metal-organic compounds
Di-μ-oxido-bis({2,2′-[ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolato}titanium(IV)) chloroform disolvate
aDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation, bBelarussian State University, Phys. Chem. Problems Res. Inst., 14 Leningradskaya St, Minsk 220030, Republic of Belarus, and cInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Prosp. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: churakov@igic.ras.ru.ru
In the title structure, [Ti2(C16H16N2O2)2O2]·2CHCl3, the Ti atom is coordinated in a distorted octahedral geometry by the O,N,N′,O′ donor set of the salalen ligand and by two μ2-oxide O atoms, which bridge two Ti(salalen) fragments into a centrosymmetric dimeric unit. In the central Ti2(μ2-O)2 fragment, the metal–oxygen distances are significantly different [1.7962 (19) and 1.9292 (19) Å]. In the crystal, the chloroform molecule is anchored via an N—H⋯Cl and a bifurcated C—H⋯(O,O) hydrogen bond. Slipped π–π stacking [shortest C⋯C distance = 3.585 (4) Å] and C—H⋯π interactions contribute to the coherence of the structure.
CCDC reference: 969061
Related literature
For general background to the chemistry affording the tetradentate salalen ligand, see: Matsumoto et al. (2005, 2007). For the of a salalen complex, see: Taylor et al. (2006). For the structure of the parent titanium salen compound, see: Tsuchimoto (2001). For our previous work on titanium(IV) complexes with polydentate N,O-ligands, see: Zaitsev et al. (2006, 2008).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 969061
10.1107/S1600536813029656/qk2062sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813029656/qk2062Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813029656/qk2062Isup3.mol
The several crystals of the title salalen complex were unexpectedly obtained after attempt to recrystallize the parent [(salalen)TiO]2 (Tsuchimoto, 2001) compound from a hexane-chloroform mixture.
Amine hydrogen atom H2 was found from difference Fourier synthesis and its positional parameters were refined using Uiso(H2) as 1.2Ueq of the parent nitrogen atom. All other hydrogen atoms were placed in calculated positions and refined using a riding model with C—H = 0.95 – 1.00 Å and Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing the numbering scheme adopted. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Trailing A in the atom labels indicates symmetry transformation 1-x, 2-y, 1-z. |
[Ti2(C16H16N2O2)2O2]·2CHCl3 | Z = 1 |
Mr = 903.15 | F(000) = 460 |
Triclinic, P1 | Dx = 1.604 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.237 (3) Å | Cell parameters from 1919 reflections |
b = 10.356 (3) Å | θ = 2.2–25.7° |
c = 10.936 (3) Å | µ = 0.91 mm−1 |
α = 117.075 (4)° | T = 150 K |
β = 93.113 (4)° | Plate, light-yellow |
γ = 110.463 (4)° | 0.08 × 0.06 × 0.01 mm |
V = 935.0 (4) Å3 |
Bruker SMART APEXII diffractometer | 3668 independent reflections |
Radiation source: fine-focus sealed tube | 2761 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω scans | θmax = 26.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −12→12 |
Tmin = 0.931, Tmax = 0.991 | k = −12→12 |
8213 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0393P)2 + 0.3887P] where P = (Fo2 + 2Fc2)/3 |
3668 reflections | (Δ/σ)max < 0.001 |
238 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
[Ti2(C16H16N2O2)2O2]·2CHCl3 | γ = 110.463 (4)° |
Mr = 903.15 | V = 935.0 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 10.237 (3) Å | Mo Kα radiation |
b = 10.356 (3) Å | µ = 0.91 mm−1 |
c = 10.936 (3) Å | T = 150 K |
α = 117.075 (4)° | 0.08 × 0.06 × 0.01 mm |
β = 93.113 (4)° |
Bruker SMART APEXII diffractometer | 3668 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2761 reflections with I > 2σ(I) |
Tmin = 0.931, Tmax = 0.991 | Rint = 0.037 |
8213 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.41 e Å−3 |
3668 reflections | Δρmin = −0.43 e Å−3 |
238 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ti1 | 0.50658 (5) | 0.65403 (6) | 0.05634 (5) | 0.01468 (14) | |
O1 | 0.6684 (2) | 0.7828 (2) | 0.21655 (19) | 0.0185 (4) | |
O2 | 0.3932 (2) | 0.7673 (2) | 0.13984 (19) | 0.0186 (4) | |
O3 | 0.4197 (2) | 0.4842 (2) | 0.07711 (19) | 0.0179 (4) | |
N1 | 0.6242 (2) | 0.8318 (3) | −0.0058 (2) | 0.0166 (5) | |
N2 | 0.3580 (3) | 0.5823 (3) | −0.1413 (3) | 0.0198 (5) | |
H2 | 0.374 (3) | 0.509 (4) | −0.198 (3) | 0.030* | |
C11 | 0.7673 (3) | 0.9337 (3) | 0.2842 (3) | 0.0166 (6) | |
C12 | 0.8403 (3) | 1.0016 (3) | 0.4247 (3) | 0.0217 (6) | |
H12 | 0.8190 | 0.9395 | 0.4696 | 0.026* | |
C13 | 0.9432 (3) | 1.1579 (4) | 0.4998 (3) | 0.0285 (7) | |
H13 | 0.9911 | 1.2026 | 0.5960 | 0.034* | |
C14 | 0.9772 (3) | 1.2501 (4) | 0.4359 (3) | 0.0328 (8) | |
H14 | 1.0475 | 1.3578 | 0.4879 | 0.039* | |
C15 | 0.9077 (3) | 1.1837 (4) | 0.2962 (3) | 0.0274 (7) | |
H15 | 0.9326 | 1.2463 | 0.2519 | 0.033* | |
C16 | 0.8012 (3) | 1.0262 (3) | 0.2176 (3) | 0.0191 (6) | |
C17 | 0.7329 (3) | 0.9660 (3) | 0.0716 (3) | 0.0186 (6) | |
H17 | 0.7713 | 1.0303 | 0.0308 | 0.022* | |
C18 | 0.5634 (3) | 0.7824 (4) | −0.1528 (3) | 0.0226 (7) | |
H18A | 0.5968 | 0.7047 | −0.2195 | 0.027* | |
H18B | 0.5944 | 0.8762 | −0.1659 | 0.027* | |
C21 | 0.2627 (3) | 0.7615 (3) | 0.1055 (3) | 0.0190 (6) | |
C22 | 0.2212 (3) | 0.8734 (4) | 0.2051 (3) | 0.0236 (7) | |
H22 | 0.2850 | 0.9515 | 0.2964 | 0.028* | |
C23 | 0.0879 (3) | 0.8713 (4) | 0.1718 (4) | 0.0303 (8) | |
H23 | 0.0617 | 0.9490 | 0.2401 | 0.036* | |
C24 | −0.0073 (3) | 0.7581 (4) | 0.0410 (4) | 0.0323 (8) | |
H24 | −0.0991 | 0.7565 | 0.0192 | 0.039* | |
C25 | 0.0326 (3) | 0.6466 (4) | −0.0583 (3) | 0.0268 (7) | |
H25 | −0.0333 | 0.5679 | −0.1484 | 0.032* | |
C26 | 0.1668 (3) | 0.6469 (3) | −0.0294 (3) | 0.0210 (6) | |
C27 | 0.2045 (3) | 0.5213 (3) | −0.1398 (3) | 0.0243 (7) | |
H27A | 0.1818 | 0.4316 | −0.1214 | 0.029* | |
H27B | 0.1437 | 0.4789 | −0.2346 | 0.029* | |
C28 | 0.4012 (3) | 0.7066 (3) | −0.1807 (3) | 0.0232 (7) | |
H28A | 0.3675 | 0.7892 | −0.1244 | 0.028* | |
H28B | 0.3562 | 0.6586 | −0.2825 | 0.028* | |
C1 | 0.4183 (3) | 0.6758 (4) | 0.4095 (3) | 0.0325 (8) | |
H1 | 0.4220 | 0.6818 | 0.3210 | 0.039* | |
Cl1 | 0.26515 (9) | 0.50389 (11) | 0.37249 (10) | 0.0455 (3) | |
Cl2 | 0.40908 (11) | 0.84731 (11) | 0.54051 (11) | 0.0507 (3) | |
Cl3 | 0.57585 (8) | 0.66277 (9) | 0.46628 (8) | 0.0301 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.0197 (3) | 0.0154 (3) | 0.0121 (3) | 0.0095 (2) | 0.0039 (2) | 0.0078 (2) |
O1 | 0.0219 (11) | 0.0170 (10) | 0.0174 (10) | 0.0081 (9) | 0.0017 (8) | 0.0096 (9) |
O2 | 0.0198 (11) | 0.0202 (10) | 0.0149 (10) | 0.0119 (9) | 0.0027 (8) | 0.0059 (9) |
O3 | 0.0226 (11) | 0.0189 (10) | 0.0172 (10) | 0.0111 (9) | 0.0089 (8) | 0.0110 (9) |
N1 | 0.0229 (13) | 0.0180 (12) | 0.0131 (12) | 0.0119 (11) | 0.0051 (10) | 0.0085 (11) |
N2 | 0.0263 (14) | 0.0197 (13) | 0.0166 (13) | 0.0136 (12) | 0.0053 (11) | 0.0086 (11) |
C11 | 0.0152 (14) | 0.0162 (14) | 0.0186 (15) | 0.0091 (12) | 0.0042 (12) | 0.0072 (12) |
C12 | 0.0233 (16) | 0.0232 (16) | 0.0188 (15) | 0.0084 (13) | 0.0025 (13) | 0.0121 (13) |
C13 | 0.0305 (18) | 0.0246 (17) | 0.0209 (16) | 0.0071 (15) | −0.0028 (14) | 0.0086 (14) |
C14 | 0.0296 (19) | 0.0222 (17) | 0.0306 (19) | −0.0002 (15) | −0.0005 (15) | 0.0101 (15) |
C15 | 0.0301 (18) | 0.0219 (16) | 0.0273 (17) | 0.0049 (14) | 0.0054 (14) | 0.0150 (14) |
C16 | 0.0204 (15) | 0.0196 (15) | 0.0182 (15) | 0.0107 (13) | 0.0029 (12) | 0.0088 (13) |
C17 | 0.0230 (16) | 0.0213 (16) | 0.0189 (15) | 0.0133 (14) | 0.0091 (13) | 0.0126 (13) |
C18 | 0.0290 (17) | 0.0245 (16) | 0.0170 (15) | 0.0103 (14) | 0.0070 (13) | 0.0131 (13) |
C21 | 0.0198 (16) | 0.0210 (15) | 0.0254 (16) | 0.0096 (13) | 0.0081 (13) | 0.0179 (14) |
C22 | 0.0255 (17) | 0.0278 (17) | 0.0234 (16) | 0.0147 (14) | 0.0094 (13) | 0.0148 (14) |
C23 | 0.0337 (19) | 0.043 (2) | 0.0357 (19) | 0.0273 (17) | 0.0198 (16) | 0.0273 (17) |
C24 | 0.0239 (18) | 0.053 (2) | 0.043 (2) | 0.0217 (17) | 0.0167 (16) | 0.0374 (19) |
C25 | 0.0199 (16) | 0.0364 (18) | 0.0319 (18) | 0.0100 (14) | 0.0061 (14) | 0.0246 (16) |
C26 | 0.0228 (16) | 0.0233 (16) | 0.0232 (16) | 0.0100 (14) | 0.0069 (13) | 0.0164 (14) |
C27 | 0.0201 (16) | 0.0229 (16) | 0.0228 (16) | 0.0049 (13) | −0.0041 (13) | 0.0102 (14) |
C28 | 0.0301 (17) | 0.0268 (16) | 0.0180 (15) | 0.0137 (14) | 0.0055 (13) | 0.0143 (14) |
C1 | 0.0328 (19) | 0.053 (2) | 0.0273 (18) | 0.0241 (17) | 0.0141 (15) | 0.0276 (17) |
Cl1 | 0.0276 (5) | 0.0486 (6) | 0.0434 (5) | 0.0112 (4) | 0.0027 (4) | 0.0147 (5) |
Cl2 | 0.0553 (6) | 0.0449 (6) | 0.0706 (7) | 0.0339 (5) | 0.0283 (5) | 0.0328 (5) |
Cl3 | 0.0289 (4) | 0.0344 (5) | 0.0295 (4) | 0.0154 (4) | 0.0090 (3) | 0.0164 (4) |
Ti1—O3 | 1.7962 (19) | C16—C17 | 1.447 (4) |
Ti1—O1 | 1.8991 (19) | C17—H17 | 0.9500 |
Ti1—O2 | 1.9102 (19) | C18—C28 | 1.511 (4) |
Ti1—O3i | 1.9292 (19) | C18—H18A | 0.9900 |
Ti1—N2 | 2.220 (2) | C18—H18B | 0.9900 |
Ti1—N1 | 2.232 (2) | C21—C22 | 1.399 (4) |
Ti1—Ti1i | 2.7958 (12) | C21—C26 | 1.408 (4) |
O1—C11 | 1.332 (3) | C22—C23 | 1.383 (4) |
O2—C21 | 1.341 (3) | C22—H22 | 0.9500 |
O3—Ti1i | 1.9292 (19) | C23—C24 | 1.376 (5) |
N1—C17 | 1.277 (3) | C23—H23 | 0.9500 |
N1—C18 | 1.468 (3) | C24—C25 | 1.384 (4) |
N2—C28 | 1.471 (4) | C24—H24 | 0.9500 |
N2—C27 | 1.479 (4) | C25—C26 | 1.392 (4) |
N2—H2 | 0.81 (3) | C25—H25 | 0.9500 |
C11—C12 | 1.393 (4) | C26—C27 | 1.507 (4) |
C11—C16 | 1.414 (4) | C27—H27A | 0.9900 |
C12—C13 | 1.382 (4) | C27—H27B | 0.9900 |
C12—H12 | 0.9500 | C28—H28A | 0.9900 |
C13—C14 | 1.386 (4) | C28—H28B | 0.9900 |
C13—H13 | 0.9500 | C1—Cl2 | 1.742 (3) |
C14—C15 | 1.378 (4) | C1—Cl1 | 1.765 (3) |
C14—H14 | 0.9500 | C1—Cl3 | 1.767 (3) |
C15—C16 | 1.403 (4) | C1—H1 | 1.0000 |
C15—H15 | 0.9500 | ||
O3—Ti1—O1 | 101.11 (8) | C15—C16—C11 | 118.5 (3) |
O3—Ti1—O2 | 98.43 (9) | C15—C16—C17 | 118.2 (3) |
O1—Ti1—O2 | 95.69 (8) | C11—C16—C17 | 123.4 (3) |
O3—Ti1—O3i | 82.80 (9) | N1—C17—C16 | 124.0 (3) |
O1—Ti1—O3i | 100.23 (8) | N1—C17—H17 | 118.0 |
O2—Ti1—O3i | 163.49 (8) | C16—C17—H17 | 118.0 |
O3—Ti1—N2 | 100.65 (9) | N1—C18—C28 | 107.2 (2) |
O1—Ti1—N2 | 158.23 (9) | N1—C18—H18A | 110.3 |
O2—Ti1—N2 | 81.27 (9) | C28—C18—H18A | 110.3 |
O3i—Ti1—N2 | 82.33 (9) | N1—C18—H18B | 110.3 |
O3—Ti1—N1 | 168.80 (8) | C28—C18—H18B | 110.3 |
O1—Ti1—N1 | 82.93 (8) | H18A—C18—H18B | 108.5 |
O2—Ti1—N1 | 91.50 (8) | O2—C21—C22 | 119.4 (3) |
O3i—Ti1—N1 | 86.21 (8) | O2—C21—C26 | 121.7 (3) |
N2—Ti1—N1 | 75.64 (9) | C22—C21—C26 | 118.9 (3) |
O3—Ti1—Ti1i | 43.20 (6) | C23—C22—C21 | 120.6 (3) |
O1—Ti1—Ti1i | 104.27 (6) | C23—C22—H22 | 119.7 |
O2—Ti1—Ti1i | 139.09 (7) | C21—C22—H22 | 119.7 |
O3i—Ti1—Ti1i | 39.60 (5) | C24—C23—C22 | 120.8 (3) |
N2—Ti1—Ti1i | 91.53 (7) | C24—C23—H23 | 119.6 |
N1—Ti1—Ti1i | 125.78 (6) | C22—C23—H23 | 119.6 |
C11—O1—Ti1 | 136.03 (17) | C23—C24—C25 | 119.2 (3) |
C21—O2—Ti1 | 138.85 (18) | C23—C24—H24 | 120.4 |
Ti1—O3—Ti1i | 97.20 (9) | C25—C24—H24 | 120.4 |
C17—N1—C18 | 119.5 (2) | C24—C25—C26 | 121.6 (3) |
C17—N1—Ti1 | 127.32 (19) | C24—C25—H25 | 119.2 |
C18—N1—Ti1 | 113.18 (17) | C26—C25—H25 | 119.2 |
C28—N2—C27 | 113.9 (2) | C25—C26—C21 | 118.9 (3) |
C28—N2—Ti1 | 112.28 (17) | C25—C26—C27 | 119.7 (3) |
C27—N2—Ti1 | 112.94 (17) | C21—C26—C27 | 121.3 (2) |
C28—N2—H2 | 107 (2) | N2—C27—C26 | 113.1 (2) |
C27—N2—H2 | 109 (2) | N2—C27—H27A | 109.0 |
Ti1—N2—H2 | 100 (2) | C26—C27—H27A | 109.0 |
O1—C11—C12 | 118.7 (2) | N2—C27—H27B | 109.0 |
O1—C11—C16 | 122.2 (2) | C26—C27—H27B | 109.0 |
C12—C11—C16 | 119.1 (3) | H27A—C27—H27B | 107.8 |
C13—C12—C11 | 120.9 (3) | N2—C28—C18 | 109.8 (2) |
C13—C12—H12 | 119.5 | N2—C28—H28A | 109.7 |
C11—C12—H12 | 119.5 | C18—C28—H28A | 109.7 |
C12—C13—C14 | 120.5 (3) | N2—C28—H28B | 109.7 |
C12—C13—H13 | 119.7 | C18—C28—H28B | 109.7 |
C14—C13—H13 | 119.7 | H28A—C28—H28B | 108.2 |
C15—C14—C13 | 119.2 (3) | Cl2—C1—Cl1 | 110.39 (17) |
C15—C14—H14 | 120.4 | Cl2—C1—Cl3 | 109.84 (18) |
C13—C14—H14 | 120.4 | Cl1—C1—Cl3 | 109.57 (18) |
C14—C15—C16 | 121.7 (3) | Cl2—C1—H1 | 109.0 |
C14—C15—H15 | 119.2 | Cl1—C1—H1 | 109.0 |
C16—C15—H15 | 119.2 | Cl3—C1—H1 | 109.0 |
Symmetry code: (i) −x+1, −y+1, −z. |
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···Cl3i | 0.81 (3) | 2.84 (3) | 3.575 (3) | 151 (3) |
C1—H1···O2 | 1.00 | 2.55 | 3.506 (4) | 160 |
C1—H1···O3 | 1.00 | 2.51 | 3.257 (4) | 131 |
C17—H17···Cg2ii | 0.95 | 2.81 | 3.754 (4) | 174 |
C23—H23···Cg1iii | 0.95 | 2.86 | 3.747 (4) | 156 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+2, −z; (iii) x−1, y, z. |
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···Cl3i | 0.81 (3) | 2.84 (3) | 3.575 (3) | 151 (3) |
C1—H1···O2 | 1.00 | 2.55 | 3.506 (4) | 159.6 |
C1—H1···O3 | 1.00 | 2.51 | 3.257 (4) | 131.4 |
C17—H17···Cg2ii | 0.95 | 2.81 | 3.754 (4) | 174 |
C23—H23···Cg1iii | 0.95 | 2.86 | 3.747 (4) | 156 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+2, −z; (iii) x−1, y, z. |
Acknowledgements
This work was partially supported by the RFBR (project 12–03–90020-Bel_a) and a grant from the President of the Russian Federation to support the research of young Russian scientists and doctors (MD-3634.2012.3).
References
Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Matsumoto, K., Saito, B. & Katsuki, T. (2007). Chem. Commun. pp. 3619–3627. Web of Science CrossRef Google Scholar
Matsumoto, K., Sawada, Y., Saito, B., Sakai, K. & Katsuki, T. (2005). Angew. Chem. Int. Ed. 44, 4935–4939. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taylor, M. K., Reglinski, J., Berlouis, L. E. A. & Kennedy, A. R. (2006). Inorg. Chim. Acta, 359, 2455–2464. Web of Science CSD CrossRef CAS Google Scholar
Tsuchimoto, M. (2001). Bull. Chem. Soc. Jpn, 74, 2101–2105. Web of Science CSD CrossRef CAS Google Scholar
Zaitsev, K. V., Bermeshev, M. V., Samsonov, A. A., Oprunenko, J. F., Churakov, A. V., Howard, J. A. K., Karlov, S. S. & Zaitseva, G. S. (2008). New J. Chem. 32, 1415–1431. Web of Science CSD CrossRef CAS Google Scholar
Zaitsev, K. V., Karlov, S. S., Selina, A. A., Oprunenko, Yu. F., Churakov, A. V., Neumüller, B., Howard, J. A. K. & Zaitseva, G. S. (2006). Eur. J. Inorg. Chem. pp. 1987–1999. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a part of our investigation on chemistry of titanium complexes based on tridentate or tetradentate ligands (Zaitsev et al., 2006, 2008) we obtained and studied the structure of the titanium compound [(salalen)TiO]2.
The title titanium salalen complex is centrosymmetric. Both Ti atoms are linked by µ2-oxo briges and possess a distorted octahedral coordination environment with cis interligand angles ranging from 81.27 (9) to 101.11 (8)°. In the central Ti2(µ2-O)2 fragment, metal-oxygen distances are significantly different (1.7962 (19) and 1.9292 (19) Å).
In the crystal, the solvent chloroform molecule forms bifurcated C—H···O hydrogen bond with the main molecule with C···O separations of 3.257 (4) and 3.506 (4) Å.
To the best of our knowledge, the title compound represents the second example of structurally characterized salalen complex (Taylor et al., 2006).