organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethane-1,2-diaminium 2,2′-[tereph­thal­oyl­bis­(aza­nedi­yl)]di­acetate tetrahydrate

aInstitute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Paul-Ernst-Str. 4, D-38678, Clausthal-Zellerfeld, Germany
*Correspondence e-mail: arnold.adam@tu-clausthal.de

(Received 15 October 2013; accepted 28 October 2013; online 6 November 2013)

In the title salt hydrate, C2H10N22+·C12H10N2O62−·4H2O, each of the ions is located about a centre of inversion and the asymmetric unit is completed by two water molecules in general positons. In the crystal, the cations, anions and water mol­ecules are connected by O—H⋯O and N—H⋯O hydrogen bonding into a three-dimensional network.

Related literature

The starting material, 2,2′-(benzene-1,4-dicarboxamido)­diacetatic acid, was prepared by the method of Cleaver & Pratt (1955[Cleaver, C. S. & Pratt, B. C. (1955). J. Am. Chem. Soc. 77, 1544-1546.]). For related organic structures, see: Armelin et al. (2001[Armelin, E., Escudero, E., Campos, L. & Puiggalí, J. (2001). Acta Cryst. C57, 172-173.]); Ray et al. (2006[Ray, S., Hegde, R. P., Das, A. K., Shamala, N. & Banerjee, A. (2006). Tetrahedron, 62, 9603-9609.]). For crystal strucutres of d-block elements with 2,2′-(terephthaloylbis(aza­nedi­yl))di­acetate and similar ligands, see: Duan et al. (2010[Duan, J., Zheng, B., Bai, J., Zhang, Q. & Zuo, C. (2010). Inorg. Chim. Acta, 363, 3172-3177.]); Kostakis et al. (2005[Kostakis, G. E., Casella, L., Hadjiliadis, N., Monzani, E., Kourkoumelis, N. & Plakatouras, J. C. (2005). Chem. Commun. 30, 3859-3861.], 2011[Kostakis, G. E., Casella, L., Boudalis, A. K., Monzani, E. & Plakatouras, J. C. (2011). New J. Chem. 35, 1060-1071.]); Wisser et al. (2008[Wisser, B., Chamayou, A.-C., Miller, R., Scherer, W. & Janiak, C. (2008). CrystEngComm, 10, 461-464.]); Zhang & You (2005)[Zhang, H.-T. & You, X.-Z. (2005). Acta Cryst. E61, m1163-m1165.]; Zhang et al. (2006[Zhang, H.-T., Li, Y.-Z., Wang, T.-W., Nfor, E. N., Wang, H.-Q. & You, X.-Z. (2006). Eur. J. Inorg. Chem. pp. 3532-3536.]).

[Scheme 1]

Experimental

Crystal data
  • C2H10N22+·C12H10N2O62−·4H2O

  • Mr = 412.40

  • Monoclinic, P 21 /c

  • a = 7.3710 (11) Å

  • b = 9.0675 (11) Å

  • c = 14.704 (2) Å

  • β = 105.041 (11)°

  • V = 949.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 223 K

  • 0.28 × 0.25 × 0.22 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • 9883 measured reflections

  • 1859 independent reflections

  • 1633 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.096

  • S = 1.09

  • 1859 reflections

  • 183 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O3 0.89 (3) 1.80 (3) 2.6792 (16) 169 (2)
N2—H2B⋯O3 0.96 (2) 1.85 (2) 2.7896 (17) 164.3 (18)
O4—H4A⋯O1i 0.87 (3) 2.03 (3) 2.8741 (16) 162 (2)
O5—H5A⋯O2ii 0.92 (3) 1.87 (3) 2.7669 (17) 168 (2)
O5—H5B⋯O1iii 0.86 (3) 2.01 (3) 2.8641 (17) 169 (3)
N1—H1⋯O4iv 0.87 (2) 2.02 (2) 2.8509 (17) 159.8 (18)
N2—H2A⋯O5v 0.93 (2) 1.91 (2) 2.8278 (18) 172.6 (18)
N2—H2C⋯O2vi 0.93 (2) 1.89 (2) 2.8086 (17) 169 (2)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) -x+2, -y+1, -z+1; (vi) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe, 2008[Stoe (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, the inter­est in constructing metal-organic coordination polymers continuously rises due to their facinating structures and properties with potential application as functional materials. For the synthesis of such compounds frequently relatively rigid ligands with several coordination centers are used. In this context the title compound was prepared, which should be used as a precursor in the synthesis of new coordination polymers.

The crystal structure of the title compound consists of 2,2'-(terephthaloylbis(aza­nediyl))di­acetate anions that are located on centers of inversion as well as of ethyl­enediaminium cations and water molecules in general positions (Fig. 1). The ethyl­enedi­amine cations are connected to the anions by N—H···O hydrogen bonding between the carboxyl­ate O atom and the ammonium H atoms. The anions and cations are additionally linked to water molecules via N—H···O and O—H···O hydrogen bonding into a three-dimensional network (Fig. 2 and Table 1). Furthermore, the compound shows luminescence under excitation with ultraviolet light.

Experimental top

The starting material, 2,2'-(benzene-1,4-dicarboxamido)­diacetatic acid, was prepared by the method of Cleaver & Pratt (Cleaver & Pratt, 1955). Single crystals were obtained by slow evaporation from an aqueous solution (40 ml) of 2,2'-terephthaloylbis-(glycine) dihydrate (630 mg) and ethyl­enedi­amine (3 ml) at room temperature. Colorless block shaped crystals appeared after a few days.

Refinement top

All hydrogen atoms were located the difference Fourier map and were refined isotropically with no restraints.

Related literature top

For related organic structures, see: Armelin et al. (2001); Ray et al. (2006). For crystal strucutres of d-block elements with 2,2'-(terephthaloylbis(azanediyl))diacetate and similar ligands, see: Duan et al. (2010); Kostakis et al. (2005, 2011); Wisser et al. (2008); Zhang & You (2005); Zhang et al. (2006). The starting material, 2,2'-(benzene-1,4-dicarboxamido)diacetatic acid, was prepared by the method of Cleaver & Pratt (1955).

Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. The dashed lines indicate N—H···O and O—H···O hydrogen bonds (see Table 1 for details). Symmetry codes: (i) -x - 1, -y - 1, -1 - z; (ii) -x + 1, -y - 1, -z.
[Figure 2] Fig. 2. Crystal structure of the title compound viewed along the a axis. Displacement ellipsoids are drawn at the 50% probability level and hydrogen bonding is shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
Ethane-1,2-diaminium 2,2'-[terephthaloylbis(azanediyl)]diacetate tetrahydrate top
Crystal data top
C2H10N22+·C12H10N2O62·4H2OF(000) = 440
Mr = 412.40Dx = 1.443 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1859 reflections
a = 7.3710 (11) Åθ = 1.0–26.0°
b = 9.0675 (11) ŵ = 0.12 mm1
c = 14.704 (2) ÅT = 223 K
β = 105.041 (11)°Block, colorless
V = 949.1 (2) Å30.28 × 0.25 × 0.22 mm
Z = 2
Data collection top
Stoe IPDS 2
diffractometer
1633 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.099
Graphite monochromatorθmax = 26.0°, θmin = 2.7°
ω–scansh = 99
9883 measured reflectionsk = 1111
1859 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.2529P]
where P = (Fo2 + 2Fc2)/3
1859 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C2H10N22+·C12H10N2O62·4H2OV = 949.1 (2) Å3
Mr = 412.40Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.3710 (11) ŵ = 0.12 mm1
b = 9.0675 (11) ÅT = 223 K
c = 14.704 (2) Å0.28 × 0.25 × 0.22 mm
β = 105.041 (11)°
Data collection top
Stoe IPDS 2
diffractometer
1633 reflections with I > 2σ(I)
9883 measured reflectionsRint = 0.099
1859 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.096All H-atom parameters refined
S = 1.09Δρmax = 0.27 e Å3
1859 reflectionsΔρmin = 0.27 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49836 (13)0.43561 (11)0.11941 (7)0.0248 (2)
O20.67537 (15)0.79044 (11)0.17064 (7)0.0293 (3)
O30.87997 (14)0.70796 (12)0.30002 (8)0.0307 (3)
O41.16417 (16)0.83739 (12)0.24811 (9)0.0304 (3)
H4A1.250 (3)0.875 (3)0.2948 (17)0.052 (6)*
H4B1.067 (3)0.806 (3)0.2678 (16)0.050 (6)*
O50.57247 (18)0.30272 (13)0.50636 (9)0.0387 (3)
H5A0.505 (3)0.294 (3)0.4449 (19)0.058 (7)*
H5B0.539 (4)0.227 (3)0.534 (2)0.073 (8)*
N10.39210 (16)0.60948 (13)0.20250 (8)0.0216 (3)
H10.302 (3)0.670 (2)0.2048 (14)0.037 (5)*
N21.13211 (18)0.50461 (14)0.40607 (9)0.0256 (3)
H2A1.234 (3)0.561 (2)0.4374 (14)0.035 (5)*
H2B1.039 (3)0.560 (2)0.3615 (15)0.041 (5)*
H2C1.183 (3)0.434 (3)0.3741 (16)0.053 (6)*
C10.17640 (18)0.50869 (14)0.06420 (9)0.0192 (3)
C20.01507 (19)0.54693 (15)0.09178 (10)0.0218 (3)
H20.023 (2)0.5766 (19)0.1573 (13)0.028 (4)*
C30.16018 (19)0.46137 (15)0.02754 (10)0.0220 (3)
H30.268 (2)0.4371 (18)0.0461 (12)0.021 (4)*
C40.36832 (18)0.51552 (14)0.13090 (9)0.0194 (3)
C50.56927 (18)0.62239 (15)0.27321 (10)0.0215 (3)
H510.625 (2)0.527 (2)0.2943 (12)0.025 (4)*
H520.544 (3)0.673 (2)0.3279 (14)0.033 (5)*
C60.71953 (19)0.71403 (14)0.24383 (10)0.0205 (3)
C71.0404 (2)0.43916 (16)0.47572 (11)0.0275 (3)
H7A1.135 (3)0.384 (2)0.5210 (14)0.036 (5)*
H7B0.937 (3)0.375 (2)0.4412 (13)0.033 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0196 (5)0.0265 (5)0.0275 (5)0.0040 (4)0.0048 (4)0.0023 (4)
O20.0294 (6)0.0305 (5)0.0258 (6)0.0051 (4)0.0034 (4)0.0053 (4)
O30.0208 (5)0.0308 (6)0.0363 (6)0.0048 (4)0.0001 (4)0.0053 (4)
O40.0237 (6)0.0322 (6)0.0349 (6)0.0038 (4)0.0070 (5)0.0053 (5)
O50.0466 (7)0.0325 (6)0.0307 (7)0.0133 (5)0.0010 (5)0.0009 (5)
N10.0157 (5)0.0219 (6)0.0266 (6)0.0004 (4)0.0041 (5)0.0026 (4)
N20.0255 (6)0.0263 (6)0.0237 (6)0.0008 (5)0.0040 (5)0.0018 (5)
C10.0180 (6)0.0154 (6)0.0237 (7)0.0017 (5)0.0047 (5)0.0024 (5)
C20.0204 (7)0.0224 (7)0.0230 (7)0.0017 (5)0.0065 (5)0.0016 (5)
C30.0170 (6)0.0226 (7)0.0281 (7)0.0007 (5)0.0087 (5)0.0016 (5)
C40.0189 (6)0.0177 (6)0.0227 (7)0.0011 (5)0.0070 (5)0.0033 (5)
C50.0201 (7)0.0229 (7)0.0204 (7)0.0011 (5)0.0033 (5)0.0010 (6)
C60.0202 (7)0.0181 (6)0.0228 (7)0.0006 (5)0.0050 (5)0.0038 (5)
C70.0358 (8)0.0206 (7)0.0260 (8)0.0025 (6)0.0076 (6)0.0010 (6)
Geometric parameters (Å, º) top
O1—C41.2476 (16)C1—C31.391 (2)
O2—C61.2500 (18)C1—C21.3961 (19)
O3—C61.2558 (17)C1—C41.4990 (18)
O4—H4A0.87 (3)C2—C3i1.390 (2)
O4—H4B0.89 (3)C2—H20.987 (19)
O5—H5A0.92 (3)C3—C2i1.390 (2)
O5—H5B0.86 (3)C3—H30.931 (17)
N1—C41.3301 (18)C5—C61.5337 (18)
N1—C51.4476 (17)C5—H510.977 (18)
N1—H10.87 (2)C5—H520.98 (2)
N2—C71.489 (2)C6—O31.2558 (17)
N2—H2A0.93 (2)C7—C7ii1.517 (3)
N2—H2B0.96 (2)C7—H7A0.97 (2)
N2—H2C0.93 (2)C7—H7B0.98 (2)
H4A—O4—H4B110 (2)O1—C4—N1122.09 (12)
H5A—O5—H5B104 (2)O1—C4—C1121.01 (12)
C4—N1—C5121.96 (12)N1—C4—C1116.90 (11)
C4—N1—H1119.3 (13)N1—C5—C6115.11 (12)
C5—N1—H1118.6 (13)N1—C5—H51112.5 (10)
C7—N2—H2A109.4 (12)C6—C5—H51107.3 (10)
C7—N2—H2B108.1 (12)N1—C5—H52107.5 (11)
H2A—N2—H2B113.2 (17)C6—C5—H52106.3 (11)
C7—N2—H2C112.9 (14)H51—C5—H52107.8 (15)
H2A—N2—H2C104.4 (18)O2—C6—O3125.53 (13)
H2B—N2—H2C108.9 (18)O2—C6—O3125.53 (13)
C3—C1—C2119.54 (13)O2—C6—C5119.81 (12)
C3—C1—C4118.45 (12)O3—C6—C5114.62 (12)
C2—C1—C4122.01 (13)O3—C6—C5114.62 (12)
C3i—C2—C1120.03 (14)N2—C7—C7ii109.72 (15)
C3i—C2—H2119.1 (10)N2—C7—H7A107.8 (12)
C1—C2—H2120.9 (10)C7ii—C7—H7A110.7 (12)
C2i—C3—C1120.43 (13)N2—C7—H7B107.9 (11)
C2i—C3—H3120.1 (10)C7ii—C7—H7B109.0 (11)
C1—C3—H3119.5 (10)H7A—C7—H7B111.6 (16)
C3—C1—C2—C3i0.5 (2)C3—C1—C4—N1154.93 (12)
C4—C1—C2—C3i179.87 (12)C2—C1—C4—N125.66 (18)
C2—C1—C3—C2i0.5 (2)C4—N1—C5—C679.20 (16)
C4—C1—C3—C2i179.89 (12)O3—O3—C6—O20.00 (17)
C5—N1—C4—O11.6 (2)O3—O3—C6—C50.00 (13)
C5—N1—C4—C1177.93 (11)N1—C5—C6—O211.70 (18)
C3—C1—C4—O125.48 (18)N1—C5—C6—O3170.64 (12)
C2—C1—C4—O1153.92 (13)N1—C5—C6—O3170.64 (12)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O30.89 (3)1.80 (3)2.6792 (16)169 (2)
N2—H2B···O30.96 (2)1.85 (2)2.7896 (17)164.3 (18)
O4—H4A···O1iii0.87 (3)2.03 (3)2.8741 (16)162 (2)
O5—H5A···O2iv0.92 (3)1.87 (3)2.7669 (17)168 (2)
O5—H5B···O1v0.86 (3)2.01 (3)2.8641 (17)169 (3)
N1—H1···O4vi0.87 (2)2.02 (2)2.8509 (17)159.8 (18)
N2—H2A···O5ii0.93 (2)1.91 (2)2.8278 (18)172.6 (18)
N2—H2C···O2vii0.93 (2)1.89 (2)2.8086 (17)169 (2)
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x1, y, z; (vii) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O30.89 (3)1.80 (3)2.6792 (16)169 (2)
N2—H2B···O30.96 (2)1.85 (2)2.7896 (17)164.3 (18)
O4—H4A···O1i0.87 (3)2.03 (3)2.8741 (16)162 (2)
O5—H5A···O2ii0.92 (3)1.87 (3)2.7669 (17)168 (2)
O5—H5B···O1iii0.86 (3)2.01 (3)2.8641 (17)169 (3)
N1—H1···O4iv0.87 (2)2.02 (2)2.8509 (17)159.8 (18)
N2—H2A···O5v0.93 (2)1.91 (2)2.8278 (18)172.6 (18)
N2—H2C···O2vi0.93 (2)1.89 (2)2.8086 (17)169 (2)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x1, y, z; (v) x+2, y+1, z+1; (vi) x+2, y1/2, z+1/2.
 

References

First citationArmelin, E., Escudero, E., Campos, L. & Puiggalí, J. (2001). Acta Cryst. C57, 172–173.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCleaver, C. S. & Pratt, B. C. (1955). J. Am. Chem. Soc. 77, 1544–1546.  CrossRef CAS Web of Science Google Scholar
First citationDuan, J., Zheng, B., Bai, J., Zhang, Q. & Zuo, C. (2010). Inorg. Chim. Acta, 363, 3172–3177.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKostakis, G. E., Casella, L., Boudalis, A. K., Monzani, E. & Plakatouras, J. C. (2011). New J. Chem. 35, 1060–1071.  Web of Science CSD CrossRef CAS Google Scholar
First citationKostakis, G. E., Casella, L., Hadjiliadis, N., Monzani, E., Kourkoumelis, N. & Plakatouras, J. C. (2005). Chem. Commun. 30, 3859–3861.  Web of Science CSD CrossRef Google Scholar
First citationRay, S., Hegde, R. P., Das, A. K., Shamala, N. & Banerjee, A. (2006). Tetrahedron, 62, 9603–9609.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWisser, B., Chamayou, A.-C., Miller, R., Scherer, W. & Janiak, C. (2008). CrystEngComm, 10, 461–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, H.-T., Li, Y.-Z., Wang, T.-W., Nfor, E. N., Wang, H.-Q. & You, X.-Z. (2006). Eur. J. Inorg. Chem. pp. 3532–3536.  Web of Science CSD CrossRef Google Scholar
First citationZhang, H.-T. & You, X.-Z. (2005). Acta Cryst. E61, m1163–m1165.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds