organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-amino-4,5-di­meth­­oxy­benzoate

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa
*Correspondence e-mail: tania.hill@gmail.com

(Received 7 November 2013; accepted 11 November 2013; online 16 November 2013)

The title compound, C10H13NO4, is essentially planar, with an r.m.s. deviation of 0.049 Å. An intra­molecular C—H⋯O hydrogen bond occurs and the amino group forms an intra­molecular N—H⋯Oester hydrogen bond; the other H atom forms an inter­molecular N—H⋯Ocarbon­yl hydrogen bond, leading to the formation of a helical chain that runs along the b-axis direction.

Related literature

For similar crystal structures, see: Zhang et al. (2009[Zhang, M., Lu, R., Han, L., Wei, W. & Wang, H. (2009). Acta Cryst. E65, o942.]); Smith & Elsegood (2002[Smith, M. B. & Elsegood, M. R. J. (2002). Tetrahedron Lett. 43, 1299-1301.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13NO4

  • Mr = 211.21

  • Monoclinic, P 21 /c

  • a = 11.1933 (4) Å

  • b = 7.7564 (3) Å

  • c = 13.7728 (5) Å

  • β = 121.741 (2)°

  • V = 1016.91 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.5 × 0.29 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin. USA.]) Tmin = 0.948, Tmax = 0.974

  • 9994 measured reflections

  • 2543 independent reflections

  • 2080 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.05

  • 2543 reflections

  • 147 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2 0.95 2.37 2.7131 (14) 101
N1—H1A⋯O1 0.90 (2) 2.03 (2) 2.702 (2) 131 (2)
N1—H1B⋯O1i 0.88 (2) 2.10 (2) 2.947 (1) 162 (1)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin. USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin. USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Imapct GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.].

Supporting information


Comment top

The molecular structure of (I) is presented in Figure 1, and was obtained by recrystallization of the commercially available compound. The title compound consists of an amino (C2) and methoxy (C4 and C5) substituted benzoate which was found to be essentially planar with an r.m.s. deviation of 0.049 Å; the dihedral angles shown in Table 1 further reinforce the planarity of (I). The maximum deviation observed below the calculated mean plane was found for the carbonyl oxygen (O1) at -0.136 (1) Å. Two intramolecular hydrogen bonds found between the phenyl carbon (C6), the amino (N1) and the ester O atoms (O1 and O2) with distances of 2.713 (1) Å and 2.702 (2) Å, effectively lock the ester into the molecular plane. The last hydrogen bond interaction observed between the amino (N1) and an adjacent carbonyl oxygen (O1) (symmetry operator [-x, y + 1/2, -z - 1/2]) with a distance of 2.947 (1) Å results in a helical chain along [0 1 0] (Figure 2).

Related literature top

For similar crystal structures, see: Zhang et al. (2009); Smith & Elsegood (2002).

Experimental top

Methyl 2-amino-4,5-dimethoxybenzoate was obtained commercially. (I) was redissolved in warm MeOH and allowed to cool to room terperature. Yellow crystals suitable for single-crystal diffraction were obtained by slow evaporation over a few days.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å Uiso(H)= 1.2 Ueq(C) for the aromatic H and with C—H = 0.98 Å Uiso(H)= 1.5 Ueq(C)for methyl H atoms. The methyl groups were allowed to rotate with a fixed angle arround the C—C bond to best fit the experimental electron density. The amino hydrogens were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
[Figure 2] Fig. 2. Packing of (I) viewed along [0 1 0]. H atoms omitted.
Methyl 2-amino-4,5-dimethoxybenzoate top
Crystal data top
C10H13NO4F(000) = 448
Mr = 211.21Dx = 1.38 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3834 reflections
a = 11.1933 (4) Åθ = 3.0–28.3°
b = 7.7564 (3) ŵ = 0.11 mm1
c = 13.7728 (5) ÅT = 173 K
β = 121.741 (2)°Cuboid, yellow
V = 1016.91 (7) Å30.5 × 0.29 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2543 independent reflections
Radiation source: fine-focus sealed tube2080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 512 pixels mm-1θmax = 28.3°, θmin = 2.1°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1010
Tmin = 0.948, Tmax = 0.974l = 1818
9994 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.2646P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.27 e Å3
2543 reflectionsΔρmin = 0.25 e Å3
147 parameters
Crystal data top
C10H13NO4V = 1016.91 (7) Å3
Mr = 211.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1933 (4) ŵ = 0.11 mm1
b = 7.7564 (3) ÅT = 173 K
c = 13.7728 (5) Å0.5 × 0.29 × 0.25 mm
β = 121.741 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2543 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2080 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.974Rint = 0.035
9994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
2543 reflectionsΔρmin = 0.25 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19769 (12)0.09141 (14)0.01177 (10)0.0237 (2)
C20.16865 (12)0.16680 (14)0.11496 (10)0.0243 (2)
C30.22538 (12)0.33134 (15)0.11104 (10)0.0250 (2)
H30.20620.38390.18010.03*
C40.30761 (12)0.41704 (14)0.00949 (10)0.0239 (2)
C50.33814 (12)0.34050 (14)0.09484 (9)0.0234 (2)
C60.28295 (12)0.18137 (14)0.09202 (9)0.0235 (2)
H60.30240.13010.16150.028*
C70.13820 (12)0.07648 (14)0.01151 (10)0.0256 (2)
C80.13103 (15)0.30520 (15)0.09811 (12)0.0340 (3)
H8A0.02910.30060.0640.051*
H8B0.17630.34210.17790.051*
H8C0.15310.38750.05580.051*
C90.33489 (15)0.66056 (17)0.10146 (11)0.0345 (3)
H9A0.37060.5910.14020.052*
H9B0.38050.77380.08260.052*
H9C0.23310.67510.15180.052*
C100.44564 (14)0.36738 (17)0.29532 (10)0.0328 (3)
H10A0.35540.35260.290.049*
H10B0.50490.44670.35790.049*
H10C0.49270.25540.310.049*
N10.09141 (12)0.08643 (15)0.21889 (9)0.0326 (3)
O10.05611 (10)0.15847 (12)0.09659 (8)0.0376 (2)
O20.18202 (10)0.13617 (11)0.09315 (7)0.0324 (2)
O30.36486 (9)0.57535 (10)0.00121 (7)0.0293 (2)
O40.42222 (9)0.43624 (10)0.19078 (7)0.0279 (2)
H1B0.0560 (16)0.1496 (19)0.2812 (14)0.037 (4)*
H1A0.0410 (18)0.007 (3)0.2225 (15)0.056 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0235 (5)0.0231 (5)0.0239 (5)0.0032 (4)0.0121 (4)0.0001 (4)
C20.0221 (5)0.0261 (5)0.0232 (5)0.0050 (4)0.0110 (4)0.0010 (4)
C30.0261 (6)0.0278 (6)0.0223 (5)0.0056 (4)0.0137 (5)0.0038 (4)
C40.0248 (6)0.0229 (5)0.0268 (5)0.0033 (4)0.0155 (5)0.0024 (4)
C50.0236 (5)0.0249 (5)0.0219 (5)0.0017 (4)0.0121 (4)0.0004 (4)
C60.0255 (6)0.0237 (5)0.0216 (5)0.0021 (4)0.0127 (4)0.0011 (4)
C70.0250 (6)0.0246 (5)0.0272 (6)0.0032 (4)0.0137 (5)0.0011 (4)
C80.0438 (8)0.0221 (5)0.0417 (7)0.0015 (5)0.0263 (6)0.0015 (5)
C90.0402 (7)0.0328 (6)0.0336 (6)0.0003 (5)0.0214 (6)0.0092 (5)
C100.0398 (7)0.0348 (6)0.0218 (6)0.0095 (5)0.0148 (5)0.0019 (5)
N10.0371 (6)0.0324 (6)0.0211 (5)0.0008 (5)0.0102 (5)0.0008 (4)
O10.0411 (5)0.0323 (5)0.0305 (5)0.0088 (4)0.0127 (4)0.0055 (4)
O20.0431 (5)0.0241 (4)0.0295 (4)0.0050 (4)0.0188 (4)0.0004 (3)
O30.0363 (5)0.0258 (4)0.0271 (4)0.0031 (3)0.0176 (4)0.0029 (3)
O40.0341 (5)0.0271 (4)0.0215 (4)0.0063 (3)0.0140 (4)0.0018 (3)
Geometric parameters (Å, º) top
C1—C21.4077 (15)C8—O21.4458 (14)
C1—C61.4162 (15)C8—H8A0.98
C1—C71.4634 (16)C8—H8B0.98
C2—N11.3722 (15)C8—H8C0.98
C2—C31.4138 (16)C9—O31.4317 (14)
C3—C41.3751 (16)C9—H9A0.98
C3—H30.95C9—H9B0.98
C4—O31.3568 (13)C9—H9C0.98
C4—C51.4203 (15)C10—O41.4247 (14)
C5—O41.3692 (13)C10—H10A0.98
C5—C61.3716 (15)C10—H10B0.98
C6—H60.95C10—H10C0.98
C7—O11.2202 (14)N1—H1B0.881 (16)
C7—O21.3374 (14)N1—H1A0.90 (2)
C2—C1—C6119.31 (10)H8A—C8—H8B109.5
C2—C1—C7120.56 (10)O2—C8—H8C109.5
C6—C1—C7120.12 (10)H8A—C8—H8C109.5
N1—C2—C1123.27 (11)H8B—C8—H8C109.5
N1—C2—C3118.28 (10)O3—C9—H9A109.5
C1—C2—C3118.42 (10)O3—C9—H9B109.5
C4—C3—C2121.47 (10)H9A—C9—H9B109.5
C4—C3—H3119.3O3—C9—H9C109.5
C2—C3—H3119.3H9A—C9—H9C109.5
O3—C4—C3124.97 (10)H9B—C9—H9C109.5
O3—C4—C5114.83 (10)O4—C10—H10A109.5
C3—C4—C5120.20 (10)O4—C10—H10B109.5
O4—C5—C6125.87 (10)H10A—C10—H10B109.5
O4—C5—C4115.28 (10)O4—C10—H10C109.5
C6—C5—C4118.85 (10)H10A—C10—H10C109.5
C5—C6—C1121.75 (10)H10B—C10—H10C109.5
C5—C6—H6119.1C2—N1—H1B118.5 (10)
C1—C6—H6119.1C2—N1—H1A117.0 (12)
O1—C7—O2121.23 (11)H1B—N1—H1A116.4 (15)
O1—C7—C1125.11 (11)C7—O2—C8115.77 (9)
O2—C7—C1113.66 (10)C4—O3—C9117.30 (9)
O2—C8—H8A109.5C5—O4—C10116.08 (9)
O2—C8—H8B109.5
C6—C1—C2—N1177.57 (11)C4—C5—C6—C10.54 (17)
C7—C1—C2—N13.72 (17)C2—C1—C6—C50.06 (17)
C6—C1—C2—C30.46 (16)C7—C1—C6—C5178.65 (10)
C7—C1—C2—C3178.25 (10)C2—C1—C7—O13.96 (18)
N1—C2—C3—C4177.87 (11)C6—C1—C7—O1174.73 (11)
C1—C2—C3—C40.26 (16)C2—C1—C7—O2176.09 (10)
C2—C3—C4—O3179.49 (10)C6—C1—C7—O25.22 (15)
C2—C3—C4—C50.33 (17)O1—C7—O2—C82.67 (16)
O3—C4—C5—O40.88 (14)C1—C7—O2—C8177.38 (10)
C3—C4—C5—O4179.28 (10)C3—C4—O3—C91.26 (16)
O3—C4—C5—C6179.10 (10)C5—C4—O3—C9178.57 (10)
C3—C4—C5—C60.73 (17)C6—C5—O4—C104.40 (16)
O4—C5—C6—C1179.48 (10)C4—C5—O4—C10175.59 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.952.372.7131 (14)101
N1—H1A···O10.90 (2)2.03 (2)2.702 (2)131 (2)
N1—H1B···O1i0.88 (2)2.10 (2)2.947 (1)162 (1)
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.952.372.7131 (14)100.5
N1—H1A···O10.90 (2)2.03 (2)2.702 (2)131 (2)
N1—H1B···O1i0.88 (2)2.10 (2)2.947 (1)162 (1)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The University of the Witwatersrand and the Mol­ecular Sciences Institute are thanked for providing the infrastructure and financial support. Special thanks go to Dr Andreas Lemmerer of the University of the Witwatersrand for his contributions and insights toward this project. TNH wishes to thank the University of the Witwatersrand research committee for a postdoctoral fellowship.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Imapct GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin. USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, M. B. & Elsegood, M. R. J. (2002). Tetrahedron Lett. 43, 1299–1301.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, M., Lu, R., Han, L., Wei, W. & Wang, H. (2009). Acta Cryst. E65, o942.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds