metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m635-m636

Di-μ-oxido-bis­­({2,2′-[ethane-1,2-diylbis(nitrilo­methanylyl­­idene)]diphen­olato}titanium(IV)) chloro­form disolvate

aDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation, bBelarussian State University, Phys. Chem. Problems Res. Inst., 14 Leningradskaya St, Minsk 220030, Republic of Belarus, and cInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Prosp. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: churakov@igic.ras.ru.ru

(Received 20 October 2013; accepted 28 October 2013; online 6 November 2013)

In the title structure, [Ti2(C16H16N2O2)2O2]·2CHCl3, the Ti atom is coordinated in a distorted octa­hedral geometry by the O,N,N′,O′ donor set of the salalen ligand and by two μ2-oxide O atoms, which bridge two Ti(salalen) fragments into a centrosymmetric dimeric unit. In the central Ti2(μ2-O)2 fragment, the metal–oxygen distances are significantly different [1.7962 (19) and 1.9292 (19) Å]. In the crystal, the chloro­form mol­ecule is anchored via an N—H⋯Cl and a bifurcated C—H⋯(O,O) hydrogen bond. Slipped ππ stacking [shortest C⋯C distance = 3.585 (4) Å] and C—H⋯π inter­actions contribute to the coherence of the structure.

Related literature

For general background to the chemistry affording the tetra­dentate salalen ligand, see: Matsumoto et al. (2005[Matsumoto, K., Sawada, Y., Saito, B., Sakai, K. & Katsuki, T. (2005). Angew. Chem. Int. Ed. 44, 4935-4939.], 2007[Matsumoto, K., Saito, B. & Katsuki, T. (2007). Chem. Commun. pp. 3619-3627.]). For the crystal structure of a salalen complex, see: Taylor et al. (2006[Taylor, M. K., Reglinski, J., Berlouis, L. E. A. & Kennedy, A. R. (2006). Inorg. Chim. Acta, 359, 2455-2464.]). For the structure of the parent titanium salen compound, see: Tsuchimoto (2001[Tsuchimoto, M. (2001). Bull. Chem. Soc. Jpn, 74, 2101-2105.]). For our previous work on titanium(IV) complexes with polydentate N,O-ligands, see: Zaitsev et al. (2006[Zaitsev, K. V., Karlov, S. S., Selina, A. A., Oprunenko, Yu. F., Churakov, A. V., Neumüller, B., Howard, J. A. K. & Zaitseva, G. S. (2006). Eur. J. Inorg. Chem. pp. 1987-1999.], 2008[Zaitsev, K. V., Bermeshev, M. V., Samsonov, A. A., Oprunenko, J. F., Churakov, A. V., Howard, J. A. K., Karlov, S. S. & Zaitseva, G. S. (2008). New J. Chem. 32, 1415-1431.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti2(C16H16N2O2)2O2]·2CHCl3

  • Mr = 903.15

  • Triclinic, [P \overline 1]

  • a = 10.237 (3) Å

  • b = 10.356 (3) Å

  • c = 10.936 (3) Å

  • α = 117.075 (4)°

  • β = 93.113 (4)°

  • γ = 110.463 (4)°

  • V = 935.0 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 150 K

  • 0.08 × 0.06 × 0.01 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.991

  • 8213 measured reflections

  • 3668 independent reflections

  • 2761 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.092

  • S = 1.03

  • 3668 reflections

  • 238 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl3i 0.81 (3) 2.84 (3) 3.575 (3) 151 (3)
C1—H1⋯O2 1.00 2.55 3.506 (4) 160
C1—H1⋯O3 1.00 2.51 3.257 (4) 131
C17—H17⋯Cg2ii 0.95 2.81 3.754 (4) 174
C23—H23⋯Cg1iii 0.95 2.86 3.747 (4) 156
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+2, -z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a part of our investigation on chemistry of titanium complexes based on tridentate or tetradentate ligands (Zaitsev et al., 2006, 2008) we obtained and studied the structure of the titanium compound [(salalen)TiO]2.

The title titanium salalen complex is centrosymmetric. Both Ti atoms are linked by µ2-oxo briges and possess a distorted octahedral coordination environment with cis interligand angles ranging from 81.27 (9) to 101.11 (8)°. In the central Ti22-O)2 fragment, metal-oxygen distances are significantly different (1.7962 (19) and 1.9292 (19) Å).

In the crystal, the solvent chloroform molecule forms bifurcated C—H···O hydrogen bond with the main molecule with C···O separations of 3.257 (4) and 3.506 (4) Å.

To the best of our knowledge, the title compound represents the second example of structurally characterized salalen complex (Taylor et al., 2006).

Related literature top

For general background to the chemistry affording the tetradentate salalen ligand, see: Matsumoto et al. (2005, 2007). For the crystal structure of a salalen complex, see Taylor et al. (2006). For the structure of the parent titanium salalen compound, see: Tsuchimoto (2001). For our previous work on titanium(IV) complexes with polydentate N,O-ligands, see: Zaitsev et al. (2006, 2008).

Experimental top

The several crystals of the title salalen complex were unexpectedly obtained after attempt to recrystallize the parent [(salalen)TiO]2 (Tsuchimoto, 2001) compound from a hexane-chloroform mixture.

Refinement top

Amine hydrogen atom H2 was found from difference Fourier synthesis and its positional parameters were refined using Uiso(H2) as 1.2Ueq of the parent nitrogen atom. All other hydrogen atoms were placed in calculated positions and refined using a riding model with C—H = 0.95 – 1.00 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the numbering scheme adopted. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Trailing A in the atom labels indicates symmetry transformation 1-x, 2-y, 1-z.
Di-µ-oxido-bis({2,2'-[ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolato}titanium(IV)) chloroform disolvate top
Crystal data top
[Ti2(C16H16N2O2)2O2]·2CHCl3Z = 1
Mr = 903.15F(000) = 460
Triclinic, P1Dx = 1.604 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.237 (3) ÅCell parameters from 1919 reflections
b = 10.356 (3) Åθ = 2.2–25.7°
c = 10.936 (3) ŵ = 0.91 mm1
α = 117.075 (4)°T = 150 K
β = 93.113 (4)°Plate, light-yellow
γ = 110.463 (4)°0.08 × 0.06 × 0.01 mm
V = 935.0 (4) Å3
Data collection top
Bruker SMART APEXII
diffractometer
3668 independent reflections
Radiation source: fine-focus sealed tube2761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.931, Tmax = 0.991k = 1212
8213 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.3887P]
where P = (Fo2 + 2Fc2)/3
3668 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ti2(C16H16N2O2)2O2]·2CHCl3γ = 110.463 (4)°
Mr = 903.15V = 935.0 (4) Å3
Triclinic, P1Z = 1
a = 10.237 (3) ÅMo Kα radiation
b = 10.356 (3) ŵ = 0.91 mm1
c = 10.936 (3) ÅT = 150 K
α = 117.075 (4)°0.08 × 0.06 × 0.01 mm
β = 93.113 (4)°
Data collection top
Bruker SMART APEXII
diffractometer
3668 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2761 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.991Rint = 0.037
8213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.41 e Å3
3668 reflectionsΔρmin = 0.43 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.50658 (5)0.65403 (6)0.05634 (5)0.01468 (14)
O10.6684 (2)0.7828 (2)0.21655 (19)0.0185 (4)
O20.3932 (2)0.7673 (2)0.13984 (19)0.0186 (4)
O30.4197 (2)0.4842 (2)0.07711 (19)0.0179 (4)
N10.6242 (2)0.8318 (3)0.0058 (2)0.0166 (5)
N20.3580 (3)0.5823 (3)0.1413 (3)0.0198 (5)
H20.374 (3)0.509 (4)0.198 (3)0.030*
C110.7673 (3)0.9337 (3)0.2842 (3)0.0166 (6)
C120.8403 (3)1.0016 (3)0.4247 (3)0.0217 (6)
H120.81900.93950.46960.026*
C130.9432 (3)1.1579 (4)0.4998 (3)0.0285 (7)
H130.99111.20260.59600.034*
C140.9772 (3)1.2501 (4)0.4359 (3)0.0328 (8)
H141.04751.35780.48790.039*
C150.9077 (3)1.1837 (4)0.2962 (3)0.0274 (7)
H150.93261.24630.25190.033*
C160.8012 (3)1.0262 (3)0.2176 (3)0.0191 (6)
C170.7329 (3)0.9660 (3)0.0716 (3)0.0186 (6)
H170.77131.03030.03080.022*
C180.5634 (3)0.7824 (4)0.1528 (3)0.0226 (7)
H18A0.59680.70470.21950.027*
H18B0.59440.87620.16590.027*
C210.2627 (3)0.7615 (3)0.1055 (3)0.0190 (6)
C220.2212 (3)0.8734 (4)0.2051 (3)0.0236 (7)
H220.28500.95150.29640.028*
C230.0879 (3)0.8713 (4)0.1718 (4)0.0303 (8)
H230.06170.94900.24010.036*
C240.0073 (3)0.7581 (4)0.0410 (4)0.0323 (8)
H240.09910.75650.01920.039*
C250.0326 (3)0.6466 (4)0.0583 (3)0.0268 (7)
H250.03330.56790.14840.032*
C260.1668 (3)0.6469 (3)0.0294 (3)0.0210 (6)
C270.2045 (3)0.5213 (3)0.1398 (3)0.0243 (7)
H27A0.18180.43160.12140.029*
H27B0.14370.47890.23460.029*
C280.4012 (3)0.7066 (3)0.1807 (3)0.0232 (7)
H28A0.36750.78920.12440.028*
H28B0.35620.65860.28250.028*
C10.4183 (3)0.6758 (4)0.4095 (3)0.0325 (8)
H10.42200.68180.32100.039*
Cl10.26515 (9)0.50389 (11)0.37249 (10)0.0455 (3)
Cl20.40908 (11)0.84731 (11)0.54051 (11)0.0507 (3)
Cl30.57585 (8)0.66277 (9)0.46628 (8)0.0301 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0197 (3)0.0154 (3)0.0121 (3)0.0095 (2)0.0039 (2)0.0078 (2)
O10.0219 (11)0.0170 (10)0.0174 (10)0.0081 (9)0.0017 (8)0.0096 (9)
O20.0198 (11)0.0202 (10)0.0149 (10)0.0119 (9)0.0027 (8)0.0059 (9)
O30.0226 (11)0.0189 (10)0.0172 (10)0.0111 (9)0.0089 (8)0.0110 (9)
N10.0229 (13)0.0180 (12)0.0131 (12)0.0119 (11)0.0051 (10)0.0085 (11)
N20.0263 (14)0.0197 (13)0.0166 (13)0.0136 (12)0.0053 (11)0.0086 (11)
C110.0152 (14)0.0162 (14)0.0186 (15)0.0091 (12)0.0042 (12)0.0072 (12)
C120.0233 (16)0.0232 (16)0.0188 (15)0.0084 (13)0.0025 (13)0.0121 (13)
C130.0305 (18)0.0246 (17)0.0209 (16)0.0071 (15)0.0028 (14)0.0086 (14)
C140.0296 (19)0.0222 (17)0.0306 (19)0.0002 (15)0.0005 (15)0.0101 (15)
C150.0301 (18)0.0219 (16)0.0273 (17)0.0049 (14)0.0054 (14)0.0150 (14)
C160.0204 (15)0.0196 (15)0.0182 (15)0.0107 (13)0.0029 (12)0.0088 (13)
C170.0230 (16)0.0213 (16)0.0189 (15)0.0133 (14)0.0091 (13)0.0126 (13)
C180.0290 (17)0.0245 (16)0.0170 (15)0.0103 (14)0.0070 (13)0.0131 (13)
C210.0198 (16)0.0210 (15)0.0254 (16)0.0096 (13)0.0081 (13)0.0179 (14)
C220.0255 (17)0.0278 (17)0.0234 (16)0.0147 (14)0.0094 (13)0.0148 (14)
C230.0337 (19)0.043 (2)0.0357 (19)0.0273 (17)0.0198 (16)0.0273 (17)
C240.0239 (18)0.053 (2)0.043 (2)0.0217 (17)0.0167 (16)0.0374 (19)
C250.0199 (16)0.0364 (18)0.0319 (18)0.0100 (14)0.0061 (14)0.0246 (16)
C260.0228 (16)0.0233 (16)0.0232 (16)0.0100 (14)0.0069 (13)0.0164 (14)
C270.0201 (16)0.0229 (16)0.0228 (16)0.0049 (13)0.0041 (13)0.0102 (14)
C280.0301 (17)0.0268 (16)0.0180 (15)0.0137 (14)0.0055 (13)0.0143 (14)
C10.0328 (19)0.053 (2)0.0273 (18)0.0241 (17)0.0141 (15)0.0276 (17)
Cl10.0276 (5)0.0486 (6)0.0434 (5)0.0112 (4)0.0027 (4)0.0147 (5)
Cl20.0553 (6)0.0449 (6)0.0706 (7)0.0339 (5)0.0283 (5)0.0328 (5)
Cl30.0289 (4)0.0344 (5)0.0295 (4)0.0154 (4)0.0090 (3)0.0164 (4)
Geometric parameters (Å, º) top
Ti1—O31.7962 (19)C16—C171.447 (4)
Ti1—O11.8991 (19)C17—H170.9500
Ti1—O21.9102 (19)C18—C281.511 (4)
Ti1—O3i1.9292 (19)C18—H18A0.9900
Ti1—N22.220 (2)C18—H18B0.9900
Ti1—N12.232 (2)C21—C221.399 (4)
Ti1—Ti1i2.7958 (12)C21—C261.408 (4)
O1—C111.332 (3)C22—C231.383 (4)
O2—C211.341 (3)C22—H220.9500
O3—Ti1i1.9292 (19)C23—C241.376 (5)
N1—C171.277 (3)C23—H230.9500
N1—C181.468 (3)C24—C251.384 (4)
N2—C281.471 (4)C24—H240.9500
N2—C271.479 (4)C25—C261.392 (4)
N2—H20.81 (3)C25—H250.9500
C11—C121.393 (4)C26—C271.507 (4)
C11—C161.414 (4)C27—H27A0.9900
C12—C131.382 (4)C27—H27B0.9900
C12—H120.9500C28—H28A0.9900
C13—C141.386 (4)C28—H28B0.9900
C13—H130.9500C1—Cl21.742 (3)
C14—C151.378 (4)C1—Cl11.765 (3)
C14—H140.9500C1—Cl31.767 (3)
C15—C161.403 (4)C1—H11.0000
C15—H150.9500
O3—Ti1—O1101.11 (8)C15—C16—C11118.5 (3)
O3—Ti1—O298.43 (9)C15—C16—C17118.2 (3)
O1—Ti1—O295.69 (8)C11—C16—C17123.4 (3)
O3—Ti1—O3i82.80 (9)N1—C17—C16124.0 (3)
O1—Ti1—O3i100.23 (8)N1—C17—H17118.0
O2—Ti1—O3i163.49 (8)C16—C17—H17118.0
O3—Ti1—N2100.65 (9)N1—C18—C28107.2 (2)
O1—Ti1—N2158.23 (9)N1—C18—H18A110.3
O2—Ti1—N281.27 (9)C28—C18—H18A110.3
O3i—Ti1—N282.33 (9)N1—C18—H18B110.3
O3—Ti1—N1168.80 (8)C28—C18—H18B110.3
O1—Ti1—N182.93 (8)H18A—C18—H18B108.5
O2—Ti1—N191.50 (8)O2—C21—C22119.4 (3)
O3i—Ti1—N186.21 (8)O2—C21—C26121.7 (3)
N2—Ti1—N175.64 (9)C22—C21—C26118.9 (3)
O3—Ti1—Ti1i43.20 (6)C23—C22—C21120.6 (3)
O1—Ti1—Ti1i104.27 (6)C23—C22—H22119.7
O2—Ti1—Ti1i139.09 (7)C21—C22—H22119.7
O3i—Ti1—Ti1i39.60 (5)C24—C23—C22120.8 (3)
N2—Ti1—Ti1i91.53 (7)C24—C23—H23119.6
N1—Ti1—Ti1i125.78 (6)C22—C23—H23119.6
C11—O1—Ti1136.03 (17)C23—C24—C25119.2 (3)
C21—O2—Ti1138.85 (18)C23—C24—H24120.4
Ti1—O3—Ti1i97.20 (9)C25—C24—H24120.4
C17—N1—C18119.5 (2)C24—C25—C26121.6 (3)
C17—N1—Ti1127.32 (19)C24—C25—H25119.2
C18—N1—Ti1113.18 (17)C26—C25—H25119.2
C28—N2—C27113.9 (2)C25—C26—C21118.9 (3)
C28—N2—Ti1112.28 (17)C25—C26—C27119.7 (3)
C27—N2—Ti1112.94 (17)C21—C26—C27121.3 (2)
C28—N2—H2107 (2)N2—C27—C26113.1 (2)
C27—N2—H2109 (2)N2—C27—H27A109.0
Ti1—N2—H2100 (2)C26—C27—H27A109.0
O1—C11—C12118.7 (2)N2—C27—H27B109.0
O1—C11—C16122.2 (2)C26—C27—H27B109.0
C12—C11—C16119.1 (3)H27A—C27—H27B107.8
C13—C12—C11120.9 (3)N2—C28—C18109.8 (2)
C13—C12—H12119.5N2—C28—H28A109.7
C11—C12—H12119.5C18—C28—H28A109.7
C12—C13—C14120.5 (3)N2—C28—H28B109.7
C12—C13—H13119.7C18—C28—H28B109.7
C14—C13—H13119.7H28A—C28—H28B108.2
C15—C14—C13119.2 (3)Cl2—C1—Cl1110.39 (17)
C15—C14—H14120.4Cl2—C1—Cl3109.84 (18)
C13—C14—H14120.4Cl1—C1—Cl3109.57 (18)
C14—C15—C16121.7 (3)Cl2—C1—H1109.0
C14—C15—H15119.2Cl1—C1—H1109.0
C16—C15—H15119.2Cl3—C1—H1109.0
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl3i0.81 (3)2.84 (3)3.575 (3)151 (3)
C1—H1···O21.002.553.506 (4)160
C1—H1···O31.002.513.257 (4)131
C17—H17···Cg2ii0.952.813.754 (4)174
C23—H23···Cg1iii0.952.863.747 (4)156
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl3i0.81 (3)2.84 (3)3.575 (3)151 (3)
C1—H1···O21.002.553.506 (4)159.6
C1—H1···O31.002.513.257 (4)131.4
C17—H17···Cg2ii0.952.813.754 (4)174
C23—H23···Cg1iii0.952.863.747 (4)156
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x1, y, z.
 

Acknowledgements

This work was partially supported by the RFBR (project 12–03–90020-Bel_a) and a grant from the President of the Russian Federation to support the research of young Russian scientists and doctors (MD-3634.2012.3).

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMatsumoto, K., Saito, B. & Katsuki, T. (2007). Chem. Commun. pp. 3619–3627.  Web of Science CrossRef Google Scholar
First citationMatsumoto, K., Sawada, Y., Saito, B., Sakai, K. & Katsuki, T. (2005). Angew. Chem. Int. Ed. 44, 4935–4939.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, M. K., Reglinski, J., Berlouis, L. E. A. & Kennedy, A. R. (2006). Inorg. Chim. Acta, 359, 2455–2464.  Web of Science CSD CrossRef CAS Google Scholar
First citationTsuchimoto, M. (2001). Bull. Chem. Soc. Jpn, 74, 2101–2105.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaitsev, K. V., Bermeshev, M. V., Samsonov, A. A., Oprunenko, J. F., Churakov, A. V., Howard, J. A. K., Karlov, S. S. & Zaitseva, G. S. (2008). New J. Chem. 32, 1415–1431.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaitsev, K. V., Karlov, S. S., Selina, A. A., Oprunenko, Yu. F., Churakov, A. V., Neumüller, B., Howard, J. A. K. & Zaitseva, G. S. (2006). Eur. J. Inorg. Chem. pp. 1987–1999.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m635-m636
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds