metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m647-m648

Poly[[(μ2-4,4′-bi­pyridyl-κ2N:N′)bis­­{μ2-N-[2-(2-hy­dr­oxy­benzo­yl)carbamo­thio­yl]acetamidato-κ4O,N,O′:S}bis­­(nitrato-κ2O,O′)dicadmium] di­methyl­formamide tetra­solvate]

aZhicheng College, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
*Correspondence e-mail: yyomh@163.com

(Received 9 October 2013; accepted 2 November 2013; online 9 November 2013)

The asymmetric unit of the title complex, {[Cd2(C10H10N3O3S)2(C10H8N2)(NO3)2]·4C3H7NO}n, consists of one CdII cation, one N-[2-(2-hy­droxy­benzo­yl)carbamo­thio­yl]acetamidate ligand, half a 4,4′-bipyridyl ligand, one coordinating nitrate anion and two di­methyl­formamide solvent mol­ecules of crystallization. The bipyridine ligand is completed by inversion symmetry. The metal cation exhibits a distorted penta­gonal–bipyramidal coordination geometry provided by two O and one N atoms of the thio­semicarbazide ligand, two O atoms of the nitrate anion, one S atom of a neighbouring thio­semicarbazide ligand and one 4,4′-bi­pyridine N atom. The bridging role of the thio­semicarbazide ligand through the S atom leads to centrosymmetric binuclear units, which are further linked by 4,4′-bi­pyridine units, forming polymeric chains extending along the b-axis direction. An intra­molecular N—H⋯O hydrogen bond occurs. The crystal structure also features N—H⋯O and O—H⋯O hydrogen bonds, leading to the formation of a three-dimensional network.

Related literature

For background to the properties and applications of thio­semicarbazone complexes, see: Quiroga & Ranninger (2004[Quiroga, A. G. & Ranninger, C. N. (2004). Coord. Chem. Rev. 248, 119-133.]); Kasuga et al. (2003[Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, C. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298-310.]); Floquet et al. (2009[Floquet, S., Muñoz, M. C., Guillot, R., Riviére, E., Blain, G., Réal, J.-A. & Boillot, M.-L. (2009). Inorg. Chim. Acta, 362, 56-64.]); Hassanien et al. (2008[Hassanien, M. M., Gabr, I. M., Abdel-Rhman, M. H. & El-Asmy, A. A. (2008). Spectrochim. Acta Part A, 71, 73-79.]); Latheef et al. (2006[Latheef, L., Manoj, E. & Prathapachandra Kurup, M. R. (2006). Acta Cryst. C62, o16-o18.]); Babb et al. (2003[Babb, J. E. V., Burrows, A. D., Harrington, R. W. & Mahon, M. F. (2003). Polyhedron, 22, 673-686.]). For related structures, see: Ke et al. (2007[Ke, Y.-Z., Zheng, L.-F., Luo, J.-H., Huang, X.-H. & Huang, C.-C. (2007). Acta Cryst. C63, m343-m345.]); Wang et al. (2010[Wang, Y.-B., Pan, T.-H., Liang, Q., Liu, D.-S. & Huang, C.-C. (2010). Acta Cryst. C66, m127-m129.]); Liu et al. (2013[Liu, J.-J., Liao, J.-Z., Li, Z.-Y., Wang, Y. & Huang, C.-C. (2013). Acta Cryst. C69, 613-615.]). For the synthesis of the N-(2-(2-hy­droxy­benzo­yl)carbamo­thio­yl)acetamide ligand, see: Wang et al. (2000[Wang, X., Li, Z., Da, Y. & Chen, J. (2000). Synth. Commun. 30, 3405-3414.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C10H10N3O3S)2(C10H8N2)(NO3)2]·4C3H7NO

  • Mr = 1301.93

  • Monoclinic, P 21 /n

  • a = 13.831 (3) Å

  • b = 15.280 (3) Å

  • c = 14.363 (3) Å

  • β = 110.55 (3)°

  • V = 2842.4 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 293 K

  • 0.30 × 0.18 × 0.08 mm

Data collection
  • Rigaku Saturn 724+ CCD diffractometer

  • Absorption correction: numerical (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.813, Tmax = 0.946

  • 18197 measured reflections

  • 4980 independent reflections

  • 4753 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.141

  • S = 1.28

  • 4980 reflections

  • 349 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O7i 0.86 2.01 2.871 (6) 174
N3—H3⋯O6 0.86 1.96 2.619 (6) 133
O6—H6⋯O8ii 0.82 1.70 2.502 (9) 164
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiosemicarbazones complexes have received considerable attentions in the past decades due to their interesting biological activities, including antibacterial, antimalarial, antiviral and antitumor activities (Quiroga & Ranninger, 2004; Kasuga et al., 2003;). In order to figure out their structure-property relationship, a great number of metal complexes based on thiosemicarbazone derivatives, particularly the 1,4-disubstituted ones have been prepared and their biological activities were investigated systematically (Floquet et al., 2009; Hassanien et al., 2008; Latheef et al., 2006; Babb et al., 2003). In this paper, we report the crystal structure of the title one-dimensional coordination polymer based on diacylthiosemicarbazone.

The asymmetric unit of the title complex consists of one cadmium(II) cation, one N-(2-(2-hydroxybenzoyl)carbamothioyl)acetamide ligand, one half of a 4,4'-bipyridine, one coordinated nitrate anion and two dimethylformamide molecules of crystallization (Fig. 1). In the structure, each Cd center adopts a distorted pentagonal bipyramidal coordination geometry with the equatorial plane formed two O atoms and one N atom from the thiosemicarbazide ligand and two O atoms from the bidentate nitrate anion. These five atoms (O1, N2, O2, O4, O3) and the metal center are almost coplanar (maximum deviation from the least-squares plane is 0.6560 (3) Å for the O3 atom). The Cd1—O3 and Cd1—O4 bond lengths involving the nitrate anion are remarkably different (2.387 (4) and 2.553 (5) Å, respectively). The axial positions are occupied by one N atom from 4,4'-bipyridine and one S atom from a neighbouring thiosemicarbazide ligand. The Cd1—N4 bond distance is 2.360 (5) Å, indicating the strong coordination between Cd and 4,4'-bipyridine, while the Cd1—S1i [symmetry code: (i) -x+2, -y, -z+1] bond length is 2.628 (5) Å, which is slightly shorter than that previously reported (2.7364 (8) Å) for a Cd complex with thiosemicarbazones (Wang et al., 2010). Due to the axial coordination of S atoms, two neighbouring cadmium(II) cations are interconnected to generate a centrosymmetric binuclear unit with a Cd···Cd separation of 5.6889 (12) Å (Fig. 2). Along the b axis, such binuclear units are further bridged by 4,4'-bipyridine linkers to form a one-dimensional zigzag coordination polymer. In the structure of the title complex, N—H···O and O—H···O hydrogen bonds (Table 1) play an important role in stabilizing the packing (Fig. 3).

Related literature top

For background to the properties and applications of thiosemicarbazone complexes, see: Quiroga & Ranninger (2004); Kasuga et al. (2003); Floquet et al. (2009); Hassanien et al. (2008); Latheef et al. (2006); Babb et al. (2003). For related structures, see: Ke et al. (2007); Wang et al. (2010); Liu et al. (2013). For the synthesis of the N-(2-(2-hydroxybenzoyl)carbamothioyl)acetamide ligand, see: Wang et al. (2000).

Experimental top

N-(2-(2-Hydroxybenzoyl)hydrazinecarbonothioyl)acetamide (H3L) was prepared according to the literature method (Wang et al., 2000). H3L (0.0251 g, 0.10 mmol) and cadmium nitrate tetrahydrate (0.0472 g, 0.20 mmol) were dissolved in a mixed solvent of methanol and dimethylformamide (12 ml, 5:1 v/v). 4,4'-Bipyridine (0.0102 g 0.05 mmol) was added and the solution was stirred for 4 h at room temperature. The resulting white suspension was filltered and the filtrate allowed to evaporate in air at room temperature. Colourless crystals of the title compound were separated from the filtrate after 10 days.

Refinement top

All C- and N-bound H atoms were placed in idealized positions using the riding-model approximation, with C—H = 0.93-0.96 Å, N—H = 0.86 Å, O—H = 0.86 Å, and with Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C, N, O) otherwise. In the last cycles of refinement, three outliers (-4 6 8, -3 5 6, 1 2 0) were omitted.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex with 30% probability displacement ellipsoids. H atoms are omitted for clarity. Symmetry code: (i) -x+2, -y, -z+1.
[Figure 2] Fig. 2. A view of the one-dimensional chains in the title compound. For clarity, H atoms and DMF molecules are omitted.
[Figure 3] Fig. 3. A packing diagram for title complex, showing intermolecular (yellow dashed lines) and intramolecular hydrogen bonds (purple dashed lines). H atoms not involved in hydrogen bonding are omitted.
Poly[[(µ2-4,4'-bipyridyl-κ2N:N')bis{µ2-N-[2-(2-hydroxybenzoyl)carbamothioyl]acetamidato-κ4O,N,O':S}bis(nitrato-κ2O,O')dicadmium] dimethylformamide tetrasolvate] top
Crystal data top
[Cd2(C10H10N3O3S)2(C10H8N2)(NO3)2]·4C3H7NOF(000) = 1324
Mr = 1301.93Dx = 1.521 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10007 reflections
a = 13.831 (3) Åθ = 3.0–27.5°
b = 15.280 (3) ŵ = 0.90 mm1
c = 14.363 (3) ÅT = 293 K
β = 110.55 (3)°Block, colourless
V = 2842.4 (12) Å30.30 × 0.18 × 0.08 mm
Z = 2
Data collection top
Rigaku Saturn 724+ CCD
diffractometer
4980 independent reflections
Radiation source: fine-focus sealed tube4753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 3.0°
Absorption correction: numerical
(CrystalClear; Rigaku, 2007)
h = 1616
Tmin = 0.813, Tmax = 0.946k = 1818
18197 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + (0.0474P)2 + 4.0842P]
where P = (Fo2 + 2Fc2)/3
4980 reflections(Δ/σ)max < 0.001
349 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Cd2(C10H10N3O3S)2(C10H8N2)(NO3)2]·4C3H7NOV = 2842.4 (12) Å3
Mr = 1301.93Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.831 (3) ŵ = 0.90 mm1
b = 15.280 (3) ÅT = 293 K
c = 14.363 (3) Å0.30 × 0.18 × 0.08 mm
β = 110.55 (3)°
Data collection top
Rigaku Saturn 724+ CCD
diffractometer
4980 independent reflections
Absorption correction: numerical
(CrystalClear; Rigaku, 2007)
4753 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.946Rint = 0.043
18197 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.28Δρmax = 0.70 e Å3
4980 reflectionsΔρmin = 0.63 e Å3
349 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.93079 (3)0.13619 (3)0.35688 (3)0.05085 (16)
N40.9607 (3)0.2863 (3)0.3953 (4)0.0603 (11)
O20.8129 (3)0.1541 (3)0.4400 (3)0.0618 (10)
C40.8420 (4)0.1339 (3)0.5294 (4)0.0520 (12)
N21.0120 (3)0.1051 (3)0.5329 (3)0.0482 (10)
C60.7984 (5)0.1324 (4)0.6899 (5)0.0704 (17)
O40.7810 (3)0.1911 (3)0.2065 (3)0.0824 (13)
C50.7705 (4)0.1409 (4)0.5870 (5)0.0631 (15)
O60.8984 (3)0.1126 (4)0.7441 (3)0.0897 (15)
H60.90430.10490.80240.108*
O50.8031 (4)0.2180 (5)0.0673 (4)0.118 (2)
N50.8361 (4)0.1955 (4)0.1550 (4)0.0747 (14)
O30.9307 (3)0.1752 (4)0.1959 (3)0.0837 (13)
C70.7240 (6)0.1425 (6)0.7354 (6)0.097 (2)
H70.74350.13750.80410.116*
C100.6671 (5)0.1583 (6)0.5319 (6)0.094 (2)
H100.64650.16410.46320.113*
C80.6238 (7)0.1596 (8)0.6796 (8)0.129 (4)
H80.57500.16620.71010.154*
C90.5949 (6)0.1669 (8)0.5777 (8)0.131 (4)
H90.52620.17780.53950.157*
O11.1075 (3)0.1222 (3)0.3888 (3)0.0616 (10)
N11.1819 (3)0.0725 (3)0.5489 (3)0.0519 (10)
H11.24020.05410.58950.062*
N30.9386 (3)0.1056 (3)0.5792 (3)0.0510 (10)
H30.95510.08790.63960.061*
C31.1007 (4)0.0711 (3)0.5871 (4)0.0470 (11)
C130.9920 (4)0.4559 (3)0.4777 (4)0.0540 (12)
C21.1834 (4)0.0978 (4)0.4592 (4)0.0542 (13)
N60.5321 (4)0.1122 (4)0.2567 (5)0.0908 (18)
C150.8837 (5)0.3441 (4)0.3760 (5)0.0714 (17)
H150.81820.32720.33430.086*
C140.8962 (4)0.4273 (4)0.4146 (5)0.0675 (16)
H140.83980.46490.39830.081*
C160.6130 (4)0.0601 (5)0.2860 (5)0.0717 (17)
H160.67190.07900.27470.086*
C111.0539 (5)0.3136 (4)0.4533 (6)0.089 (2)
H111.10930.27520.46670.107*
C121.0716 (5)0.3966 (4)0.4944 (6)0.093 (2)
H121.13830.41260.53400.111*
C170.5353 (8)0.1979 (6)0.2137 (8)0.126 (3)
H17A0.60290.20800.21140.189*
H17B0.51980.24220.25380.189*
H17C0.48520.20020.14760.189*
C180.4398 (7)0.0860 (10)0.2729 (12)0.218 (8)
H18A0.45750.05040.33160.327*
H18B0.39700.05290.21670.327*
H18C0.40300.13690.28110.327*
O70.6180 (3)0.0114 (4)0.3271 (4)0.0868 (14)
C11.2880 (4)0.0956 (5)0.4484 (5)0.0683 (16)
H1A1.28570.05720.39480.103*
H1B1.33850.07480.50910.103*
H1C1.30620.15350.43440.103*
S11.12907 (10)0.02354 (9)0.70412 (10)0.0547 (3)
N70.5920 (7)0.3996 (9)0.5419 (6)0.167 (4)
C200.6425 (12)0.4109 (13)0.4690 (11)0.249 (9)
H20A0.59810.38960.40550.374*
H20B0.70620.37880.48990.374*
H20C0.65650.47190.46370.374*
C210.6531 (8)0.3997 (10)0.6491 (8)0.169 (5)
H21A0.60780.39280.68620.253*
H21B0.68970.45410.66680.253*
H21C0.70160.35220.66410.253*
O80.4333 (8)0.3831 (12)0.4272 (6)0.334 (11)
C190.4931 (10)0.3835 (13)0.5125 (8)0.235 (10)
H190.46580.37130.56170.282*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0399 (2)0.0541 (3)0.0550 (3)0.00047 (16)0.01226 (17)0.00090 (17)
N40.050 (3)0.049 (3)0.074 (3)0.001 (2)0.012 (2)0.001 (2)
O20.044 (2)0.076 (3)0.063 (2)0.0082 (18)0.0158 (18)0.003 (2)
C40.038 (3)0.051 (3)0.065 (3)0.001 (2)0.014 (2)0.011 (3)
N20.036 (2)0.048 (2)0.062 (3)0.0030 (18)0.0188 (19)0.003 (2)
C60.054 (3)0.086 (4)0.080 (4)0.000 (3)0.034 (3)0.010 (3)
O40.057 (2)0.107 (4)0.083 (3)0.004 (2)0.024 (2)0.004 (3)
C50.049 (3)0.068 (4)0.076 (4)0.003 (3)0.026 (3)0.012 (3)
O60.057 (3)0.145 (5)0.070 (3)0.013 (3)0.027 (2)0.010 (3)
O50.082 (3)0.181 (6)0.073 (3)0.012 (4)0.007 (3)0.047 (4)
N50.064 (3)0.086 (4)0.064 (3)0.000 (3)0.011 (3)0.010 (3)
O30.054 (3)0.126 (4)0.068 (3)0.013 (3)0.016 (2)0.016 (3)
C70.082 (5)0.138 (7)0.089 (5)0.008 (5)0.052 (4)0.006 (5)
C100.047 (4)0.147 (7)0.091 (5)0.008 (4)0.026 (3)0.016 (5)
C80.074 (6)0.217 (12)0.118 (7)0.014 (6)0.062 (5)0.008 (7)
C90.049 (4)0.228 (12)0.120 (7)0.025 (6)0.034 (4)0.019 (8)
O10.043 (2)0.081 (3)0.059 (2)0.0057 (18)0.0148 (18)0.0052 (19)
N10.033 (2)0.056 (3)0.064 (3)0.0051 (18)0.0145 (19)0.001 (2)
N30.042 (2)0.058 (3)0.054 (2)0.0056 (19)0.0178 (19)0.002 (2)
C30.038 (2)0.041 (3)0.058 (3)0.001 (2)0.013 (2)0.009 (2)
C130.042 (3)0.051 (3)0.063 (3)0.001 (2)0.011 (2)0.002 (2)
C20.041 (3)0.052 (3)0.068 (3)0.005 (2)0.017 (3)0.007 (3)
N60.056 (3)0.108 (5)0.110 (5)0.027 (3)0.032 (3)0.027 (4)
C150.049 (3)0.061 (4)0.086 (4)0.003 (3)0.002 (3)0.010 (3)
C140.048 (3)0.055 (3)0.086 (4)0.006 (3)0.007 (3)0.004 (3)
C160.039 (3)0.102 (5)0.069 (4)0.004 (3)0.012 (3)0.005 (4)
C110.051 (4)0.060 (4)0.133 (6)0.007 (3)0.003 (4)0.024 (4)
C120.042 (3)0.064 (4)0.144 (7)0.002 (3)0.002 (4)0.031 (4)
C170.126 (8)0.112 (7)0.150 (9)0.042 (6)0.061 (7)0.028 (7)
C180.066 (6)0.262 (16)0.35 (2)0.055 (8)0.103 (9)0.148 (15)
O70.056 (3)0.102 (4)0.096 (3)0.014 (2)0.019 (2)0.022 (3)
C10.042 (3)0.087 (4)0.081 (4)0.000 (3)0.028 (3)0.000 (3)
S10.0464 (7)0.0602 (8)0.0516 (7)0.0013 (6)0.0098 (6)0.0056 (6)
N70.105 (6)0.306 (14)0.098 (6)0.052 (8)0.043 (5)0.008 (7)
C200.192 (15)0.40 (3)0.210 (15)0.070 (17)0.140 (13)0.001 (17)
C210.094 (7)0.279 (16)0.115 (8)0.040 (9)0.012 (6)0.018 (9)
O80.182 (9)0.72 (3)0.071 (5)0.177 (13)0.015 (5)0.056 (9)
C190.119 (9)0.51 (3)0.070 (6)0.087 (13)0.028 (6)0.031 (11)
Geometric parameters (Å, º) top
Cd1—O12.332 (4)C13—C141.388 (7)
Cd1—O22.350 (4)C13—C13ii1.476 (10)
Cd1—N42.362 (5)C2—C11.509 (7)
Cd1—O32.387 (4)N6—C161.317 (8)
Cd1—N22.426 (4)N6—C181.433 (10)
Cd1—O42.553 (5)N6—C171.456 (10)
Cd1—S1i2.6270 (15)C15—C141.373 (8)
N4—C111.332 (7)C15—H150.9300
N4—C151.336 (7)C14—H140.9300
O2—C41.242 (7)C16—O71.232 (8)
C4—N31.346 (6)C16—H160.9300
C4—C51.499 (8)C11—C121.384 (9)
N2—C31.307 (6)C11—H110.9300
N2—N31.396 (5)C12—H120.9300
C6—O61.361 (8)C17—H17A0.9600
C6—C51.397 (9)C17—H17B0.9600
C6—C71.408 (9)C17—H17C0.9600
O4—N51.237 (6)C18—H18A0.9600
C5—C101.395 (9)C18—H18B0.9600
O6—H60.8200C18—H18C0.9600
O5—N51.229 (7)C1—H1A0.9600
N5—O31.270 (6)C1—H1B0.9600
C7—C81.361 (12)C1—H1C0.9600
C7—H70.9300S1—Cd1i2.6270 (15)
C10—C91.382 (10)N7—C191.305 (14)
C10—H100.9300N7—C201.458 (13)
C8—C91.380 (12)N7—C211.474 (12)
C8—H80.9300C20—H20A0.9600
C9—H90.9300C20—H20B0.9600
O1—C21.232 (6)C20—H20C0.9600
N1—C21.352 (7)C21—H21A0.9600
N1—C31.412 (6)C21—H21B0.9600
N1—H10.8600C21—H21C0.9600
N3—H30.8600O8—C191.214 (13)
C3—S11.745 (5)C19—H190.9300
C13—C121.381 (8)
O1—Cd1—O2140.93 (13)N2—C3—S1125.9 (4)
O1—Cd1—N487.55 (15)N1—C3—S1116.1 (3)
O2—Cd1—N482.21 (15)C12—C13—C14115.3 (5)
O1—Cd1—O381.83 (14)C12—C13—C13ii122.4 (6)
O2—Cd1—O3134.28 (14)C14—C13—C13ii122.3 (6)
N4—Cd1—O385.65 (18)O1—C2—N1125.1 (5)
O1—Cd1—N272.96 (13)O1—C2—C1119.6 (5)
O2—Cd1—N269.13 (13)N1—C2—C1115.3 (5)
N4—Cd1—N288.16 (15)C16—N6—C18119.0 (8)
O3—Cd1—N2154.27 (14)C16—N6—C17122.1 (7)
O1—Cd1—O4132.81 (14)C18—N6—C17118.8 (7)
O2—Cd1—O483.67 (14)N4—C15—C14123.3 (5)
N4—Cd1—O484.38 (16)N4—C15—H15118.3
O3—Cd1—O451.27 (14)C14—C15—H15118.3
N2—Cd1—O4152.53 (14)C15—C14—C13120.8 (5)
O1—Cd1—S1i99.58 (10)C15—C14—H14119.6
O2—Cd1—S1i94.80 (10)C13—C14—H14119.6
N4—Cd1—S1i171.58 (11)O7—C16—N6126.0 (6)
O3—Cd1—S1i90.91 (14)O7—C16—H16117.0
N2—Cd1—S1i98.16 (10)N6—C16—H16117.0
O4—Cd1—S1i87.47 (12)N4—C11—C12122.8 (6)
C11—N4—C15116.7 (5)N4—C11—H11118.6
C11—N4—Cd1120.1 (4)C12—C11—H11118.6
C15—N4—Cd1122.1 (4)C13—C12—C11121.1 (5)
C4—O2—Cd1117.7 (3)C13—C12—H12119.5
O2—C4—N3122.0 (5)C11—C12—H12119.5
O2—C4—C5121.0 (5)N6—C17—H17A109.5
N3—C4—C5117.0 (5)N6—C17—H17B109.5
C3—N2—N3114.0 (4)H17A—C17—H17B109.5
C3—N2—Cd1133.8 (3)N6—C17—H17C109.5
N3—N2—Cd1110.3 (3)H17A—C17—H17C109.5
O6—C6—C5118.2 (5)H17B—C17—H17C109.5
O6—C6—C7121.3 (7)N6—C18—H18A109.5
C5—C6—C7120.4 (6)N6—C18—H18B109.5
N5—O4—Cd192.1 (3)H18A—C18—H18B109.5
C10—C5—C6117.7 (6)N6—C18—H18C109.5
C10—C5—C4116.4 (6)H18A—C18—H18C109.5
C6—C5—C4125.9 (5)H18B—C18—H18C109.5
C6—O6—H6109.5C2—C1—H1A109.5
O5—N5—O4123.0 (6)C2—C1—H1B109.5
O5—N5—O3119.6 (6)H1A—C1—H1B109.5
O4—N5—O3117.4 (5)C2—C1—H1C109.5
N5—O3—Cd199.2 (3)H1A—C1—H1C109.5
C8—C7—C6120.5 (8)H1B—C1—H1C109.5
C8—C7—H7119.8C3—S1—Cd1i97.32 (16)
C6—C7—H7119.8C19—N7—C20120.1 (10)
C9—C10—C5121.1 (8)C19—N7—C21119.3 (9)
C9—C10—H10119.4C20—N7—C21120.4 (10)
C5—C10—H10119.4N7—C20—H20A109.5
C7—C8—C9119.8 (7)N7—C20—H20B109.5
C7—C8—H8120.1H20A—C20—H20B109.5
C9—C8—H8120.1N7—C20—H20C109.5
C8—C9—C10120.6 (8)H20A—C20—H20C109.5
C8—C9—H9119.7H20B—C20—H20C109.5
C10—C9—H9119.7N7—C21—H21A109.5
C2—O1—Cd1136.2 (4)N7—C21—H21B109.5
C2—N1—C3130.9 (4)H21A—C21—H21B109.5
C2—N1—H1114.6N7—C21—H21C109.5
C3—N1—H1114.6H21A—C21—H21C109.5
C4—N3—N2120.1 (4)H21B—C21—H21C109.5
C4—N3—H3119.9O8—C19—N7126.4 (11)
N2—N3—H3119.9O8—C19—H19116.8
N2—C3—N1118.1 (5)N7—C19—H19116.8
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O7i0.862.012.871 (6)174
N3—H3···O60.861.962.619 (6)133
N3—H3···S10.862.462.901 (4)113
O6—H6···O8iii0.821.702.502 (9)164
Symmetry codes: (i) x+2, y, z+1; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O7i0.862.012.871 (6)174.1
N3—H3···O60.861.962.619 (6)132.6
O6—H6···O8ii0.821.702.502 (9)163.8
Symmetry codes: (i) x+2, y, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates (grant No. 201313470010).

References

First citationBabb, J. E. V., Burrows, A. D., Harrington, R. W. & Mahon, M. F. (2003). Polyhedron, 22, 673–686.  Web of Science CSD CrossRef CAS Google Scholar
First citationFloquet, S., Muñoz, M. C., Guillot, R., Riviére, E., Blain, G., Réal, J.-A. & Boillot, M.-L. (2009). Inorg. Chim. Acta, 362, 56–64.  Web of Science CSD CrossRef CAS Google Scholar
First citationHassanien, M. M., Gabr, I. M., Abdel-Rhman, M. H. & El-Asmy, A. A. (2008). Spectrochim. Acta Part A, 71, 73–79.  CrossRef CAS Google Scholar
First citationKasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, C. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298–310.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKe, Y.-Z., Zheng, L.-F., Luo, J.-H., Huang, X.-H. & Huang, C.-C. (2007). Acta Cryst. C63, m343–m345.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLatheef, L., Manoj, E. & Prathapachandra Kurup, M. R. (2006). Acta Cryst. C62, o16–o18.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, J.-J., Liao, J.-Z., Li, Z.-Y., Wang, Y. & Huang, C.-C. (2013). Acta Cryst. C69, 613–615.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationQuiroga, A. G. & Ranninger, C. N. (2004). Coord. Chem. Rev. 248, 119–133.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X., Li, Z., Da, Y. & Chen, J. (2000). Synth. Commun. 30, 3405–3414.  Web of Science CrossRef CAS Google Scholar
First citationWang, Y.-B., Pan, T.-H., Liang, Q., Liu, D.-S. & Huang, C.-C. (2010). Acta Cryst. C66, m127–m129.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m647-m648
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds