metal-organic compounds
catena-Poly[N,N,N′,N′-tetramethylethylendiammonium [[tetrabromidoantimonate(III)]-μ-bromido] hemihydrate]
aLaboratoire de Génie des Matériaux et Environnement, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, BP 1173, Sfax, Tunisia, and bService commun d'analyse par diffraction des rayons X, Université de Brest, 6 avenue Victor Le Gorgeu, CS 93837, F-29238 Brest Cedex 3, France
*Correspondence e-mail: kharrat_houda@yahoo.fr
The 6H18N2)2[Sb2Br10]·H2O}n, consists of two tetramethylethylendiammonium cations that are located on centres of inversion, as well as one tetramethylethylendiammonium cation, one water molecule, one distorted octahedral [SbBr6]3−anion and one bisphenoidal [SbBr4]− anion in general positions. The [SbBr6]3− and [SbBr4]− anions are linked together by two long Sb—Br bonds of 3.2709 (8) and 3.5447 (7) Å into {[Sb2Br10]4−}n chains along [001]. One of the three tetramethylethylendiammonium cations is disordered and was refined using a split model (occupancy ratio 0.58:0.42). The cations and the water molecule are connected to the {[Sb2Br10]4−}n polymeric anions by weak N—H ⋯Br and O(water)—H ⋯Br hydrogen bonding.
of the title compound {(CCCDC reference: 967628
Related literature
For crystal structures of related organic antimonate(III) halogenides, see: Bujak & Angel (2005); Chaabouni et al. (1997, 1998). For a similar structure, see: Owczarek et al. (2012). The bond-valence sum was calculated using the parameters given by Brown & Altermatt (1985).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 967628
10.1107/S1600536813028894/nc2318sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813028894/nc2318Isup2.hkl
Crystals of the title compound were obtained by dissolving a stoichiometric mixture of antimony (III) oxide Sb2O3 (5 g, 17 mmol) and N, N, N', N' - tetramethylethylendiamine (C6H16N2) (5 ml, 34 mmol) in 100 ml of a solution of HBr (24%) . The resulting aqueous solution was then kept at room temperature. After several weeks prismatic shaped single crystals of the title compound were obtained by slow evaporation of the solvent at room temperature. They were washed with diethyl ether and dried for 4 h over CaCl2.
All C-H and N-H H atoms were positioned with idealized geometry and refined with Uiso(H) = 1.2 Ueq(C,N) (1.5 for methyl H atoms) using a riding model with C-H = 0.96 Å for methyl, C-H = 0.97 Å for methylene and N—H = 0.91 Å for ammonium H atoms. The H atoms of the water molecules were located in difference map, their bond lengths were set to ideal values and finally they were refined using a riding model with Uiso(H) = 1.5 Ueq(O). The tetramethylethylendiammonium cation in a general position is disordered and was refined using a split model with occupancy ratio 58:42 using restraints. The O atom of the water molecule shows slightly enlarged anisotropic displacement parameters indicating for some disordering that cannot be resolved successfully.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).Fig. 1. View of the asymmetric unit of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i) x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z + 1. | |
Fig. 2. View of the anionic substructure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i) -x + 1, y + 0.5, -z + 1.5; (ii) -x + 1, -y + 1, -z + 1. |
(C6H18N2)[Sb2Br10]·H2O | Z = 8 |
Mr = 1297.06 | F(000) = 4784 |
Orthorhombic, Pbca | Dx = 2.553 Mg m−3 |
Hall symbol: -P 2ac 2ab | Mo Kα radiation, λ = 0.71073 Å |
a = 18.0860 (4) Å | µ = 13.45 mm−1 |
b = 19.1755 (4) Å | T = 298 K |
c = 19.4619 (4) Å | Prismatic, axis [1 0 0], yellow |
V = 6749.5 (2) Å3 | 0.43 × 0.30 × 0.19 mm |
Oxford Diffraction Xcalibur Sapphire2 diffractometer | 10770 independent reflections |
Radiation source: sealed X-ray tube | 5721 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.096 |
Detector resolution: 8.3622 pixels mm-1 | θmax = 31.6°, θmin = 3.1° |
ω scans | h = −25→26 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | k = −28→26 |
Tmin = 0.011, Tmax = 0.078 | l = −26→28 |
65748 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.033P)2 + 2.8328P] where P = (Fo2 + 2Fc2)/3 |
10770 reflections | (Δ/σ)max = 0.001 |
290 parameters | Δρmax = 1.92 e Å−3 |
15 restraints | Δρmin = −1.98 e Å−3 |
(C6H18N2)[Sb2Br10]·H2O | V = 6749.5 (2) Å3 |
Mr = 1297.06 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 18.0860 (4) Å | µ = 13.45 mm−1 |
b = 19.1755 (4) Å | T = 298 K |
c = 19.4619 (4) Å | 0.43 × 0.30 × 0.19 mm |
Oxford Diffraction Xcalibur Sapphire2 diffractometer | 10770 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 5721 reflections with I > 2σ(I) |
Tmin = 0.011, Tmax = 0.078 | Rint = 0.096 |
65748 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 15 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.01 | Δρmax = 1.92 e Å−3 |
10770 reflections | Δρmin = −1.98 e Å−3 |
290 parameters |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlis RED (Oxford Diffraction, 2009) |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Sb1 | 0.626802 (19) | 0.755771 (18) | 0.520272 (17) | 0.02825 (9) | |
Sb2 | 0.351898 (18) | 0.442769 (18) | 0.734954 (18) | 0.02673 (9) | |
Br1 | 0.54458 (4) | 0.65129 (3) | 0.59658 (3) | 0.04546 (16) | |
Br2 | 0.70124 (4) | 0.85628 (3) | 0.45458 (4) | 0.05252 (18) | |
Br3 | 0.48610 (3) | 0.81097 (4) | 0.46063 (3) | 0.04992 (18) | |
Br4 | 0.75101 (4) | 0.70887 (4) | 0.57645 (3) | 0.0591 (2) | |
Br5 | 0.59238 (4) | 0.83959 (4) | 0.64163 (4) | 0.0646 (2) | |
Br6 | 0.64208 (4) | 0.66424 (3) | 0.41346 (3) | 0.04907 (17) | |
Br7 | 0.50362 (3) | 0.48013 (3) | 0.70652 (3) | 0.03898 (15) | |
Br8 | 0.21218 (3) | 0.41314 (4) | 0.76132 (4) | 0.0591 (2) | |
Br9 | 0.35219 (3) | 0.53266 (3) | 0.83085 (3) | 0.04420 (16) | |
Br10 | 0.31213 (3) | 0.53122 (3) | 0.64461 (3) | 0.04336 (16) | |
N1 | 0.6426 (2) | 0.6779 (3) | 0.7410 (2) | 0.0377 (12) | |
H1 | 0.6259 | 0.6911 | 0.6989 | 0.045* | |
N2 | 0.4676 (3) | 0.7303 (3) | 0.7326 (3) | 0.0423 (12) | |
H2 | 0.4908 | 0.7287 | 0.6911 | 0.051* | |
C1 | 0.6693 (4) | 0.6051 (3) | 0.7355 (4) | 0.061 (2) | |
H1A | 0.6291 | 0.5753 | 0.7222 | 0.091* | |
H1B | 0.6883 | 0.5902 | 0.7791 | 0.091* | |
H1C | 0.7077 | 0.6026 | 0.7015 | 0.091* | |
C2 | 0.7034 (4) | 0.7249 (4) | 0.7603 (4) | 0.065 (2) | |
H2A | 0.6851 | 0.7718 | 0.7633 | 0.098* | |
H2B | 0.7416 | 0.7225 | 0.7262 | 0.098* | |
H2C | 0.723 | 0.711 | 0.804 | 0.098* | |
C3 | 0.5793 (4) | 0.6819 (4) | 0.7901 (3) | 0.066 (2) | |
H3A | 0.5544 | 0.6372 | 0.7883 | 0.08* | 0.58 |
H3B | 0.6004 | 0.6859 | 0.8357 | 0.08* | 0.58 |
H3C | 0.5908 | 0.6497 | 0.827 | 0.08* | 0.42 |
H3D | 0.5812 | 0.7282 | 0.8099 | 0.08* | 0.42 |
C4A | 0.5236 (6) | 0.7339 (6) | 0.7848 (5) | 0.047 (3) | 0.58 |
H4A | 0.5486 | 0.7783 | 0.7793 | 0.056* | 0.58 |
H4B | 0.4984 | 0.7356 | 0.8288 | 0.056* | 0.58 |
C5A | 0.4178 (12) | 0.6752 (8) | 0.7351 (13) | 0.071 (6) | 0.58 |
H5A | 0.3847 | 0.6781 | 0.6966 | 0.107* | 0.58 |
H5B | 0.3899 | 0.6776 | 0.777 | 0.107* | 0.58 |
H5C | 0.4443 | 0.6319 | 0.7333 | 0.107* | 0.58 |
C6A | 0.4223 (7) | 0.8015 (6) | 0.7363 (7) | 0.058 (4) | 0.58 |
H6A | 0.4559 | 0.8402 | 0.7345 | 0.087* | 0.58 |
H6B | 0.3947 | 0.8032 | 0.7784 | 0.087* | 0.58 |
H6C | 0.3888 | 0.8041 | 0.6981 | 0.087* | 0.58 |
C4B | 0.5103 (7) | 0.6709 (6) | 0.7744 (6) | 0.031 (3) | 0.42 |
H4C | 0.4835 | 0.6626 | 0.8167 | 0.037* | 0.42 |
H4D | 0.5079 | 0.6282 | 0.7476 | 0.037* | 0.42 |
C5B | 0.3998 (18) | 0.6842 (15) | 0.7092 (19) | 0.080 (10) | 0.42 |
H5E | 0.417 | 0.6468 | 0.6807 | 0.12* | 0.42 |
H5F | 0.3656 | 0.7125 | 0.6838 | 0.12* | 0.42 |
H5G | 0.3756 | 0.6654 | 0.749 | 0.12* | 0.42 |
C6B | 0.4477 (2) | 0.7858 (2) | 0.7706 (2) | 0.092 (9) | 0.42 |
H6E | 0.4911 | 0.8112 | 0.784 | 0.138* | 0.42 |
H6F | 0.4219 | 0.7702 | 0.8109 | 0.138* | 0.42 |
H6G | 0.4159 | 0.8154 | 0.7441 | 0.138* | 0.42 |
N3 | 0.4164 (2) | 0.5295 (2) | 0.4486 (2) | 0.0347 (11) | |
H3 | 0.4377 | 0.5133 | 0.4094 | 0.042* | |
C7 | 0.4592 (3) | 0.4993 (3) | 0.5075 (3) | 0.0318 (13) | |
H7A | 0.4436 | 0.4515 | 0.5154 | 0.038* | |
H7B | 0.4492 | 0.5259 | 0.5489 | 0.038* | |
C8 | 0.3390 (3) | 0.5050 (4) | 0.4484 (3) | 0.0513 (18) | |
H8A | 0.3381 | 0.4551 | 0.4524 | 0.077* | |
H8B | 0.3156 | 0.5187 | 0.4062 | 0.077* | |
H8C | 0.313 | 0.5253 | 0.4865 | 0.077* | |
C9 | 0.4198 (4) | 0.6065 (3) | 0.4455 (4) | 0.0596 (19) | |
H9A | 0.389 | 0.6229 | 0.4087 | 0.089* | |
H9B | 0.4699 | 0.6209 | 0.4376 | 0.089* | |
H9C | 0.4027 | 0.6256 | 0.4882 | 0.089* | |
N4 | 0.4240 (2) | 0.9494 (2) | 0.5451 (2) | 0.0348 (11) | |
H4 | 0.4463 | 0.9071 | 0.5405 | 0.042* | |
C10 | 0.4578 (3) | 0.9977 (3) | 0.4958 (3) | 0.0373 (14) | |
H10A | 0.4366 | 1.0437 | 0.502 | 0.045* | |
H10B | 0.4464 | 0.9824 | 0.4495 | 0.045* | |
C11 | 0.4316 (4) | 0.9720 (4) | 0.6179 (3) | 0.064 (2) | |
H11A | 0.4058 | 0.9399 | 0.6472 | 0.095* | |
H11B | 0.411 | 1.0178 | 0.6232 | 0.095* | |
H11C | 0.483 | 0.9728 | 0.6302 | 0.095* | |
C12 | 0.3444 (3) | 0.9408 (4) | 0.5294 (4) | 0.061 (2) | |
H12A | 0.3231 | 0.9076 | 0.5605 | 0.091* | |
H12B | 0.3389 | 0.9243 | 0.4831 | 0.091* | |
H12C | 0.3198 | 0.9848 | 0.5343 | 0.091* | |
OW | 0.3596 (4) | 0.7703 (5) | 0.5870 (4) | 0.159 (3) | |
H1W | 0.3219 | 0.7677 | 0.563 | 0.238* | |
H2W | 0.3989 | 0.7757 | 0.566 | 0.238* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sb1 | 0.0396 (2) | 0.02096 (19) | 0.02414 (17) | −0.00123 (16) | 0.00398 (16) | −0.00193 (15) |
Sb2 | 0.02741 (18) | 0.02436 (19) | 0.02841 (18) | 0.00197 (15) | −0.00144 (15) | 0.00237 (16) |
Br1 | 0.0683 (4) | 0.0336 (3) | 0.0345 (3) | −0.0137 (3) | 0.0033 (3) | −0.0023 (3) |
Br2 | 0.0636 (4) | 0.0405 (4) | 0.0535 (4) | −0.0205 (3) | 0.0045 (3) | 0.0098 (3) |
Br3 | 0.0512 (4) | 0.0541 (4) | 0.0444 (4) | 0.0098 (3) | −0.0033 (3) | −0.0109 (3) |
Br4 | 0.0503 (4) | 0.0776 (5) | 0.0493 (4) | 0.0205 (4) | −0.0013 (3) | 0.0034 (4) |
Br5 | 0.0788 (5) | 0.0500 (4) | 0.0650 (5) | −0.0101 (4) | 0.0015 (4) | −0.0271 (4) |
Br6 | 0.0785 (5) | 0.0318 (3) | 0.0369 (3) | −0.0005 (3) | 0.0089 (3) | −0.0031 (3) |
Br7 | 0.0333 (3) | 0.0463 (4) | 0.0373 (3) | −0.0007 (3) | 0.0038 (2) | 0.0046 (3) |
Br8 | 0.0324 (3) | 0.0653 (5) | 0.0795 (5) | −0.0106 (3) | 0.0040 (3) | 0.0040 (4) |
Br9 | 0.0542 (4) | 0.0467 (4) | 0.0318 (3) | 0.0074 (3) | −0.0061 (3) | −0.0070 (3) |
Br10 | 0.0519 (4) | 0.0484 (4) | 0.0298 (3) | 0.0162 (3) | −0.0033 (3) | 0.0071 (3) |
N1 | 0.036 (3) | 0.050 (3) | 0.027 (2) | 0.008 (2) | −0.004 (2) | −0.001 (2) |
N2 | 0.033 (3) | 0.048 (3) | 0.046 (3) | 0.008 (2) | 0.003 (2) | −0.002 (3) |
C1 | 0.060 (5) | 0.045 (4) | 0.078 (5) | 0.021 (3) | −0.009 (4) | −0.005 (4) |
C2 | 0.067 (5) | 0.068 (5) | 0.060 (5) | −0.019 (4) | 0.001 (4) | −0.008 (4) |
C3 | 0.061 (5) | 0.100 (7) | 0.038 (4) | 0.028 (4) | 0.011 (3) | 0.012 (4) |
C4A | 0.048 (7) | 0.052 (8) | 0.039 (6) | 0.019 (6) | 0.002 (5) | −0.007 (6) |
C5A | 0.054 (13) | 0.050 (9) | 0.11 (2) | −0.011 (8) | 0.003 (10) | −0.008 (11) |
C6A | 0.042 (7) | 0.041 (7) | 0.092 (10) | 0.021 (6) | −0.007 (7) | 0.008 (7) |
C4B | 0.050 (9) | 0.015 (7) | 0.028 (7) | 0.004 (6) | 0.002 (6) | −0.008 (6) |
C5B | 0.041 (15) | 0.12 (2) | 0.07 (2) | −0.020 (13) | −0.018 (11) | 0.002 (16) |
C6B | 0.056 (14) | 0.034 (11) | 0.19 (3) | 0.023 (10) | 0.029 (15) | 0.003 (15) |
N3 | 0.036 (3) | 0.039 (3) | 0.029 (3) | −0.001 (2) | 0.003 (2) | −0.006 (2) |
C7 | 0.036 (3) | 0.034 (3) | 0.025 (3) | −0.004 (3) | 0.004 (2) | −0.003 (3) |
C8 | 0.031 (3) | 0.073 (5) | 0.050 (4) | 0.002 (3) | −0.003 (3) | −0.002 (4) |
C9 | 0.073 (5) | 0.037 (4) | 0.068 (5) | 0.009 (3) | −0.012 (4) | 0.005 (4) |
N4 | 0.038 (3) | 0.028 (3) | 0.039 (3) | 0.008 (2) | 0.006 (2) | −0.001 (2) |
C10 | 0.038 (3) | 0.045 (4) | 0.029 (3) | −0.002 (3) | −0.003 (3) | 0.000 (3) |
C11 | 0.062 (4) | 0.100 (6) | 0.028 (3) | −0.003 (4) | 0.001 (3) | 0.006 (4) |
C12 | 0.050 (4) | 0.065 (5) | 0.067 (5) | −0.010 (4) | 0.002 (3) | −0.006 (4) |
OW | 0.128 (6) | 0.243 (10) | 0.105 (5) | −0.005 (6) | −0.008 (5) | 0.028 (6) |
Sb1—Br1 | 2.9035 (7) | C6A—H6A | 0.96 |
Sb1—Br2 | 2.6762 (7) | C6A—H6B | 0.96 |
Sb1—Br3 | 2.9906 (7) | C6A—H6C | 0.96 |
Sb1—Br4 | 2.6553 (7) | C4B—H4C | 0.97 |
Sb1—Br5 | 2.9240 (8) | C4B—H4D | 0.97 |
Sb1—Br6 | 2.7347 (7) | C5B—H5E | 0.96 |
Br5—Sb2i | 3.2709 (8) | C5B—H5F | 0.96 |
Sb2—Br6ii | 3.5447 (7) | C5B—H5G | 0.96 |
Sb2—Br7 | 2.8895 (6) | C6B—H6E | 0.96 |
Sb2—Br8 | 2.6403 (7) | C6B—H6F | 0.96 |
Sb2—Br9 | 2.5405 (7) | C6B—H6G | 0.96 |
Sb2—Br10 | 2.5466 (7) | N3—C8 | 1.477 (7) |
N1—C2 | 1.471 (7) | N3—C9 | 1.479 (7) |
N1—C1 | 1.480 (7) | N3—C7 | 1.500 (6) |
N1—C3 | 1.493 (8) | N3—H3 | 0.91 |
N1—H1 | 0.91 | C7—C7ii | 1.503 (10) |
N2—C6B | 1.345 (7) | C7—H7A | 0.97 |
N2—C5A | 1.389 (19) | C7—H7B | 0.97 |
N2—C4A | 1.437 (10) | C8—H8A | 0.96 |
N2—C5B | 1.58 (2) | C8—H8B | 0.96 |
N2—C6A | 1.596 (11) | C8—H8C | 0.96 |
N2—C4B | 1.598 (13) | C9—H9A | 0.96 |
N2—H2 | 0.91 | C9—H9B | 0.96 |
C1—H1A | 0.96 | C9—H9C | 0.96 |
C1—H1B | 0.96 | N4—C10 | 1.467 (7) |
C1—H1C | 0.96 | N4—C12 | 1.480 (7) |
C2—H2A | 0.96 | N4—C11 | 1.487 (7) |
C2—H2B | 0.96 | N4—H4 | 0.91 |
C2—H2C | 0.96 | C10—C10iii | 1.537 (10) |
C3—C4B | 1.302 (13) | C10—H10A | 0.97 |
C3—C4A | 1.422 (11) | C10—H10B | 0.97 |
C3—H3A | 0.97 | C11—H11A | 0.96 |
C3—H3B | 0.97 | C11—H11B | 0.96 |
C3—H3C | 0.97 | C11—H11C | 0.96 |
C3—H3D | 0.97 | C12—H12A | 0.96 |
C4A—H4A | 0.97 | C12—H12B | 0.96 |
C4A—H4B | 0.97 | C12—H12C | 0.96 |
C5A—H5A | 0.96 | OW—H1W | 0.828 |
C5A—H5B | 0.96 | OW—H2W | 0.8264 |
C5A—H5C | 0.96 | ||
Br1—Sb1—Br2 | 177.35 (2) | H3A—C3—H3D | 147.2 |
Br1—Sb1—Br3 | 90.40 (2) | H3B—C3—H3D | 63.1 |
Br1—Sb1—Br4 | 89.37 (2) | H3C—C3—H3D | 106.3 |
Br1—Sb1—Br5 | 81.78 (2) | C3—C4A—N2 | 121.0 (9) |
Br1—Sb1—Br6 | 89.87 (2) | C3—C4A—H4A | 107.1 |
Br2—Sb1—Br3 | 89.30 (2) | N2—C4A—H4A | 107.1 |
Br2—Sb1—Br4 | 90.86 (3) | C3—C4A—H4B | 107.1 |
Br2—Sb1—Br5 | 95.57 (2) | N2—C4A—H4B | 107.1 |
Br2—Sb1—Br6 | 92.77 (2) | H4A—C4A—H4B | 106.8 |
Br3—Sb1—Br4 | 178.37 (2) | N2—C5A—H5A | 109.5 |
Br3—Sb1—Br5 | 86.43 (2) | N2—C5A—H5B | 109.5 |
Br3—Sb1—Br6 | 91.03 (2) | H5A—C5A—H5B | 109.5 |
Br4—Sb1—Br5 | 91.93 (2) | N2—C5A—H5C | 109.5 |
Br4—Sb1—Br6 | 90.58 (2) | H5A—C5A—H5C | 109.5 |
Br5—Sb1—Br6 | 171.25 (2) | H5B—C5A—H5C | 109.5 |
Br5iv—Sb2—Br6ii | 103.81 (2) | N2—C6A—H6A | 109.5 |
Br5iv—Sb2—Br7 | 89.89 (2) | N2—C6A—H6B | 109.5 |
Br5iv—Sb2—Br8 | 91.26 (2) | H6A—C6A—H6B | 109.5 |
Br5iv—Sb2—Br9 | 82.55 (2) | N2—C6A—H6C | 109.5 |
Br5iv—Sb2—Br10 | 175.44 (2) | H6A—C6A—H6C | 109.5 |
Br6ii—Sb2—Br7 | 87.61 (2) | H6B—C6A—H6C | 109.5 |
Br6ii—Sb2—Br8 | 93.62 (2) | C3—C4B—N2 | 117.8 (10) |
Br6ii—Sb2—Br9 | 172.43 (2) | C3—C4B—H4C | 107.9 |
Br6ii—Sb2—Br10 | 80.31 (2) | N2—C4B—H4C | 107.9 |
Br7—Sb2—Br8 | 178.07 (3) | C3—C4B—H4D | 107.9 |
Br7—Sb2—Br9 | 88.31 (2) | N2—C4B—H4D | 107.9 |
Br7—Sb2—Br10 | 88.33 (2) | H4C—C4B—H4D | 107.2 |
Br8—Sb2—Br9 | 90.30 (2) | N2—C5B—H5E | 109.5 |
Br8—Sb2—Br10 | 90.41 (2) | N2—C5B—H5F | 109.5 |
Br9—Sb2—Br10 | 93.20 (2) | H5E—C5B—H5F | 109.5 |
Sb2i—Br5—Sb1 | 149.32 (3) | N2—C5B—H5G | 109.5 |
Sb2ii—Br6—Sb1 | 173.75 (3) | H5E—C5B—H5G | 109.5 |
C2—N1—C1 | 110.7 (5) | H5F—C5B—H5G | 109.5 |
C2—N1—C3 | 112.2 (5) | N2—C6B—H6E | 109.5 |
C1—N1—C3 | 110.2 (5) | N2—C6B—H6F | 109.5 |
C2—N1—H1 | 107.9 | H6E—C6B—H6F | 109.5 |
C1—N1—H1 | 107.9 | N2—C6B—H6G | 109.5 |
C3—N1—H1 | 107.9 | H6E—C6B—H6G | 109.5 |
C6B—N2—C5A | 114.1 (12) | H6F—C6B—H6G | 109.5 |
C6B—N2—C4A | 76.2 (5) | C8—N3—C9 | 110.9 (5) |
C5A—N2—C4A | 118.1 (10) | C8—N3—C7 | 111.6 (4) |
C6B—N2—C5B | 113.2 (15) | C9—N3—C7 | 113.3 (4) |
C5A—N2—C5B | 23.1 (17) | C8—N3—H3 | 106.9 |
C4A—N2—C5B | 141.2 (13) | C9—N3—H3 | 106.9 |
C6B—N2—C6A | 32.9 (5) | C7—N3—H3 | 106.9 |
C5A—N2—C6A | 108.4 (10) | N3—C7—C7ii | 110.5 (5) |
C4A—N2—C6A | 106.8 (7) | N3—C7—H7A | 109.6 |
C5B—N2—C6A | 95.3 (13) | C7ii—C7—H7A | 109.6 |
C6B—N2—C4B | 114.4 (6) | N3—C7—H7B | 109.6 |
C5A—N2—C4B | 75.8 (9) | C7ii—C7—H7B | 109.6 |
C4A—N2—C4B | 48.3 (6) | H7A—C7—H7B | 108.1 |
C5B—N2—C4B | 97.1 (11) | N3—C8—H8A | 109.5 |
C6A—N2—C4B | 146.8 (8) | N3—C8—H8B | 109.5 |
C6B—N2—H2 | 129.6 | H8A—C8—H8B | 109.5 |
C5A—N2—H2 | 107.7 | N3—C8—H8C | 109.5 |
C4A—N2—H2 | 107.7 | H8A—C8—H8C | 109.5 |
C5B—N2—H2 | 94.8 | H8B—C8—H8C | 109.5 |
C6A—N2—H2 | 107.7 | N3—C9—H9A | 109.5 |
C4B—N2—H2 | 101.8 | N3—C9—H9B | 109.5 |
N1—C1—H1A | 109.5 | H9A—C9—H9B | 109.5 |
N1—C1—H1B | 109.5 | N3—C9—H9C | 109.5 |
H1A—C1—H1B | 109.5 | H9A—C9—H9C | 109.5 |
N1—C1—H1C | 109.5 | H9B—C9—H9C | 109.5 |
H1A—C1—H1C | 109.5 | C10—N4—C12 | 109.9 (4) |
H1B—C1—H1C | 109.5 | C10—N4—C11 | 113.6 (5) |
N1—C2—H2A | 109.5 | C12—N4—C11 | 108.7 (5) |
N1—C2—H2B | 109.5 | C10—N4—H4 | 108.2 |
H2A—C2—H2B | 109.5 | C12—N4—H4 | 108.2 |
N1—C2—H2C | 109.5 | C11—N4—H4 | 108.2 |
H2A—C2—H2C | 109.5 | N4—C10—C10iii | 112.4 (6) |
H2B—C2—H2C | 109.5 | N4—C10—H10A | 109.1 |
C4B—C3—C4A | 54.4 (7) | C10iii—C10—H10A | 109.1 |
C4B—C3—N1 | 125.2 (8) | N4—C10—H10B | 109.1 |
C4A—C3—N1 | 122.3 (7) | C10iii—C10—H10B | 109.1 |
C4B—C3—H3A | 53.3 | H10A—C10—H10B | 107.9 |
C4A—C3—H3A | 106.8 | N4—C11—H11A | 109.5 |
N1—C3—H3A | 106.8 | N4—C11—H11B | 109.5 |
C4B—C3—H3B | 127.2 | H11A—C11—H11B | 109.5 |
C4A—C3—H3B | 106.8 | N4—C11—H11C | 109.5 |
N1—C3—H3B | 106.8 | H11A—C11—H11C | 109.5 |
H3A—C3—H3B | 106.6 | H11B—C11—H11C | 109.5 |
C4B—C3—H3C | 106 | N4—C12—H12A | 109.5 |
C4A—C3—H3C | 130.7 | N4—C12—H12B | 109.5 |
N1—C3—H3C | 106 | H12A—C12—H12B | 109.5 |
H3A—C3—H3C | 64.1 | N4—C12—H12C | 109.5 |
H3B—C3—H3C | 44.6 | H12A—C12—H12C | 109.5 |
C4B—C3—H3D | 106 | H12B—C12—H12C | 109.5 |
C4A—C3—H3D | 53.9 | H1W—OW—H2W | 115.9 |
N1—C3—H3D | 106 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z+1; (iv) −x+1, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br1 | 0.91 | 2.59 | 3.362 (4) | 143 |
N2—H2···Br1 | 0.91 | 2.56 | 3.353 (5) | 146 |
N3—H3···Br7ii | 0.91 | 2.5 | 3.352 (4) | 157 |
N4—H4···Br3 | 0.91 | 2.52 | 3.318 (4) | 147 |
OW—H1W···Br4v | 0.83 | 3.03 | 3.759 (7) | 148 |
OW—H2W···Br3 | 0.83 | 2.67 | 3.449 (7) | 157 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (v) x−1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br1 | 0.91 | 2.59 | 3.362 (4) | 143 |
N2—H2···Br1 | 0.91 | 2.56 | 3.353 (5) | 146.4 |
N3—H3···Br7i | 0.91 | 2.5 | 3.352 (4) | 157 |
N4—H4···Br3 | 0.91 | 2.52 | 3.318 (4) | 147.2 |
OW—H1W···Br4ii | 0.83 | 3.03 | 3.759 (7) | 147.5 |
OW—H2W···Br3 | 0.83 | 2.67 | 3.449 (7) | 156.7 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, −y+3/2, −z+1. |
Acknowledgements
The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bujak, M. & Angel, R. J. (2005). J. Solid State Chem. 178, 2237–2246. Web of Science CSD CrossRef CAS Google Scholar
Chaabouni, S., Kamoun, S., Daoud, A. & Jouini, T. (1997). J. Chem. Crystallogr. 27, 401–404. CrossRef CAS Google Scholar
Chaabouni, S., Kamoun, S. & Jaud, J. (1998). Mater. Res. Bull. 33, 377–388. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Owczarek, M., Szklarz, P., Jakubas, R. & Miniewicz, A. (2012). Dalton Trans. 41, 7285–7294. Web of Science CSD CrossRef CAS PubMed Google Scholar
Oxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structure determination is part of a larger project related to the synthesis, structure and phase transitions in the group of new ferroic crystals of halogenoantimonates (III) with organic cations of various sizes and symmetries (Bujak & Angel, 2005; Chaabouni et al., 1997; Chaabouni et al., 1998). In these compounds the Sb atom shows a tendency toward distorded octahedral coordination with some rather long Sb—X bonds, which is attributed to the aspherical distribution of the lone pair electron (LP) at the Sb(III) cation.
The asymetric unit of the title compound consists of both, [SbBr6]3- and [SbBr4]- anions, a water molecule and three tetramethylethylene diammonium cations of which two are located on centers of inversion (Fig. 1). One of these cations is disordered and was refined using a split model. The anionic substructure is composed of distordered [Sb(1)Br6]3- octahedra that share two trans corners with two others [Sb(2)Br4]- anions that shows a saw-horse coordination. These anions are linked into zig zag {[Sb2Br10]4-}n pseudo chains that elongate along the [001] direction (Fig. 2). Two types of Sb—Br distances are present within these chains: eight short Sb—Br (terminal) distances [2.5405 (7) - 2.9906 (7) Å] and two long Sb—Br (bridging) distances [Sb(2)···Br(5) = 3.2709 (8) Å and Sb(2)···Br(6) = 3.5447 (7) Å], all of them are shorter than the sum of the Van der Waals radii (4.1 Å). A similar structural behavior was already reported by Owczarek (Owczarek et al., 2012). By taking into account the sixth-fold coordination of antimony atom, we have proceeded to calculate the bond-valence sum (BVS) of this metal using the parameters given by Brown (Brown & Altermatt, 1985). The BVS calculation of the Sb(1) and Sb(2) ions confirm the presumed oxidation state of Sb (III). The difference between the longest and the shortest Sb—Br distances in the Sb(1)Br6 and Sb(2)Br6 units amount to 0.3353 (7) Å and 1.0042 (7) Å. Differences were also found in the Br—Sb—Br angles involving Br atoms that are mutually cis configurated. The differences are 13.79 (2)° for Sb(1)Br6 and 23.50 (2)° for Sb(2)Br6. Taking into account the differences described above the lone pair electron at the Sb(III) cations may be considered as stereochemical active. The [C6H18N2]2+ cations are located between the inorganic chains with their ammonium group facing the oppositely charged {[Sb2Br10]4-}n polyanions. In the crystal structure the cations, anions and water molecules are linked by weak intermolecular N—H···Br and O(W)—H···Br hydrogen bonding (Table 1).