metal-organic compounds
Bis(3-azaniumylpropyl)azanium hexachloridobismuthate(III) monohydrate
aLaboratoire de Génie des Matériaux et Environnement (LR11ES46), BP 1173, ENIS, Sfax, Tunisia
*Correspondence e-mail: chouaib.hassen@yahoo.fr
The 6H20N3)[BiCl6]·H2O, consists of a triprotonated bis(3-azaniumylpropyl)azanium cation, two halves of an octahedral [BiCl6]3− anion, each of the BiIII atoms lying on an inversion centre, and a water molecule. In the crystal, the anions and water molecules are linked by O—H⋯Cl hydrogen bonds, forming chains running parallel to [0-11]. The anionic chains and the cations are further linked into a three-dimensional network by N—H⋯Cl and N—H⋯O hydrogen-bond interactions.
of the title compound, (CCCDC reference: 971356
Related literature
For related structures, see: Chaabouni et al. (1998); Fu et al. (2005); Rhandour et al. (2011); Ouasri et al. (2013). For bond-valence-sum calculations, see: Brown & Altermatt (1985). For van der Waals radii, see: Pauling (1960).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 971356
10.1107/S1600536813030900/rz5091sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813030900/rz5091Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813030900/rz5091Isup3.mol
Crystals of the title compound were obtained by dissolving in 100 ml of a solution of HCl (12M) a stoichiometric mixture of bismuth(III) oxide and bis(3-amino-propyl)amine (molar ratio 1:2). The resulting aqueous solution was then kept at room temperature. After several weeks of slow evaporation at room temperature, prismatic shaped monocrystals of the title compound were obtained. They were washed with diethyl ether and dried for 4 h over CaCl2.
All H atoms belonging to the organic group cation were geometrically positioned and treated as riding on their parent atoms, with C—H = 0.97 Å and N—H = 0.89–0.90 Å and with Uiso(H) = 1.2 Ueq(C, N). The water H atoms were located in a difference Fourier map and refined using DFIX and DANG restraints. Their bond lengths were set to ideal values of 0.85 Å and finally they were refined using a riding model with Uiso(H) = 1.5 Ueq(O).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).Fig. 1. A view of the asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: i -x+1,-y+2,-z+1; (ii) -x+1,-y+1,-z. | |
Fig. 2. Arrangement of the anionic chains viewed along the a axis (purple= bismuth, green = chloride, red = oxygen, grey = hydrogen). Intermolecular hydrogen bonding is shown as red dashed lines. | |
Fig. 3. Crystal packing of the title compound showing the hydrogen bonding network as red dashed lines. |
(C6H20N3)[BiCl6]·H2O | Z = 2 |
Mr = 573.95 | F(000) = 544 |
Triclinic, P1 | Z=2 |
Hall symbol: -P 1 | Dx = 2.165 Mg m−3 Dm = 2.160 Mg m−3 Dm measured by Flotation |
a = 7.6891 (1) Å | Melting point: 430 K |
b = 10.8642 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
c = 11.9867 (1) Å | θ = 1.8–30.6° |
α = 93.349 (1)° | µ = 10.91 mm−1 |
β = 108.509 (1)° | T = 296 K |
γ = 109.387 (1)° | Prism, white |
V = 880.54 (2) Å3 | 0.1 × 0.1 × 0.1 mm |
Bruker APEXII CCD diffractometer | 5325 independent reflections |
Radiation source: fine-focus sealed tube | 4009 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 30.6°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −10→10 |
Tmin = 0.336, Tmax = 0.349 | k = −13→15 |
11734 measured reflections | l = −16→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.057 | w = 1/[σ2(Fo2) + (0.0323P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.92 | (Δ/σ)max = 0.001 |
5325 reflections | Δρmax = 1.07 e Å−3 |
168 parameters | Δρmin = −0.90 e Å−3 |
3 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0132 (4) |
(C6H20N3)[BiCl6]·H2O | γ = 109.387 (1)° |
Mr = 573.95 | V = 880.54 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.6891 (1) Å | Mo Kα radiation |
b = 10.8642 (1) Å | µ = 10.91 mm−1 |
c = 11.9867 (1) Å | T = 296 K |
α = 93.349 (1)° | 0.1 × 0.1 × 0.1 mm |
β = 108.509 (1)° |
Bruker APEXII CCD diffractometer | 5325 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 4009 reflections with I > 2σ(I) |
Tmin = 0.336, Tmax = 0.349 | Rint = 0.025 |
11734 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 3 restraints |
wR(F2) = 0.057 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | Δρmax = 1.07 e Å−3 |
5325 reflections | Δρmin = −0.90 e Å−3 |
168 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Bi1 | 0.5000 | 1.0000 | 0.5000 | 0.02401 (5) | |
Bi2 | 0.5000 | 0.5000 | 0.0000 | 0.02614 (6) | |
Cl1 | 0.32827 (12) | 1.00845 (8) | 0.66539 (8) | 0.03793 (18) | |
Cl2 | 0.19824 (12) | 1.02948 (9) | 0.32564 (8) | 0.04104 (19) | |
Cl3 | 0.31297 (13) | 0.73550 (8) | 0.42359 (10) | 0.0451 (2) | |
Cl4 | 0.43949 (12) | 0.52414 (10) | 0.20718 (8) | 0.0461 (2) | |
Cl5 | 0.12577 (12) | 0.47555 (9) | −0.12177 (9) | 0.0468 (2) | |
Cl6 | 0.36405 (14) | 0.23214 (9) | −0.03209 (11) | 0.0523 (3) | |
N1 | 1.1331 (4) | 0.2550 (3) | 0.6613 (2) | 0.0383 (6) | |
H1A | 1.2346 | 0.3229 | 0.7126 | 0.057* | |
H1B | 1.1303 | 0.1800 | 0.6881 | 0.057* | |
H1C | 1.0211 | 0.2667 | 0.6541 | 0.057* | |
C1 | 1.1551 (5) | 0.2473 (3) | 0.5432 (3) | 0.0351 (7) | |
H1E | 1.0550 | 0.1664 | 0.4906 | 0.042* | |
H1D | 1.2834 | 0.2440 | 0.5526 | 0.042* | |
C2 | 1.1357 (5) | 0.3649 (3) | 0.4873 (3) | 0.0368 (7) | |
H2E | 1.2356 | 0.4457 | 0.5403 | 0.044* | |
H2D | 1.0074 | 0.3681 | 0.4782 | 0.044* | |
C3 | 1.1583 (5) | 0.3592 (3) | 0.3652 (3) | 0.0378 (8) | |
H3E | 1.1698 | 0.4437 | 0.3396 | 0.045* | |
H3D | 1.2784 | 0.3441 | 0.3720 | 0.045* | |
N2 | 0.9871 (4) | 0.2518 (2) | 0.2741 (2) | 0.0316 (6) | |
H2A | 0.9784 | 0.1738 | 0.2983 | 0.038* | |
H2B | 0.8761 | 0.2653 | 0.2702 | 0.038* | |
C4 | 0.9967 (5) | 0.2418 (3) | 0.1523 (3) | 0.0328 (7) | |
H4E | 1.1114 | 0.2220 | 0.1539 | 0.039* | |
H4D | 1.0091 | 0.3258 | 0.1254 | 0.039* | |
C5 | 0.8107 (5) | 0.1329 (3) | 0.0668 (3) | 0.0408 (8) | |
H5E | 0.6966 | 0.1481 | 0.0734 | 0.049* | |
H5D | 0.8065 | 0.0483 | 0.0903 | 0.049* | |
C6 | 0.7976 (5) | 0.1254 (4) | −0.0631 (3) | 0.0472 (9) | |
H6E | 0.9246 | 0.1324 | −0.0670 | 0.057* | |
H6D | 0.7013 | 0.0398 | −0.1090 | 0.057* | |
N3 | 0.7405 (4) | 0.2322 (3) | −0.1174 (3) | 0.0479 (8) | |
H3A | 0.6490 | 0.2444 | −0.0925 | 0.072* | |
H3B | 0.6922 | 0.2089 | −0.1968 | 0.072* | |
H3C | 0.8461 | 0.3071 | −0.0955 | 0.072* | |
OW | 0.6532 (5) | 0.2968 (4) | 0.2841 (4) | 0.0799 (11) | |
H1W | 0.576 (7) | 0.300 (7) | 0.217 (3) | 0.15 (3)* | |
H2W | 0.597 (8) | 0.252 (6) | 0.328 (5) | 0.16 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Bi1 | 0.02304 (8) | 0.02366 (8) | 0.02407 (9) | 0.00824 (5) | 0.00767 (6) | 0.00183 (6) |
Bi2 | 0.02630 (8) | 0.02556 (9) | 0.02270 (9) | 0.00658 (6) | 0.00748 (6) | 0.00122 (6) |
Cl1 | 0.0370 (4) | 0.0396 (4) | 0.0405 (5) | 0.0124 (3) | 0.0195 (4) | 0.0091 (3) |
Cl2 | 0.0443 (4) | 0.0527 (5) | 0.0313 (4) | 0.0292 (4) | 0.0085 (3) | 0.0076 (4) |
Cl3 | 0.0399 (4) | 0.0281 (4) | 0.0656 (6) | 0.0074 (3) | 0.0238 (4) | −0.0002 (4) |
Cl4 | 0.0397 (4) | 0.0576 (5) | 0.0310 (4) | 0.0018 (4) | 0.0186 (4) | −0.0010 (4) |
Cl5 | 0.0317 (4) | 0.0527 (5) | 0.0532 (6) | 0.0183 (4) | 0.0086 (4) | 0.0101 (4) |
Cl6 | 0.0520 (5) | 0.0267 (4) | 0.0794 (8) | 0.0109 (3) | 0.0287 (5) | 0.0106 (4) |
N1 | 0.0349 (13) | 0.0429 (16) | 0.0286 (15) | 0.0058 (11) | 0.0097 (12) | 0.0053 (12) |
C1 | 0.0452 (17) | 0.0347 (17) | 0.0255 (16) | 0.0160 (14) | 0.0120 (14) | 0.0030 (13) |
C2 | 0.0467 (18) | 0.0337 (17) | 0.0257 (17) | 0.0122 (14) | 0.0109 (15) | 0.0010 (13) |
C3 | 0.0391 (16) | 0.0335 (17) | 0.0292 (18) | 0.0019 (13) | 0.0100 (14) | 0.0037 (13) |
N2 | 0.0374 (14) | 0.0322 (15) | 0.0219 (14) | 0.0101 (11) | 0.0094 (12) | 0.0054 (11) |
C4 | 0.0374 (15) | 0.0355 (17) | 0.0258 (16) | 0.0138 (13) | 0.0115 (13) | 0.0053 (13) |
C5 | 0.0507 (19) | 0.0321 (17) | 0.0313 (19) | 0.0098 (14) | 0.0104 (16) | 0.0031 (14) |
C6 | 0.0480 (19) | 0.052 (2) | 0.035 (2) | 0.0197 (17) | 0.0085 (17) | −0.0107 (17) |
N3 | 0.0423 (16) | 0.059 (2) | 0.0293 (16) | 0.0076 (14) | 0.0075 (13) | 0.0059 (14) |
OW | 0.089 (2) | 0.114 (3) | 0.088 (3) | 0.069 (2) | 0.055 (2) | 0.067 (2) |
Bi1—Cl3 | 2.6976 (8) | C2—H2D | 0.9700 |
Bi1—Cl3i | 2.6976 (8) | C3—N2 | 1.485 (4) |
Bi1—Cl2 | 2.7105 (8) | C3—H3E | 0.9700 |
Bi1—Cl2i | 2.7105 (8) | C3—H3D | 0.9700 |
Bi1—Cl1i | 2.7209 (8) | N2—C4 | 1.485 (4) |
Bi1—Cl1 | 2.7209 (8) | N2—H2A | 0.9000 |
Bi2—Cl4ii | 2.6816 (8) | N2—H2B | 0.9000 |
Bi2—Cl4 | 2.6817 (8) | C4—C5 | 1.517 (4) |
Bi2—Cl5 | 2.6948 (8) | C4—H4E | 0.9700 |
Bi2—Cl5ii | 2.6948 (8) | C4—H4D | 0.9700 |
Bi2—Cl6 | 2.7025 (9) | C5—C6 | 1.524 (5) |
Bi2—Cl6ii | 2.7025 (9) | C5—H5E | 0.9700 |
N1—C1 | 1.478 (4) | C5—H5D | 0.9700 |
N1—H1A | 0.8900 | C6—N3 | 1.485 (5) |
N1—H1B | 0.8900 | C6—H6E | 0.9700 |
N1—H1C | 0.8900 | C6—H6D | 0.9700 |
C1—C2 | 1.506 (5) | N3—H3A | 0.8900 |
C1—H1E | 0.9700 | N3—H3B | 0.8900 |
C1—H1D | 0.9700 | N3—H3C | 0.8900 |
C2—C3 | 1.528 (5) | OW—H1W | 0.844 (19) |
C2—H2E | 0.9700 | OW—H2W | 0.857 (19) |
Cl3—Bi1—Cl3i | 180.0 | C1—C2—H2E | 109.1 |
Cl3—Bi1—Cl2 | 87.59 (3) | C3—C2—H2E | 109.1 |
Cl3i—Bi1—Cl2 | 92.41 (3) | C1—C2—H2D | 109.1 |
Cl3—Bi1—Cl2i | 92.41 (3) | C3—C2—H2D | 109.1 |
Cl3i—Bi1—Cl2i | 87.59 (3) | H2E—C2—H2D | 107.9 |
Cl2—Bi1—Cl2i | 180.0 | N2—C3—C2 | 111.4 (3) |
Cl3—Bi1—Cl1i | 85.80 (3) | N2—C3—H3E | 109.4 |
Cl3i—Bi1—Cl1i | 94.20 (3) | C2—C3—H3E | 109.4 |
Cl2—Bi1—Cl1i | 87.82 (3) | N2—C3—H3D | 109.4 |
Cl2i—Bi1—Cl1i | 92.18 (3) | C2—C3—H3D | 109.4 |
Cl3—Bi1—Cl1 | 94.20 (3) | H3E—C3—H3D | 108.0 |
Cl3i—Bi1—Cl1 | 85.80 (3) | C4—N2—C3 | 114.5 (3) |
Cl2—Bi1—Cl1 | 92.18 (3) | C4—N2—H2A | 108.6 |
Cl2i—Bi1—Cl1 | 87.82 (3) | C3—N2—H2A | 108.6 |
Cl1i—Bi1—Cl1 | 180.0 | C4—N2—H2B | 108.6 |
Cl4ii—Bi2—Cl4 | 180.00 (4) | C3—N2—H2B | 108.6 |
Cl4ii—Bi2—Cl5 | 89.74 (3) | H2A—N2—H2B | 107.6 |
Cl4—Bi2—Cl5 | 90.26 (3) | N2—C4—C5 | 109.4 (3) |
Cl4ii—Bi2—Cl5ii | 90.26 (3) | N2—C4—H4E | 109.8 |
Cl4—Bi2—Cl5ii | 89.74 (3) | C5—C4—H4E | 109.8 |
Cl5—Bi2—Cl5ii | 180.00 (6) | N2—C4—H4D | 109.8 |
Cl4ii—Bi2—Cl6 | 86.87 (3) | C5—C4—H4D | 109.8 |
Cl4—Bi2—Cl6 | 93.13 (3) | H4E—C4—H4D | 108.2 |
Cl5—Bi2—Cl6 | 87.00 (3) | C4—C5—C6 | 113.0 (3) |
Cl5ii—Bi2—Cl6 | 93.00 (3) | C4—C5—H5E | 109.0 |
Cl4ii—Bi2—Cl6ii | 93.13 (3) | C6—C5—H5E | 109.0 |
Cl4—Bi2—Cl6ii | 86.87 (3) | C4—C5—H5D | 109.0 |
Cl5—Bi2—Cl6ii | 93.00 (3) | C6—C5—H5D | 109.0 |
Cl5ii—Bi2—Cl6ii | 87.00 (3) | H5E—C5—H5D | 107.8 |
Cl6—Bi2—Cl6ii | 180.00 (6) | N3—C6—C5 | 112.2 (3) |
C1—N1—H1A | 109.5 | N3—C6—H6E | 109.2 |
C1—N1—H1B | 109.5 | C5—C6—H6E | 109.2 |
H1A—N1—H1B | 109.5 | N3—C6—H6D | 109.2 |
C1—N1—H1C | 109.5 | C5—C6—H6D | 109.2 |
H1A—N1—H1C | 109.5 | H6E—C6—H6D | 107.9 |
H1B—N1—H1C | 109.5 | C6—N3—H3A | 109.5 |
N1—C1—C2 | 111.4 (3) | C6—N3—H3B | 109.5 |
N1—C1—H1E | 109.4 | H3A—N3—H3B | 109.5 |
C2—C1—H1E | 109.4 | C6—N3—H3C | 109.5 |
N1—C1—H1D | 109.4 | H3A—N3—H3C | 109.5 |
C2—C1—H1D | 109.4 | H3B—N3—H3C | 109.5 |
H1E—C1—H1D | 108.0 | H1W—OW—H2W | 115 (3) |
C1—C2—C3 | 112.3 (3) | ||
N1—C1—C2—C3 | 179.9 (3) | C3—N2—C4—C5 | −177.7 (3) |
C1—C2—C3—N2 | 69.7 (4) | N2—C4—C5—C6 | 173.8 (3) |
C2—C3—N2—C4 | 178.8 (3) | C4—C5—C6—N3 | −76.5 (4) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl4iii | 0.89 | 2.34 | 3.174 (3) | 156 |
N1—H1B···Cl2iv | 0.89 | 2.73 | 3.339 (3) | 127 |
N1—H1B···Cl1v | 0.89 | 2.82 | 3.474 (3) | 132 |
N1—H1C···Cl3iv | 0.89 | 2.43 | 3.293 (3) | 163 |
N2—H2B···OW | 0.90 | 1.91 | 2.804 (4) | 173 |
N2—H2A···Cl2v | 0.90 | 2.63 | 3.316 (3) | 134 |
N2—H2A···Cl1iv | 0.90 | 2.71 | 3.347 (3) | 129 |
N3—H3A···Cl6 | 0.89 | 2.48 | 3.362 (3) | 169 |
N3—H3B···Cl1vi | 0.89 | 2.81 | 3.412 (3) | 126 |
N3—H3B···Cl3ii | 0.89 | 2.81 | 3.612 (3) | 151 |
N3—H3C···Cl5vii | 0.89 | 2.44 | 3.269 (3) | 155 |
OW—H1W···Cl6 | 0.84 (2) | 2.83 (3) | 3.620 (4) | 157 (6) |
OW—H2W···Cl3iv | 0.86 (2) | 2.82 (4) | 3.478 (4) | 135 (5) |
Symmetry codes: (ii) −x+1, −y+1, −z; (iii) −x+2, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) x+1, y−1, z; (vi) x, y−1, z−1; (vii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl4i | 0.89 | 2.34 | 3.174 (3) | 155.7 |
N1—H1B···Cl2ii | 0.89 | 2.73 | 3.339 (3) | 126.5 |
N1—H1B···Cl1iii | 0.89 | 2.82 | 3.474 (3) | 131.5 |
N1—H1C···Cl3ii | 0.89 | 2.43 | 3.293 (3) | 163.4 |
N2—H2B···OW | 0.90 | 1.91 | 2.804 (4) | 172.5 |
N2—H2A···Cl2iii | 0.90 | 2.63 | 3.316 (3) | 134.1 |
N2—H2A···Cl1ii | 0.90 | 2.71 | 3.347 (3) | 129.1 |
N3—H3A···Cl6 | 0.89 | 2.48 | 3.362 (3) | 169.1 |
N3—H3B···Cl1iv | 0.89 | 2.81 | 3.412 (3) | 126.1 |
N3—H3B···Cl3v | 0.89 | 2.81 | 3.612 (3) | 150.6 |
N3—H3C···Cl5vi | 0.89 | 2.44 | 3.269 (3) | 154.9 |
OW—H1W···Cl6 | 0.844 (19) | 2.83 (3) | 3.620 (4) | 157 (6) |
OW—H2W···Cl3ii | 0.857 (19) | 2.82 (4) | 3.478 (4) | 135 (5) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+1, y−1, z; (iv) x, y−1, z−1; (v) −x+1, −y+1, −z; (vi) x+1, y, z. |
Acknowledgements
The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research.
References
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chaabouni, S., Kamoun, S. & Jaud, J. (1998). J. Chem. Crystallogr. 28, 209–212. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1717–m1718. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ouasri, A., Rhandour, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m437. CSD CrossRef IUCr Journals Google Scholar
Pauling, L. (1960). The Nature of the Chemical Bond. p. 260. Ithaca: Cornell University Press. Google Scholar
Rhandour, A., Ouasri, A., Roussel, P. & Mazzah, A. (2011). J. Mol. Struct. 990, 95–101. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
This work is a part of our study on the crystal structure of alkylpolyammoniumbismuthate(III) chorides. This investigation was extended to aliphatic diamines of general formula NH2(CH2)nNH2 (Chaabouni et al., 1998; Rhandour et al., 2011; Ouasri et al., 2013) and triamines of general formula NH2(CH2)nNH(CH2)nNH2 (Fu et al., 2005) in order to examine the effect of the flexible cation on the bismuth(III) coordination geometry. In these compounds the Bi atom shows a tendency toward distorted octahedral coordination with some rather long Bi—Cl bonds, which is attributed to the aspherical distribution of the lone pair electrons at Bi(III).
The asymmetric unit of the title compound contains one fully protonated bis(3-azaniumylpropyl)azanium cation, two half of a [BiCl6]3- anion and a neutral water molecule. A perspective view of the arrangement of these constituent entities is shown in Fig. 1 together with the atom numbering scheme. Two slightly distorted [BiCl6]3- octahedra are located in special position on an inversion centre. The Bi–Cl bond lengths vary from 2.6817 (8) to 2.7209 (8) Å with an average bond lengths of 2.7014 (8) Å. These values are much shorter than the sum of the van der Waal radii of Bi and Cl (4.7 Å) according to Pauling (Pauling, 1960). In addition to the bond length differences, the Cl—Bi—Cl angles for the Cl atoms in cis position with respect to each other fall in the range of 85.80 (3)-94.20 (3)°. It should be mentioned that the Cl—Bi—Cl bond angles deviate substantially from 90° by 4.2° for Bi(1) and 3.1° for Bi(2). By taking into account the sixth-fold coordination of bismuth atoms, we have proceeded to calculate the bond-valence sum (BVS) of this metal using the parameters given by Brown (Brown et al., 1985). The BVS calculation of the Bi1 and Bi2 ions gave respectively values of 3.23 and 3.38 valence units. These results confirm the presumed oxidation state of Bi(III). The distortion of the [BiCl6]3- octahedral are correlated primary to the deformations resulting from the stereochemical activity of the Bi lone electron pair and secondary to deformations resulting from hydrogen bonding interactions The [BiCl6]3- anions are connected through O—H···Cl hydrogen bonds (Table 1), so that [BiCl6(H2O)]n3n- chains spread one-dimensionally parallel to the [0 -1 1] direction. The unit cell is crossed by two centrosymmetrical [BiCl6(H2O)]n3n- chains with the (0 2 2) mid plane as shown in Fig. 2. The total negative charge (-3) on the framework is balanced by the presence of one independent fully protonated [NH3(CH2)3NH2(CH2)3NH3]3+ cation. The major contributions to the cohesion and the stability of the structure is provided by the presence of N—H···Cl and N—H···O hydrogen bonds linkages between the cations and the anionic chains belonging to adjacent (0 2 2) planes. All of these hydrogen bonds, N–H···Cl, N–H···O and O–H···Cl, give rise to a three-dimensional network in the structure (Fig. 3 and Table 1).