metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ4-N-[phen­yl(pyridin-2-yl­aza­nid­yl)meth­yl]pyridin-2-aminido}tetra­kis(tetra­hydro­furan)­tetra­lithium

aDepartment of Chemistry, Taiyuan Teachers College, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: chenchenj1128@163.com

(Received 29 October 2013; accepted 22 November 2013; online 27 November 2013)

The title complex, [Li4(C17H14N4)2(C4H8O)4], bears a novel tetra­dentate di­amido ligand. In the tetra­nuclear centrosymmetric complex mol­ecule, the metal atoms exhibit two kinds of coordination modes. The middle two Li+ cations are coord­inated by four N (ligand) and one O (tetra­hydro­furan, THF) atoms, resulting in a distorted square-pyramidal geometry. The outer two Li+ cations are in distorted tetra­hedral environments consisting of three N (ligand) and one O (THF) atoms. The Li—N bond lengths vary from 2.020 (7) to 2.441 (6)Å.

Related literature

For reviews of related metal amides, see: Holm et al. (1996[Holm, R. H., Kenneppohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239-2314.]); Kempe (2000[Kempe, R. (2000). Angew. Chem. Int. Ed. 39, 468-493.]). For reviews of amidinates, see: Edelmann (1994[Edelmann, F. T. (1994). Coord. Chem. Rev. 137, 403-481.]); Mohamed (2010[Mohamed, A. A. (2010). Coord. Chem. Rev. 254, 1918-1947.]). For related organometallic compounds with amino­pyridinato ligands, see: Kempe (2003[Kempe, R. (2003). Eur. J. Inorg. Chem. pp. 791-803.]); Smolensky et al. (2005[Smolensky, E., Kapon, M., Woollins, J. D. & Eisen, M. S. (2005). Organometallics, 24, 3255-3265.]); Talja et al. (2008[Talja, M., Luhtanen, T., Polamo, M., Klinga, M., Pakkanen, T. & Leskela, M. (2008). Inorg. Chim. Acta, 361, 2195-2202.]); Polamo & Leskela (1996[Polamo, M. & Leskela, M. (1996). J. Chem. Soc. Dalton Trans. pp. 4345-4349.]).

[Scheme 1]

Experimental

Crystal data
  • [Li4(C17H14N4)2(C4H8O)4]

  • Mr = 864.82

  • Triclinic, [P \overline 1]

  • a = 10.3322 (10) Å

  • b = 11.2231 (11) Å

  • c = 12.4813 (12) Å

  • α = 111.021 (2)°

  • β = 105.355 (2)°

  • γ = 100.763 (2)°

  • V = 1237.3 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.986, Tmax = 0.989

  • 6796 measured reflections

  • 4339 independent reflections

  • 2180 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.243

  • S = 0.93

  • 4339 reflections

  • 298 parameters

  • 61 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXS97.

Supporting information


Comment top

The exploration of ancillary ligand systems supporting catalytically active metal centers is a long-standing demand in the coordination chemistry. The N-donor ligands are important alterneatives instead of the ubiquitous cyclopentadienyl species. Metal amides were found having valuable applications in various industrial and biological processes (Holm et al., 1996; Kempe, 2000). Amidinate ligands have been extensively studied for decades due to their high adaptability to a wide variety of metals and the remarkable utility as homogeneous catalysts for olefin polymerization of corresponding metal complexes (Edelmann, 1994; Mohamed, 2010). As the closest "relatives" amidinates, pyridyl amido ligands like [N(R)(PY)]- with flexible bonding modes such as the strained N,N'-chelating fashion and the bimetallic bridging binding fashion, have attracted much attention (Kempe, 2003; Smolensky et al., 2005; Talja et al., 2008). Recently, a special N-functionalized aminopyridinato ligand was developed by introducing a linker between two aminopyridinato moieties, possessing the η3:η3 environment. Here, the synthesis and crystal structure of a new lithium complex supported by this ligand will be described.

Aminal bis(2-pyridylamino)toluene is the precursor of the title compound. It was prepared by condensation of two equivalents of 2-aminopyridine and one equivalent of benzaldehyde via reflux in methanol. After lithiation of bis(2-pyridylamino)toluene with two equivalents of butyllithium in diethyl ether, it gave yellow crystals of diamide derivative·However, the crystalline qualitity was not good enough for X-ray crystallography analysis. It is solvated with one molar of Et2O donor inferred from its 1H NMR spectrum. The suitable for X-ray investigation single-crystal of the title compound was obtained by recrystallization in THF. Its molecular structure is shown in Fig. 1. It is revealed as a tetranuclear species. The metal centers are bound in a zone composed by two tetradentate diamido ligands and they are seprerated in a zigzag mode with distances of 2.578 (10)Å and 2.633 (8)Å. The Li···Li distances are obviously longer than that of 2.399 (12)Å in the reported {[NH(Ph)(2-C5H4N)]Li[N(Ph)(2-C5H4N)]}2 (Polamo & Leskela, 1996). Each Li is covered by a THF molecule from the outer direction. The molecule is centrosymmetric and its center of inversion coincide with the central point of the middle [LiN]2 core. There are two different coordination environments employed towards lithium atoms. The middle two lithium atoms are coordinated with four N and one O atoms, resulting in the five-coordinate distorted quadrangular pyramidal geometry. The outer two lithium atoms are in the distorted tetrahedral environment consisting of three N and one O atoms. The distances of Li–N bonds are varying from 2.02 to 2.44Å.

Related literature top

For reviews of related metal amides, see: Holm et al. (1996); Kempe (2000). For reviews of amidinates, see: Edelmann (1994); Mohamed (2010). For related organometallic compounds with aminopyridinato ligands, see: Kempe (2003); Smolensky et al. (2005); Talja et al. (2008); Polamo & Leskela (1996).

Experimental top

A solution of n-BuLi (1.6 M, 2.4 ml, 3.8 mmol) in hexane was slowly added into a solution of di(2-pyridylamino)toluene {PhCH[(2-C5H4N)NH]2} (0.53 g, 1.9 mmol) in Et2O (30 ml) at 273 K by syringe. The mixture was stirred at room temperature for five hours. Then all the volatiles were removed under vacuum. The residue was recrystallized with THF (20 ml), it gave the title compound as yellow crystals (yield 0.52 g, 62%). M.p.: 413-415 K. 1H NMR (300 MHz, C6D6) δ: 8.3-5.5 (m, 13H;Ph and pyridyl), 3.260 (s, 8H; O–CH2 of THF), 1.212 (s, 8H; C–CH2 of THF); 13C NMR (75 MHz, C6D6) δ: 170-105 (m, Ph and pyridyl), 68.1 (O–CH2 of THF), 25.8 (C–CH2 of THF). Anal. Calc. for C50H60Li4N8O4: C, 69.44; H, 6.99; N, 12.96%. Found: C, 69.23; H, 6.96; N, 13.13%.

Refinement top

The methylene H atoms were constrained with C–H distances of 0.97Å and Uiso(H) = 1.2Ueq(C). The methine H atoms were constrained with C–H distances of 0.98Å and Uiso(H) = 1.2Ueq(C). The phenyl and pyridyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.
Bis{µ4-N-[phenyl(pyridin-2-ylazanidyl)methyl]pyridin-2-aminido}tetrakis(tetrahydrofuran)tetralithium top
Crystal data top
[Li4(C17H14N4)2(C4H8O)4]Z = 1
Mr = 864.82F(000) = 460
Triclinic, P1Dx = 1.161 Mg m3
Hall symbol: -P 1Melting point = 413–415 K
a = 10.3322 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2231 (11) ÅCell parameters from 2019 reflections
c = 12.4813 (12) Åθ = 2.1–23.3°
α = 111.021 (2)°µ = 0.07 mm1
β = 105.355 (2)°T = 295 K
γ = 100.763 (2)°Prism, yellow
V = 1237.3 (2) Å30.20 × 0.15 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
4339 independent reflections
Radiation source: fine-focus sealed tube2180 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 129
Tmin = 0.986, Tmax = 0.989k = 1313
6796 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.243H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.1525P)2]
where P = (Fo2 + 2Fc2)/3
4339 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.37 e Å3
61 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Li4(C17H14N4)2(C4H8O)4]γ = 100.763 (2)°
Mr = 864.82V = 1237.3 (2) Å3
Triclinic, P1Z = 1
a = 10.3322 (10) ÅMo Kα radiation
b = 11.2231 (11) ŵ = 0.07 mm1
c = 12.4813 (12) ÅT = 295 K
α = 111.021 (2)°0.20 × 0.15 × 0.15 mm
β = 105.355 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4339 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2180 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.989Rint = 0.036
6796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07361 restraints
wR(F2) = 0.243H-atom parameters constrained
S = 0.93Δρmax = 0.37 e Å3
4339 reflectionsΔρmin = 0.24 e Å3
298 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.1027 (6)0.4551 (5)1.0323 (5)0.0634 (14)
Li20.1558 (7)0.4565 (6)0.7296 (5)0.0719 (16)
N10.1316 (3)0.6518 (2)1.0415 (2)0.0507 (6)
N20.0351 (2)0.6392 (2)0.8668 (2)0.0535 (7)
N30.2796 (3)0.6487 (3)1.2128 (2)0.0667 (8)
N40.2221 (3)0.6071 (3)0.7043 (3)0.0714 (8)
C10.1048 (3)0.7175 (3)0.9599 (3)0.0512 (8)
H1A0.10480.80861.00700.061*
C20.2139 (3)0.7251 (3)0.8981 (3)0.0579 (8)
C30.2904 (4)0.8443 (4)0.9055 (4)0.0795 (11)
H30.27750.92390.95180.095*
C40.3849 (5)0.8494 (6)0.8466 (5)0.1126 (17)
H40.43420.93110.85230.135*
C50.4057 (6)0.7349 (8)0.7805 (6)0.131 (2)
H50.47050.73790.74150.157*
C60.3321 (6)0.6141 (6)0.7703 (5)0.1191 (17)
H60.34640.53560.72340.143*
C70.2354 (4)0.6077 (4)0.8299 (4)0.0845 (11)
H70.18630.52560.82380.101*
C80.2470 (3)0.7188 (3)1.1439 (3)0.0514 (8)
C90.3386 (3)0.8526 (3)1.1891 (3)0.0622 (9)
H90.31760.90391.14660.075*
C100.4549 (4)0.9057 (4)1.2924 (3)0.0849 (12)
H100.51250.99321.32070.102*
C110.4887 (5)0.8315 (5)1.3556 (4)0.1027 (15)
H110.56990.86611.42560.123*
C120.3998 (4)0.7060 (4)1.3127 (4)0.0876 (12)
H120.42330.65541.35540.105*
C130.1040 (3)0.6970 (3)0.8038 (3)0.0526 (8)
C140.0715 (4)0.8342 (3)0.8263 (3)0.0633 (9)
H140.01040.89660.89040.076*
C150.1585 (4)0.8755 (4)0.7552 (4)0.0778 (11)
H150.13730.96610.77220.093*
C160.2783 (4)0.7838 (5)0.6580 (4)0.0926 (13)
H160.33960.81060.60890.111*
C170.3032 (4)0.6530 (4)0.6367 (4)0.0869 (13)
H170.38290.59060.57000.104*
C180.1501 (7)0.2098 (6)0.8819 (7)0.183 (3)
H18A0.12270.17200.93440.220*
H18B0.06810.18110.80820.220*
C190.2581 (9)0.1655 (7)0.8507 (9)0.195 (3)
H19A0.26630.09020.86990.234*
H19B0.23840.13680.76330.234*
C200.3791 (8)0.2697 (8)0.9169 (9)0.223 (4)
H20A0.42110.29130.86260.268*
H20B0.44650.24730.97100.268*
C210.3420 (6)0.3833 (7)0.9886 (7)0.180 (3)
H21A0.37580.40131.07490.216*
H21B0.38450.46300.98100.216*
O10.1996 (3)0.3504 (3)0.9441 (3)0.0881 (9)
C220.1386 (12)0.1945 (8)0.5649 (9)0.231 (4)
H22A0.23980.15010.53220.277*
H22B0.09610.17310.63200.277*
C230.0822 (14)0.1475 (9)0.4711 (11)0.264 (4)
H23A0.00640.11260.49660.317*
H23B0.15470.07820.39530.317*
C240.0334 (14)0.2597 (12)0.4575 (11)0.279 (4)
H24A0.07460.24190.37170.334*
H24B0.06830.28210.47970.334*
C250.0648 (11)0.3669 (9)0.5286 (8)0.230 (4)
H25A0.01870.44550.57380.276*
H25B0.13720.38780.47760.276*
O20.1117 (4)0.3306 (3)0.6075 (3)0.1187 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.064 (3)0.059 (3)0.079 (4)0.023 (3)0.031 (3)0.037 (3)
Li20.080 (4)0.064 (3)0.063 (3)0.009 (3)0.018 (3)0.029 (3)
N10.0509 (15)0.0478 (13)0.0523 (14)0.0125 (12)0.0178 (13)0.0225 (12)
N20.0461 (15)0.0511 (14)0.0602 (15)0.0103 (12)0.0138 (12)0.0272 (13)
N30.0630 (18)0.0670 (17)0.0655 (17)0.0099 (14)0.0115 (14)0.0373 (15)
N40.0597 (18)0.0733 (18)0.0683 (17)0.0037 (15)0.0059 (15)0.0374 (16)
C10.0485 (18)0.0443 (15)0.0595 (18)0.0120 (13)0.0186 (15)0.0229 (15)
C20.0495 (19)0.066 (2)0.064 (2)0.0160 (16)0.0212 (16)0.0355 (17)
C30.065 (2)0.097 (3)0.093 (3)0.017 (2)0.033 (2)0.059 (2)
C40.085 (3)0.151 (5)0.135 (4)0.024 (3)0.056 (3)0.093 (4)
C50.095 (4)0.213 (7)0.141 (5)0.050 (5)0.075 (4)0.113 (5)
C60.118 (4)0.149 (5)0.122 (4)0.063 (4)0.080 (3)0.055 (4)
C70.081 (3)0.095 (3)0.095 (3)0.034 (2)0.049 (2)0.045 (2)
C80.0480 (18)0.0505 (17)0.0550 (18)0.0119 (14)0.0188 (15)0.0236 (15)
C90.065 (2)0.0515 (18)0.061 (2)0.0074 (16)0.0144 (17)0.0261 (16)
C100.078 (3)0.072 (2)0.074 (2)0.012 (2)0.004 (2)0.033 (2)
C110.082 (3)0.108 (3)0.082 (3)0.009 (3)0.012 (2)0.050 (3)
C120.074 (3)0.097 (3)0.080 (3)0.002 (2)0.000 (2)0.057 (2)
C130.0500 (18)0.0551 (18)0.0578 (18)0.0145 (15)0.0228 (15)0.0284 (16)
C140.063 (2)0.061 (2)0.070 (2)0.0207 (16)0.0217 (17)0.0331 (18)
C150.077 (3)0.078 (2)0.098 (3)0.036 (2)0.033 (2)0.054 (2)
C160.073 (3)0.117 (3)0.108 (3)0.034 (3)0.022 (3)0.076 (3)
C170.063 (3)0.103 (3)0.085 (3)0.006 (2)0.001 (2)0.058 (2)
C180.167 (6)0.094 (4)0.239 (7)0.018 (4)0.127 (5)0.009 (4)
C190.182 (6)0.104 (4)0.262 (7)0.062 (4)0.092 (5)0.020 (4)
C200.128 (5)0.192 (6)0.248 (7)0.087 (4)0.042 (5)0.015 (5)
C210.082 (4)0.155 (5)0.223 (6)0.051 (3)0.049 (4)0.006 (5)
O10.0756 (18)0.0718 (17)0.133 (2)0.0333 (14)0.0538 (16)0.0442 (17)
C220.356 (10)0.121 (5)0.238 (8)0.089 (6)0.167 (7)0.052 (5)
C230.372 (9)0.162 (7)0.239 (7)0.105 (7)0.172 (7)0.012 (6)
C240.365 (9)0.240 (9)0.225 (7)0.080 (8)0.197 (6)0.037 (7)
C250.350 (9)0.202 (8)0.191 (6)0.073 (7)0.195 (6)0.078 (6)
O20.172 (3)0.085 (2)0.091 (2)0.021 (2)0.070 (2)0.0226 (17)
Geometric parameters (Å, º) top
Li1—O11.921 (6)C9—C101.350 (5)
Li1—N2i2.084 (6)C9—H90.9300
Li1—N12.128 (6)C10—C111.368 (5)
Li1—N1i2.256 (6)C10—H100.9300
Li1—N32.441 (6)C11—C121.352 (5)
Li1—Li1i2.578 (10)C11—H110.9300
Li1—Li2i2.633 (8)C12—Li2i2.617 (7)
Li1—C1i2.656 (6)C12—H120.9300
Li1—C82.686 (6)C13—C141.418 (4)
Li2—O21.895 (7)C14—C151.356 (5)
Li2—N3i2.020 (7)C14—H140.9300
Li2—N22.022 (6)C15—C161.377 (5)
Li2—N42.032 (7)C15—H150.9300
Li2—C132.415 (6)C16—C171.354 (5)
Li2—C12i2.617 (7)C16—H160.9300
Li2—Li1i2.633 (8)C17—H170.9300
N1—C81.337 (4)C18—C191.393 (9)
N1—C11.458 (4)C18—O11.402 (6)
N1—Li1i2.256 (6)C18—H18A0.9700
N2—C131.336 (4)C18—H18B0.9700
N2—C11.455 (4)C19—C201.352 (9)
N2—Li1i2.084 (6)C19—H19A0.9700
N3—C121.349 (4)C19—H19B0.9700
N3—C81.379 (4)C20—C211.455 (8)
N3—Li2i2.020 (7)C20—H20A0.9700
N4—C171.333 (4)C20—H20B0.9700
N4—C131.374 (4)C21—O11.351 (5)
C1—C21.531 (4)C21—H21A0.9700
C1—Li1i2.656 (6)C21—H21B0.9700
C1—H1A0.9800C22—O21.369 (8)
C2—C31.378 (5)C22—C231.422 (12)
C2—C71.384 (5)C22—H22A0.9700
C3—C41.374 (6)C22—H22B0.9700
C3—H30.9300C23—C241.352 (11)
C4—C51.347 (8)C23—H23A0.9700
C4—H40.9300C23—H23B0.9700
C5—C61.369 (8)C24—C251.368 (11)
C5—H50.9300C24—H24A0.9700
C6—C71.400 (6)C24—H24B0.9700
C6—H60.9300C25—O21.355 (7)
C7—H70.9300C25—H25A0.9700
C8—C91.430 (4)C25—H25B0.9700
O1—Li1—N2i107.8 (3)C5—C6—C7120.5 (5)
O1—Li1—N1116.0 (3)C5—C6—H6119.7
N2i—Li1—N1134.1 (3)C7—C6—H6119.7
O1—Li1—N1i112.1 (3)C2—C7—C6119.1 (4)
N2i—Li1—N1i64.89 (18)C2—C7—H7120.5
N1—Li1—N1i108.0 (2)C6—C7—H7120.5
O1—Li1—N3108.2 (3)N1—C8—N3115.0 (3)
N2i—Li1—N394.7 (2)N1—C8—C9127.9 (3)
N1—Li1—N359.72 (16)N3—C8—C9117.2 (3)
N1i—Li1—N3138.7 (3)N1—C8—Li151.44 (18)
O1—Li1—Li1i133.7 (4)N3—C8—Li164.8 (2)
N2i—Li1—Li1i101.7 (3)C9—C8—Li1169.4 (3)
N1—Li1—Li1i56.3 (2)C10—C9—C8121.2 (3)
N1i—Li1—Li1i51.7 (2)C10—C9—H9119.4
N3—Li1—Li1i104.0 (3)C8—C9—H9119.4
O1—Li1—Li2i125.5 (3)C9—C10—C11120.4 (3)
N2i—Li1—Li2i49.08 (19)C9—C10—H10119.8
N1—Li1—Li2i92.4 (2)C11—C10—H10119.8
N1i—Li1—Li2i100.1 (3)C12—C11—C10117.6 (4)
N3—Li1—Li2i46.73 (17)C12—C11—H11121.2
Li1i—Li1—Li2i100.8 (3)C10—C11—H11121.2
O1—Li1—C1i106.6 (2)N3—C12—C11124.9 (4)
N2i—Li1—C1i33.02 (12)N3—C12—Li2i49.5 (2)
N1—Li1—C1i133.0 (3)C11—C12—Li2i150.8 (4)
N1i—Li1—C1i33.27 (11)N3—C12—H12117.5
N3—Li1—C1i124.3 (2)C11—C12—H12117.5
Li1i—Li1—C1i80.3 (3)Li2i—C12—H1276.1
Li2i—Li1—C1i77.7 (2)N2—C13—N4113.1 (3)
O1—Li1—C8111.9 (3)N2—C13—C14129.1 (3)
N2i—Li1—C8119.9 (3)N4—C13—C14117.8 (3)
N1—Li1—C829.44 (11)N2—C13—Li256.8 (2)
N1i—Li1—C8130.5 (2)N4—C13—Li257.2 (2)
N3—Li1—C830.74 (11)C14—C13—Li2169.5 (3)
Li1i—Li1—C881.4 (2)C15—C14—C13120.7 (3)
Li2i—Li1—C871.15 (19)C15—C14—H14119.7
C1i—Li1—C8139.8 (2)C13—C14—H14119.7
O2—Li2—N3i107.2 (3)C14—C15—C16120.3 (4)
O2—Li2—N2130.7 (4)C14—C15—H15119.9
N3i—Li2—N2111.3 (3)C16—C15—H15119.9
O2—Li2—N4121.6 (3)C17—C16—C15117.3 (3)
N3i—Li2—N4113.6 (3)C17—C16—H16121.3
N2—Li2—N467.9 (2)C15—C16—H16121.3
O2—Li2—C13131.3 (3)N4—C17—C16124.9 (4)
N3i—Li2—C13121.3 (3)N4—C17—H17117.5
N2—Li2—C1333.59 (13)C16—C17—H17117.5
N4—Li2—C1334.67 (14)C19—C18—O1108.4 (5)
O2—Li2—C12i95.7 (3)C19—C18—H18A110.0
N3i—Li2—C12i30.49 (14)O1—C18—H18A110.0
N2—Li2—C12i132.5 (3)C19—C18—H18B110.0
N4—Li2—C12i98.8 (3)O1—C18—H18B110.0
C13—Li2—C12i123.6 (3)H18A—C18—H18B108.4
O2—Li2—Li1i138.0 (3)C20—C19—C18107.3 (6)
N3i—Li2—Li1i61.6 (2)C20—C19—H19A110.3
N2—Li2—Li1i51.15 (18)C18—C19—H19A110.3
N4—Li2—Li1i98.5 (3)C20—C19—H19B110.3
C13—Li2—Li1i75.6 (2)C18—C19—H19B110.3
C12i—Li2—Li1i89.3 (2)H19A—C19—H19B108.5
C8—N1—C1115.8 (2)C19—C20—C21106.9 (6)
C8—N1—Li199.1 (2)C19—C20—H20A110.3
C1—N1—Li1139.7 (2)C21—C20—H20A110.3
C8—N1—Li1i144.3 (2)C19—C20—H20B110.3
C1—N1—Li1i88.6 (2)C21—C20—H20B110.3
Li1—N1—Li1i72.0 (2)H20A—C20—H20B108.6
C13—N2—C1118.7 (2)O1—C21—C20107.3 (5)
C13—N2—Li289.6 (2)O1—C21—H21A110.3
C1—N2—Li2144.8 (3)C20—C21—H21A110.3
C13—N2—Li1i128.5 (2)O1—C21—H21B110.3
C1—N2—Li1i95.7 (2)C20—C21—H21B110.3
Li2—N2—Li1i79.8 (2)H21A—C21—H21B108.5
C12—N3—C8118.5 (3)C21—O1—C18105.4 (4)
C12—N3—Li2i100.0 (3)C21—O1—Li1121.2 (4)
C8—N3—Li2i130.2 (3)C18—O1—Li1123.5 (3)
C12—N3—Li1152.4 (3)O2—C22—C23109.8 (8)
C8—N3—Li184.5 (2)O2—C22—H22A109.7
Li2i—N3—Li171.6 (2)C23—C22—H22A109.7
C17—N4—C13118.9 (3)O2—C22—H22B109.7
C17—N4—Li2151.9 (3)C23—C22—H22B109.7
C13—N4—Li288.1 (2)H22A—C22—H22B108.2
N2—C1—N1106.5 (2)C24—C23—C22102.6 (9)
N2—C1—C2109.9 (2)C24—C23—H23A111.2
N1—C1—C2112.9 (2)C22—C23—H23A111.2
N2—C1—Li1i51.31 (18)C24—C23—H23B111.2
N1—C1—Li1i58.11 (18)C22—C23—H23B111.2
C2—C1—Li1i142.4 (2)H23A—C23—H23B109.2
N2—C1—H1A109.2C23—C24—C25112.4 (10)
N1—C1—H1A109.2C23—C24—H24A109.1
C2—C1—H1A109.2C25—C24—H24A109.1
Li1i—C1—H1A108.0C23—C24—H24B109.1
C3—C2—C7118.2 (3)C25—C24—H24B109.1
C3—C2—C1122.7 (3)H24A—C24—H24B107.9
C7—C2—C1119.1 (3)O2—C25—C24106.5 (8)
C4—C3—C2122.2 (4)O2—C25—H25A110.4
C4—C3—H3118.9C24—C25—H25A110.4
C2—C3—H3118.9O2—C25—H25B110.4
C5—C4—C3119.3 (5)C24—C25—H25B110.4
C5—C4—H4120.3H25A—C25—H25B108.6
C3—C4—H4120.3C25—O2—C22106.9 (6)
C4—C5—C6120.6 (5)C25—O2—Li2119.8 (5)
C4—C5—H5119.7C22—O2—Li2132.3 (5)
C6—C5—H5119.7
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Li4(C17H14N4)2(C4H8O)4]
Mr864.82
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.3322 (10), 11.2231 (11), 12.4813 (12)
α, β, γ (°)111.021 (2), 105.355 (2), 100.763 (2)
V3)1237.3 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.986, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
6796, 4339, 2180
Rint0.036
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.243, 0.93
No. of reflections4339
No. of parameters298
No. of restraints61
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.24

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by grants from the Natural Science Foundation of China (20702029) and the Natural Science Foundation of Shanxi Province (2008011024).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdelmann, F. T. (1994). Coord. Chem. Rev. 137, 403–481.  CrossRef Web of Science Google Scholar
First citationHolm, R. H., Kenneppohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKempe, R. (2000). Angew. Chem. Int. Ed. 39, 468–493.  CrossRef CAS Google Scholar
First citationKempe, R. (2003). Eur. J. Inorg. Chem. pp. 791–803.  CrossRef Google Scholar
First citationMohamed, A. A. (2010). Coord. Chem. Rev. 254, 1918–1947.  Web of Science CrossRef CAS Google Scholar
First citationPolamo, M. & Leskela, M. (1996). J. Chem. Soc. Dalton Trans. pp. 4345–4349.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmolensky, E., Kapon, M., Woollins, J. D. & Eisen, M. S. (2005). Organometallics, 24, 3255–3265.  Web of Science CSD CrossRef CAS Google Scholar
First citationTalja, M., Luhtanen, T., Polamo, M., Klinga, M., Pakkanen, T. & Leskela, M. (2008). Inorg. Chim. Acta, 361, 2195–2202.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds