—C1—C13—C14163.5 (2)
C11—C4—C5—O2178.1 (2)O1—C1—C13—C18167.9 (2)
C3—C4—C5—O25.2 (3)C2—C1—C13—C1815.5 (4)
C11—C4—C5—C71.3 (3)C18—C13—C14—O5176.3 (2)
C3—C4—C5—C7175.3 (2)C1—C13—C14—O54.6 (4)
C7—C5—O2—C69.7 (3)C18—C13—C14—C154.6 (4)
C4—C5—O2—C6170.9 (2)C1—C13—C14—C15174.5 (2)
O2—C5—C7—C8178.8 (2)O5—C14—C15—C16178.2 (2)
C4—C5—C7—C80.6 (4)C13—C14—C15—C162.7 (4)
C5—C7—C8—O3179.7 (2)C14—C15—C16—C170.4 (4)
C5—C7—C8—C100.6 (4)C15—C16—C17—C181.3 (4)
C10—C8—O3—C9178.1 (2)C16—C17—C18—O6178.0 (2)
C7—C8—O3—C92.7 (4)C16—C17—C18—C130.9 (4)
O3—C8—C10—C11179.9 (2)C14—C13—C18—O6175.3 (2)
C7—C8—C10—C110.9 (4)C1—C13—C18—O65.7 (4)
C8—C10—C11—O4179.6 (2)C14—C13—C18—C173.7 (4)
C8—C10—C11—C40.1 (4)C1—C13—C18—C17175.3 (2)
C5—C4—C11—O4178.5 (2)C17—C18—O6—C194.6 (3)
C3—C4—C11—O44.6 (3)C13—C18—O6—C19176.4 (2)
C5—C4—C11—C101.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O10.841.732.475 (2)147
C17—H17···O1i0.952.423.265 (3)148
Symmetry code: (i) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O10.841.732.475 (2)147
C17—H17···O1i0.952.423.265 (3)148
Symmetry code: (i) x, y1/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Ruanwas, P., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1004–o1005.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHsieh, C.-T., Hsieh, T.-J., El-Shazly, M., Chuang, D.-W., Tsai, Y.-H., Yen, C.-T., Wu, S.-F., Wu, Y.-C. & Chang, F.-R. (2012). Bioorg. Med. Chem. Lett. 22, 3912–3915.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, R., Li, D.-D. & Wu, J.-Y. (2013). Acta Cryst. E69, o1405.  CSD CrossRef IUCr Journals Google Scholar
First citationSashidhara, K. V., Kumar, M., Modukuri, R. M., Sonkar, R., Bhatia, G., Khanna, A. K., Rai, S. V. & Shukla, R. (2011). Bioorg. Med. Chem. Lett. 21, 4480–4484.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSharma, V., Singh, G., Kaur, H., Saxena, A. K. & Ishar, M. P. S. (2012). Bioorg. Med. Chem. Lett. 22, 6343–6346.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, S. Y., Yoon, H., Hwang, D., Ahn, S., Kim, D.-W., Koh, D., Lee, Y. H. & Lim, Y. (2013). Bioorg. Med. Chem. 21, 7018–7024.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYong, Y., Ahn, S., Hwang, D., Yoon, H., Jo, G., Kim, Y. H., Kim, S. H., Koh, D. & Lim, Y. (2013). Magn. Reson. Chem. 51, 364–370.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds