metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-n-but­yl[4-hy­dr­oxy-N′-(3-meth­­oxy-2-oxido­benzyl­­idene-κO2)benzo­hydrazidato-κ2N,O]tin(IV)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: qiaoyanling2004@163.com

(Received 14 November 2013; accepted 16 November 2013; online 23 November 2013)

In the title compound, [Sn(C4H9)2(C15H12N2O4)], the SnIV atom is coordinated by the N, O and O′ atoms from the tridentate Schiff base dianion in an overall cis-C2SnNO2 trigonal–bipyramidal geometry. Adjacent mol­ecules are linked by O—H⋯O hydrogen bonds, forming a chain running along [001].

Related literature

For similar organotin compounds, see: Hong et al. (2013[Hong, M., Yin, H., Zhang, X., Li, C., Yue, C. & Cheng, S. (2013). J. Organomet. Chem. 724, 23-31.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)2(C15H12N2O4)]

  • Mr = 517.18

  • Orthorhombic, I b a 2

  • a = 10.8504 (3) Å

  • b = 22.2977 (8) Å

  • c = 20.3988 (8) Å

  • V = 4935.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 293 K

  • 0.23 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.792, Tmax = 0.883

  • 16038 measured reflections

  • 4232 independent reflections

  • 3140 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.076

  • S = 1.01

  • 4232 reflections

  • 275 parameters

  • 11 restraints

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1986 Friedel pairs

  • Absolute structure parameter: −0.03 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 2.11 2.840 (6) 148
O1—H1⋯O4i 0.82 2.26 2.923 (6) 139
Symmetry code: (i) [x, -y, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of organotin(IV) derivatives is a subject of study with growing interest due to their significant antimicrobial properties as well as antitumor activities (Hong et al. 2013). As a part of our ongoing investigations in this field we have synthesized the title compound, (I), and present its crystal structure here (Fig. 1).

In the title compound, (I), the Sn atom has distorted trigonal-bipyramidal geometry, with atoms O2 and O3 in axial positions [O2—Sn1—O3 = 155.04 (17) °] and the atoms C16, C20 and N2 in equatorial positions. The sum of the equatorial angles is 359.6 °, indicating approximate coplanarity for these atoms. The Sn1—N2 bond length is 2.176 (5) Å close to the sum of the non-polar covalent radii 2.15 Å, indicating a strong Sn—N interaction. The O atoms coordinate to the Sn atom with one shorter [2.113 (4) Å] and one longer [2.141 (5) Å] bond.

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into a chains along c axis (Fig. 2).

Related literature top

For similar organotin compounds, see: Hong et al. (2013).

Experimental top

[4-Hydroxy-N'-(2-hydroxy-3-methoxybenzylidene)benzohydrazide (1 mmol) and sodium ethoxide (1 mmol) were added to the solution of dry methanol (30 ml) and stirred for 10 mins. Dibutyltin(IV) dichloride (1 mmol) was then added to the reaction and the reaction mixture was stirred for 4 h. The resulting clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/ethanol(1:1) to yield orange blocks of the title compound (yield 75%).

Refinement top

The H atoms were fixed geometrically and treated as riding atoms: O—H = 0.82 Å, with Uiso(H) = 1.5 Ueq(O), and C—H = 0.93 - 0.97 Å, with Uiso(H) = 1.2 or 1.5 Ueq(C)

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular strucure of compound (I), showing 30% probability displacement ellipsoids. H atoms have been omitted.
[Figure 2] Fig. 2. A chain of the compound (I) along c axis, showing the hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
Di-n-butyl[4-hydroxy-N'-(3-methoxy-2-oxidobenzylidene-κO2)benzohydrazidato-κ2N,O]tin(IV) top
Crystal data top
[Sn(C4H9)2(C15H12N2O4)]Dx = 1.392 Mg m3
Mr = 517.18Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Iba2Cell parameters from 2824 reflections
a = 10.8504 (3) Åθ = 2.7–28.4°
b = 22.2977 (8) ŵ = 1.06 mm1
c = 20.3988 (8) ÅT = 293 K
V = 4935.2 (3) Å3Block, orange
Z = 80.23 × 0.13 × 0.12 mm
F(000) = 2112
Data collection top
Bruker SMART 1000
diffractometer
4232 independent reflections
Radiation source: fine-focus sealed tube3140 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
phi and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1112
Tmin = 0.792, Tmax = 0.883k = 2626
16038 measured reflectionsl = 2224
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0241P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4232 reflectionsΔρmax = 0.60 e Å3
275 parametersΔρmin = 0.47 e Å3
11 restraintsAbsolute structure: Flack (1983), 1986 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Crystal data top
[Sn(C4H9)2(C15H12N2O4)]V = 4935.2 (3) Å3
Mr = 517.18Z = 8
Orthorhombic, Iba2Mo Kα radiation
a = 10.8504 (3) ŵ = 1.06 mm1
b = 22.2977 (8) ÅT = 293 K
c = 20.3988 (8) Å0.23 × 0.13 × 0.12 mm
Data collection top
Bruker SMART 1000
diffractometer
4232 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3140 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.883Rint = 0.061
16038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.60 e Å3
S = 1.01Δρmin = 0.47 e Å3
4232 reflectionsAbsolute structure: Flack (1983), 1986 Friedel pairs
275 parametersAbsolute structure parameter: 0.03 (3)
11 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.81496 (3)0.065968 (14)0.62394 (4)0.05388 (12)
C10.7861 (6)0.0474 (3)0.7979 (4)0.0495 (17)
C20.6922 (6)0.0658 (3)0.8371 (3)0.0520 (16)
H20.61190.05450.82710.062*
C30.7147 (5)0.1014 (3)0.8919 (3)0.0574 (15)
H30.64940.11470.91770.069*
C40.8329 (5)0.1168 (2)0.9079 (3)0.0523 (15)
C50.9281 (5)0.0993 (3)0.8679 (3)0.0578 (16)
H51.00830.11050.87820.069*
C60.9064 (5)0.0652 (2)0.8128 (3)0.0530 (15)
H60.97140.05420.78560.064*
C70.7658 (6)0.0056 (3)0.7409 (3)0.0543 (17)
C80.5440 (5)0.0839 (2)0.6767 (3)0.0576 (15)
H80.48200.07230.70550.069*
C90.5110 (4)0.1286 (2)0.6287 (4)0.0529 (13)
C100.5927 (6)0.1502 (2)0.5816 (3)0.0505 (14)
C110.5522 (6)0.1969 (2)0.5396 (3)0.0503 (14)
C120.4334 (6)0.2188 (2)0.5439 (3)0.0631 (17)
H120.40720.24900.51570.076*
C130.3538 (6)0.1958 (3)0.5901 (3)0.077 (2)
H130.27410.21090.59310.092*
C140.3897 (5)0.1516 (2)0.6312 (5)0.0709 (19)
H140.33400.13610.66150.085*
C150.6120 (7)0.2630 (3)0.4523 (4)0.107 (3)
H15A0.54540.25060.42440.160*
H15B0.68320.27180.42600.160*
H15C0.58820.29810.47630.160*
C160.8309 (6)0.0022 (4)0.5480 (4)0.073 (3)
H16A0.88220.01920.51380.088*
H16B0.87360.03260.56520.088*
C170.7120 (7)0.0187 (4)0.5172 (4)0.085 (3)
H17A0.66600.01560.50120.102*
H17B0.66220.03900.54980.102*
C180.7394 (9)0.0624 (4)0.4592 (5)0.108 (4)
H18A0.79130.04200.42750.129*
H18B0.78490.09660.47570.129*
C190.6256 (10)0.0842 (5)0.4254 (6)0.152 (5)
H19A0.58850.11550.45090.228*
H19B0.64690.09940.38280.228*
H19C0.56840.05160.42080.228*
C200.9550 (5)0.1273 (3)0.6486 (3)0.075 (2)
H20A1.02740.10480.66200.090*
H20B0.97680.14980.60960.090*
C210.9227 (7)0.1713 (3)0.7027 (3)0.089 (2)
H21A0.89950.14950.74190.106*
H21B0.85290.19560.68920.106*
C221.0346 (9)0.2129 (4)0.7180 (4)0.133 (3)
H22A1.10600.18820.72760.160*
H22B1.05340.23660.67940.160*
C231.0110 (13)0.2544 (4)0.7752 (5)0.184 (5)
H23A0.93810.27760.76680.276*
H23B1.08000.28090.78060.276*
H23C0.99980.23120.81430.276*
N10.6566 (4)0.0188 (2)0.7374 (2)0.0579 (14)
N20.6505 (4)0.05795 (19)0.6844 (2)0.0498 (12)
O10.8625 (4)0.14853 (19)0.9631 (2)0.0720 (12)
H10.80090.15240.98600.108*
O20.8550 (5)0.0044 (3)0.7016 (3)0.0697 (15)
O30.7075 (3)0.13012 (17)0.57351 (19)0.0609 (11)
O40.6405 (4)0.21613 (17)0.4968 (2)0.0648 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0519 (2)0.0615 (2)0.0483 (2)0.00729 (17)0.0015 (4)0.0122 (3)
C10.057 (5)0.048 (3)0.043 (4)0.004 (3)0.004 (3)0.005 (3)
C20.048 (4)0.048 (4)0.059 (4)0.001 (3)0.003 (3)0.014 (3)
C30.050 (4)0.061 (4)0.061 (4)0.003 (3)0.005 (3)0.014 (3)
C40.061 (4)0.050 (3)0.045 (4)0.017 (3)0.003 (3)0.005 (3)
C50.047 (4)0.072 (4)0.055 (4)0.014 (3)0.006 (3)0.007 (3)
C60.051 (4)0.064 (4)0.044 (3)0.006 (3)0.007 (3)0.007 (3)
C70.055 (4)0.057 (4)0.052 (4)0.001 (3)0.001 (3)0.001 (3)
C80.050 (4)0.060 (3)0.064 (4)0.002 (3)0.004 (3)0.013 (3)
C90.049 (3)0.056 (3)0.053 (4)0.010 (2)0.005 (5)0.005 (5)
C100.067 (4)0.043 (3)0.041 (4)0.002 (3)0.015 (3)0.004 (3)
C110.060 (4)0.048 (3)0.043 (4)0.003 (3)0.010 (3)0.004 (3)
C120.077 (5)0.049 (3)0.064 (5)0.017 (3)0.007 (4)0.014 (3)
C130.061 (4)0.083 (5)0.087 (5)0.018 (4)0.002 (4)0.028 (4)
C140.046 (3)0.084 (4)0.082 (6)0.009 (3)0.003 (5)0.019 (6)
C150.112 (6)0.111 (6)0.097 (7)0.024 (5)0.002 (5)0.056 (6)
C160.073 (6)0.081 (6)0.067 (6)0.022 (5)0.009 (4)0.003 (4)
C170.106 (7)0.071 (5)0.077 (6)0.002 (5)0.001 (5)0.000 (4)
C180.128 (9)0.100 (7)0.094 (8)0.008 (6)0.011 (8)0.008 (6)
C190.176 (11)0.117 (8)0.162 (12)0.043 (8)0.049 (10)0.009 (7)
C200.064 (4)0.098 (4)0.062 (5)0.009 (4)0.003 (3)0.017 (4)
C210.101 (6)0.096 (5)0.069 (5)0.002 (5)0.001 (4)0.013 (4)
C220.207 (9)0.108 (6)0.086 (6)0.052 (7)0.029 (6)0.003 (5)
C230.311 (12)0.140 (9)0.101 (8)0.055 (9)0.002 (9)0.016 (7)
N10.051 (3)0.062 (3)0.060 (3)0.012 (3)0.000 (2)0.026 (3)
N20.053 (3)0.053 (3)0.044 (3)0.008 (2)0.006 (2)0.008 (2)
O10.069 (3)0.086 (3)0.061 (3)0.029 (3)0.007 (2)0.030 (3)
O20.058 (3)0.089 (4)0.062 (4)0.018 (3)0.004 (3)0.029 (3)
O30.058 (3)0.069 (3)0.055 (3)0.017 (2)0.003 (2)0.015 (2)
O40.079 (3)0.056 (2)0.059 (3)0.012 (2)0.002 (2)0.014 (2)
Geometric parameters (Å, º) top
Sn1—C202.105 (6)C14—H140.9300
Sn1—C162.110 (8)C15—O41.418 (7)
Sn1—O32.113 (4)C15—H15A0.9600
Sn1—O22.141 (5)C15—H15B0.9600
Sn1—N22.176 (5)C15—H15C0.9600
C1—C21.358 (10)C16—C171.508 (7)
C1—C61.398 (9)C16—H16A0.9700
C1—C71.506 (9)C16—H16B0.9700
C2—C31.394 (9)C17—C181.561 (12)
C2—H20.9300C17—H17A0.9700
C3—C41.367 (7)C17—H17B0.9700
C3—H30.9300C18—C191.495 (8)
C4—O11.369 (6)C18—H18A0.9700
C4—C51.373 (7)C18—H18B0.9700
C5—C61.376 (7)C19—H19A0.9600
C5—H50.9300C19—H19B0.9600
C6—H60.9300C19—H19C0.9600
C7—O21.277 (8)C20—C211.519 (6)
C7—N11.307 (8)C20—H20A0.9700
C8—N21.302 (6)C20—H20B0.9700
C8—C91.442 (8)C21—C221.558 (10)
C8—H80.9300C21—H21A0.9700
C9—C101.394 (8)C21—H21B0.9700
C9—C141.414 (6)C22—C231.511 (8)
C10—O31.334 (6)C22—H22A0.9700
C10—C111.419 (7)C22—H22B0.9700
C11—O41.365 (7)C23—H23A0.9600
C11—C121.381 (7)C23—H23B0.9600
C12—C131.379 (8)C23—H23C0.9600
C12—H120.9300N1—N21.391 (6)
C13—C141.351 (9)O1—H10.8200
C13—H130.9300
C20—Sn1—C16123.6 (3)H15B—C15—H15C109.5
C20—Sn1—O394.31 (19)C17—C16—Sn1116.4 (6)
C16—Sn1—O398.3 (3)C17—C16—H16A108.2
C20—Sn1—O295.4 (2)Sn1—C16—H16A108.2
C16—Sn1—O295.4 (2)C17—C16—H16B108.2
O3—Sn1—O2155.04 (17)Sn1—C16—H16B108.2
C20—Sn1—N2120.7 (2)H16A—C16—H16B107.4
C16—Sn1—N2115.3 (2)C16—C17—C18110.2 (7)
O3—Sn1—N283.05 (15)C16—C17—H17A109.6
O2—Sn1—N272.22 (18)C18—C17—H17A109.6
C2—C1—C6119.2 (6)C16—C17—H17B109.6
C2—C1—C7122.1 (6)C18—C17—H17B109.6
C6—C1—C7118.7 (6)H17A—C17—H17B108.1
C1—C2—C3120.8 (6)C19—C18—C17113.3 (9)
C1—C2—H2119.6C19—C18—H18A108.9
C3—C2—H2119.6C17—C18—H18A108.9
C4—C3—C2119.9 (6)C19—C18—H18B108.9
C4—C3—H3120.1C17—C18—H18B108.9
C2—C3—H3120.1H18A—C18—H18B107.7
C3—C4—O1123.1 (5)C18—C19—H19A109.5
C3—C4—C5119.5 (5)C18—C19—H19B109.5
O1—C4—C5117.4 (5)H19A—C19—H19B109.5
C4—C5—C6120.9 (5)C18—C19—H19C109.5
C4—C5—H5119.5H19A—C19—H19C109.5
C6—C5—H5119.5H19B—C19—H19C109.5
C5—C6—C1119.6 (6)C21—C20—Sn1115.3 (4)
C5—C6—H6120.2C21—C20—H20A108.5
C1—C6—H6120.2Sn1—C20—H20A108.5
O2—C7—N1125.4 (6)C21—C20—H20B108.5
O2—C7—C1118.9 (6)Sn1—C20—H20B108.5
N1—C7—C1115.7 (6)H20A—C20—H20B107.5
N2—C8—C9127.5 (5)C20—C21—C22110.5 (6)
N2—C8—H8116.2C20—C21—H21A109.5
C9—C8—H8116.2C22—C21—H21A109.5
C10—C9—C14119.5 (7)C20—C21—H21B109.5
C10—C9—C8123.3 (5)C22—C21—H21B109.5
C14—C9—C8117.2 (7)H21A—C21—H21B108.1
O3—C10—C9124.3 (5)C23—C22—C21112.7 (8)
O3—C10—C11117.5 (5)C23—C22—H22A109.0
C9—C10—C11118.2 (6)C21—C22—H22A109.0
O4—C11—C12125.8 (5)C23—C22—H22B109.0
O4—C11—C10113.5 (5)C21—C22—H22B109.0
C12—C11—C10120.7 (6)H22A—C22—H22B107.8
C13—C12—C11119.7 (6)C22—C23—H23A109.5
C13—C12—H12120.1C22—C23—H23B109.5
C11—C12—H12120.1H23A—C23—H23B109.5
C14—C13—C12121.1 (6)C22—C23—H23C109.5
C14—C13—H13119.4H23A—C23—H23C109.5
C12—C13—H13119.4H23B—C23—H23C109.5
C13—C14—C9120.7 (8)C7—N1—N2110.3 (5)
C13—C14—H14119.7C8—N2—N1114.5 (5)
C9—C14—H14119.7C8—N2—Sn1128.5 (4)
O4—C15—H15A109.5N1—N2—Sn1117.0 (3)
O4—C15—H15B109.5C4—O1—H1109.5
H15A—C15—H15B109.5C7—O2—Sn1115.0 (5)
O4—C15—H15C109.5C10—O3—Sn1133.0 (3)
H15A—C15—H15C109.5C11—O4—C15119.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.822.112.840 (6)148
O1—H1···O4i0.822.262.923 (6)139
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.822.112.840 (6)148.0
O1—H1···O4i0.822.262.923 (6)138.6
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

We acknowledge the Students Science and Technology Innovation Fund of Liaocheng University (SF2013096).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHong, M., Yin, H., Zhang, X., Li, C., Yue, C. & Cheng, S. (2013). J. Organomet. Chem. 724, 23–31.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds