metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-aza­niumylprop­yl)aza­nium hexa­chlorido­bis­­muthate(III) monohydrate

aLaboratoire de Génie des Matériaux et Environnement (LR11ES46), BP 1173, ENIS, Sfax, Tunisia
*Correspondence e-mail: chouaib.hassen@yahoo.fr

(Received 28 October 2013; accepted 11 November 2013; online 16 November 2013)

The asymmetric unit of the title compound, (C6H20N3)[BiCl6]·H2O, consists of a triprotonated bis­(3-aza­niumylprop­yl)aza­nium cation, two halves of an octahedral [BiCl6]3− anion, each of the BiIII atoms lying on an inversion centre, and a water mol­ecule. In the crystal, the anions and water mol­ecules are linked by O—H⋯Cl hydrogen bonds, forming chains running parallel to [0-11]. The anionic chains and the cations are further linked into a three-dimensional network by N—H⋯Cl and N—H⋯O hydrogen-bond inter­actions.

Related literature

For related structures, see: Chaabouni et al. (1998[Chaabouni, S., Kamoun, S. & Jaud, J. (1998). J. Chem. Crystallogr. 28, 209-212.]); Fu et al. (2005[Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1717-m1718.]); Rhandour et al. (2011[Rhandour, A., Ouasri, A., Roussel, P. & Mazzah, A. (2011). J. Mol. Struct. 990, 95-101.]); Ouasri et al. (2013[Ouasri, A., Rhandour, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m437.]). For bond-valence-sum calculations, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]). For van der Waals radii, see: Pauling (1960[Pauling, L. (1960). The Nature of the Chemical Bond. p. 260. Ithaca: Cornell University Press.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H20N3)[BiCl6]·H2O

  • Mr = 573.95

  • Triclinic, [P \overline 1]

  • a = 7.6891 (1) Å

  • b = 10.8642 (1) Å

  • c = 11.9867 (1) Å

  • α = 93.349 (1)°

  • β = 108.509 (1)°

  • γ = 109.387 (1)°

  • V = 880.54 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.91 mm−1

  • T = 296 K

  • 0.1 × 0.1 × 0.1 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.336, Tmax = 0.349

  • 11734 measured reflections

  • 5325 independent reflections

  • 4009 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.057

  • S = 0.92

  • 5325 reflections

  • 168 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl4i 0.89 2.34 3.174 (3) 156
N1—H1B⋯Cl2ii 0.89 2.73 3.339 (3) 127
N1—H1B⋯Cl1iii 0.89 2.82 3.474 (3) 132
N1—H1C⋯Cl3ii 0.89 2.43 3.293 (3) 163
N2—H2B⋯OW 0.90 1.91 2.804 (4) 173
N2—H2A⋯Cl2iii 0.90 2.63 3.316 (3) 134
N2—H2A⋯Cl1ii 0.90 2.71 3.347 (3) 129
N3—H3A⋯Cl6 0.89 2.48 3.362 (3) 169
N3—H3B⋯Cl1iv 0.89 2.81 3.412 (3) 126
N3—H3B⋯Cl3v 0.89 2.81 3.612 (3) 151
N3—H3C⋯Cl5vi 0.89 2.44 3.269 (3) 155
OW—H1W⋯Cl6 0.84 (2) 2.83 (3) 3.620 (4) 157 (6)
OW—H2W⋯Cl3ii 0.86 (2) 2.82 (4) 3.478 (4) 135 (5)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x+1, y-1, z; (iv) x, y-1, z-1; (v) -x+1, -y+1, -z; (vi) x+1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

This work is a part of our study on the crystal structure of alkylpolyammoniumbismuthate(III) chorides. This investigation was extended to aliphatic diamines of general formula NH2(CH2)nNH2 (Chaabouni et al., 1998; Rhandour et al., 2011; Ouasri et al., 2013) and triamines of general formula NH2(CH2)nNH(CH2)nNH2 (Fu et al., 2005) in order to examine the effect of the flexible cation on the bismuth(III) coordination geometry. In these compounds the Bi atom shows a tendency toward distorted octahedral coordination with some rather long Bi—Cl bonds, which is attributed to the aspherical distribution of the lone pair electrons at Bi(III).

The asymmetric unit of the title compound contains one fully protonated bis(3-azaniumylpropyl)azanium cation, two half of a [BiCl6]3- anion and a neutral water molecule. A perspective view of the arrangement of these constituent entities is shown in Fig. 1 together with the atom numbering scheme. Two slightly distorted [BiCl6]3- octahedra are located in special position on an inversion centre. The Bi–Cl bond lengths vary from 2.6817 (8) to 2.7209 (8) Å with an average bond lengths of 2.7014 (8) Å. These values are much shorter than the sum of the van der Waal radii of Bi and Cl (4.7 Å) according to Pauling (Pauling, 1960). In addition to the bond length differences, the Cl—Bi—Cl angles for the Cl atoms in cis position with respect to each other fall in the range of 85.80 (3)-94.20 (3)°. It should be mentioned that the Cl—Bi—Cl bond angles deviate substantially from 90° by 4.2° for Bi(1) and 3.1° for Bi(2). By taking into account the sixth-fold coordination of bismuth atoms, we have proceeded to calculate the bond-valence sum (BVS) of this metal using the parameters given by Brown (Brown et al., 1985). The BVS calculation of the Bi1 and Bi2 ions gave respectively values of 3.23 and 3.38 valence units. These results confirm the presumed oxidation state of Bi(III). The distortion of the [BiCl6]3- octahedral are correlated primary to the deformations resulting from the stereochemical activity of the Bi lone electron pair and secondary to deformations resulting from hydrogen bonding interactions The [BiCl6]3- anions are connected through O—H···Cl hydrogen bonds (Table 1), so that [BiCl6(H2O)]n3n- chains spread one-dimensionally parallel to the [0 -1 1] direction. The unit cell is crossed by two centrosymmetrical [BiCl6(H2O)]n3n- chains with the (0 2 2) mid plane as shown in Fig. 2. The total negative charge (-3) on the framework is balanced by the presence of one independent fully protonated [NH3(CH2)3NH2(CH2)3NH3]3+ cation. The major contributions to the cohesion and the stability of the structure is provided by the presence of N—H···Cl and N—H···O hydrogen bonds linkages between the cations and the anionic chains belonging to adjacent (0 2 2) planes. All of these hydrogen bonds, N–H···Cl, N–H···O and O–H···Cl, give rise to a three-dimensional network in the structure (Fig. 3 and Table 1).

Related literature top

For related structures, see: Chaabouni et al. (1998); Fu et al. (2005); Rhandour et al. (2011); Ouasri et al. (2013). For bond-valence-sum calculations, see: Brown & Altermatt (1985). For van der Waals radii, see: Pauling (1960).

Experimental top

Crystals of the title compound were obtained by dissolving in 100 ml of a solution of HCl (12M) a stoichiometric mixture of bismuth(III) oxide and bis(3-amino-propyl)amine (molar ratio 1:2). The resulting aqueous solution was then kept at room temperature. After several weeks of slow evaporation at room temperature, prismatic shaped monocrystals of the title compound were obtained. They were washed with diethyl ether and dried for 4 h over CaCl2.

Refinement top

All H atoms belonging to the organic group cation were geometrically positioned and treated as riding on their parent atoms, with C—H = 0.97 Å and N—H = 0.89–0.90 Å and with Uiso(H) = 1.2 Ueq(C, N). The water H atoms were located in a difference Fourier map and refined using DFIX and DANG restraints. Their bond lengths were set to ideal values of 0.85 Å and finally they were refined using a riding model with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: i -x+1,-y+2,-z+1; (ii) -x+1,-y+1,-z.
[Figure 2] Fig. 2. Arrangement of the anionic chains viewed along the a axis (purple= bismuth, green = chloride, red = oxygen, grey = hydrogen). Intermolecular hydrogen bonding is shown as red dashed lines.
[Figure 3] Fig. 3. Crystal packing of the title compound showing the hydrogen bonding network as red dashed lines.
Bis(3-azaniumylpropyl)azanium hexachloridobismuthate(III) monohydrate top
Crystal data top
(C6H20N3)[BiCl6]·H2OZ = 2
Mr = 573.95F(000) = 544
Triclinic, P1Z=2
Hall symbol: -P 1Dx = 2.165 Mg m3
Dm = 2.160 Mg m3
Dm measured by Flotation
a = 7.6891 (1) ÅMelting point: 430 K
b = 10.8642 (1) ÅMo Kα radiation, λ = 0.71073 Å
c = 11.9867 (1) Åθ = 1.8–30.6°
α = 93.349 (1)°µ = 10.91 mm1
β = 108.509 (1)°T = 296 K
γ = 109.387 (1)°Prism, white
V = 880.54 (2) Å30.1 × 0.1 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
5325 independent reflections
Radiation source: fine-focus sealed tube4009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 30.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1010
Tmin = 0.336, Tmax = 0.349k = 1315
11734 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0323P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.001
5325 reflectionsΔρmax = 1.07 e Å3
168 parametersΔρmin = 0.90 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0132 (4)
Crystal data top
(C6H20N3)[BiCl6]·H2Oγ = 109.387 (1)°
Mr = 573.95V = 880.54 (2) Å3
Triclinic, P1Z = 2
a = 7.6891 (1) ÅMo Kα radiation
b = 10.8642 (1) ŵ = 10.91 mm1
c = 11.9867 (1) ÅT = 296 K
α = 93.349 (1)°0.1 × 0.1 × 0.1 mm
β = 108.509 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5325 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
4009 reflections with I > 2σ(I)
Tmin = 0.336, Tmax = 0.349Rint = 0.025
11734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0213 restraints
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 1.07 e Å3
5325 reflectionsΔρmin = 0.90 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.50001.00000.50000.02401 (5)
Bi20.50000.50000.00000.02614 (6)
Cl10.32827 (12)1.00845 (8)0.66539 (8)0.03793 (18)
Cl20.19824 (12)1.02948 (9)0.32564 (8)0.04104 (19)
Cl30.31297 (13)0.73550 (8)0.42359 (10)0.0451 (2)
Cl40.43949 (12)0.52414 (10)0.20718 (8)0.0461 (2)
Cl50.12577 (12)0.47555 (9)0.12177 (9)0.0468 (2)
Cl60.36405 (14)0.23214 (9)0.03209 (11)0.0523 (3)
N11.1331 (4)0.2550 (3)0.6613 (2)0.0383 (6)
H1A1.23460.32290.71260.057*
H1B1.13030.18000.68810.057*
H1C1.02110.26670.65410.057*
C11.1551 (5)0.2473 (3)0.5432 (3)0.0351 (7)
H1E1.05500.16640.49060.042*
H1D1.28340.24400.55260.042*
C21.1357 (5)0.3649 (3)0.4873 (3)0.0368 (7)
H2E1.23560.44570.54030.044*
H2D1.00740.36810.47820.044*
C31.1583 (5)0.3592 (3)0.3652 (3)0.0378 (8)
H3E1.16980.44370.33960.045*
H3D1.27840.34410.37200.045*
N20.9871 (4)0.2518 (2)0.2741 (2)0.0316 (6)
H2A0.97840.17380.29830.038*
H2B0.87610.26530.27020.038*
C40.9967 (5)0.2418 (3)0.1523 (3)0.0328 (7)
H4E1.11140.22200.15390.039*
H4D1.00910.32580.12540.039*
C50.8107 (5)0.1329 (3)0.0668 (3)0.0408 (8)
H5E0.69660.14810.07340.049*
H5D0.80650.04830.09030.049*
C60.7976 (5)0.1254 (4)0.0631 (3)0.0472 (9)
H6E0.92460.13240.06700.057*
H6D0.70130.03980.10900.057*
N30.7405 (4)0.2322 (3)0.1174 (3)0.0479 (8)
H3A0.64900.24440.09250.072*
H3B0.69220.20890.19680.072*
H3C0.84610.30710.09550.072*
OW0.6532 (5)0.2968 (4)0.2841 (4)0.0799 (11)
H1W0.576 (7)0.300 (7)0.217 (3)0.15 (3)*
H2W0.597 (8)0.252 (6)0.328 (5)0.16 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.02304 (8)0.02366 (8)0.02407 (9)0.00824 (5)0.00767 (6)0.00183 (6)
Bi20.02630 (8)0.02556 (9)0.02270 (9)0.00658 (6)0.00748 (6)0.00122 (6)
Cl10.0370 (4)0.0396 (4)0.0405 (5)0.0124 (3)0.0195 (4)0.0091 (3)
Cl20.0443 (4)0.0527 (5)0.0313 (4)0.0292 (4)0.0085 (3)0.0076 (4)
Cl30.0399 (4)0.0281 (4)0.0656 (6)0.0074 (3)0.0238 (4)0.0002 (4)
Cl40.0397 (4)0.0576 (5)0.0310 (4)0.0018 (4)0.0186 (4)0.0010 (4)
Cl50.0317 (4)0.0527 (5)0.0532 (6)0.0183 (4)0.0086 (4)0.0101 (4)
Cl60.0520 (5)0.0267 (4)0.0794 (8)0.0109 (3)0.0287 (5)0.0106 (4)
N10.0349 (13)0.0429 (16)0.0286 (15)0.0058 (11)0.0097 (12)0.0053 (12)
C10.0452 (17)0.0347 (17)0.0255 (16)0.0160 (14)0.0120 (14)0.0030 (13)
C20.0467 (18)0.0337 (17)0.0257 (17)0.0122 (14)0.0109 (15)0.0010 (13)
C30.0391 (16)0.0335 (17)0.0292 (18)0.0019 (13)0.0100 (14)0.0037 (13)
N20.0374 (14)0.0322 (15)0.0219 (14)0.0101 (11)0.0094 (12)0.0054 (11)
C40.0374 (15)0.0355 (17)0.0258 (16)0.0138 (13)0.0115 (13)0.0053 (13)
C50.0507 (19)0.0321 (17)0.0313 (19)0.0098 (14)0.0104 (16)0.0031 (14)
C60.0480 (19)0.052 (2)0.035 (2)0.0197 (17)0.0085 (17)0.0107 (17)
N30.0423 (16)0.059 (2)0.0293 (16)0.0076 (14)0.0075 (13)0.0059 (14)
OW0.089 (2)0.114 (3)0.088 (3)0.069 (2)0.055 (2)0.067 (2)
Geometric parameters (Å, º) top
Bi1—Cl32.6976 (8)C2—H2D0.9700
Bi1—Cl3i2.6976 (8)C3—N21.485 (4)
Bi1—Cl22.7105 (8)C3—H3E0.9700
Bi1—Cl2i2.7105 (8)C3—H3D0.9700
Bi1—Cl1i2.7209 (8)N2—C41.485 (4)
Bi1—Cl12.7209 (8)N2—H2A0.9000
Bi2—Cl4ii2.6816 (8)N2—H2B0.9000
Bi2—Cl42.6817 (8)C4—C51.517 (4)
Bi2—Cl52.6948 (8)C4—H4E0.9700
Bi2—Cl5ii2.6948 (8)C4—H4D0.9700
Bi2—Cl62.7025 (9)C5—C61.524 (5)
Bi2—Cl6ii2.7025 (9)C5—H5E0.9700
N1—C11.478 (4)C5—H5D0.9700
N1—H1A0.8900C6—N31.485 (5)
N1—H1B0.8900C6—H6E0.9700
N1—H1C0.8900C6—H6D0.9700
C1—C21.506 (5)N3—H3A0.8900
C1—H1E0.9700N3—H3B0.8900
C1—H1D0.9700N3—H3C0.8900
C2—C31.528 (5)OW—H1W0.844 (19)
C2—H2E0.9700OW—H2W0.857 (19)
Cl3—Bi1—Cl3i180.0C1—C2—H2E109.1
Cl3—Bi1—Cl287.59 (3)C3—C2—H2E109.1
Cl3i—Bi1—Cl292.41 (3)C1—C2—H2D109.1
Cl3—Bi1—Cl2i92.41 (3)C3—C2—H2D109.1
Cl3i—Bi1—Cl2i87.59 (3)H2E—C2—H2D107.9
Cl2—Bi1—Cl2i180.0N2—C3—C2111.4 (3)
Cl3—Bi1—Cl1i85.80 (3)N2—C3—H3E109.4
Cl3i—Bi1—Cl1i94.20 (3)C2—C3—H3E109.4
Cl2—Bi1—Cl1i87.82 (3)N2—C3—H3D109.4
Cl2i—Bi1—Cl1i92.18 (3)C2—C3—H3D109.4
Cl3—Bi1—Cl194.20 (3)H3E—C3—H3D108.0
Cl3i—Bi1—Cl185.80 (3)C4—N2—C3114.5 (3)
Cl2—Bi1—Cl192.18 (3)C4—N2—H2A108.6
Cl2i—Bi1—Cl187.82 (3)C3—N2—H2A108.6
Cl1i—Bi1—Cl1180.0C4—N2—H2B108.6
Cl4ii—Bi2—Cl4180.00 (4)C3—N2—H2B108.6
Cl4ii—Bi2—Cl589.74 (3)H2A—N2—H2B107.6
Cl4—Bi2—Cl590.26 (3)N2—C4—C5109.4 (3)
Cl4ii—Bi2—Cl5ii90.26 (3)N2—C4—H4E109.8
Cl4—Bi2—Cl5ii89.74 (3)C5—C4—H4E109.8
Cl5—Bi2—Cl5ii180.00 (6)N2—C4—H4D109.8
Cl4ii—Bi2—Cl686.87 (3)C5—C4—H4D109.8
Cl4—Bi2—Cl693.13 (3)H4E—C4—H4D108.2
Cl5—Bi2—Cl687.00 (3)C4—C5—C6113.0 (3)
Cl5ii—Bi2—Cl693.00 (3)C4—C5—H5E109.0
Cl4ii—Bi2—Cl6ii93.13 (3)C6—C5—H5E109.0
Cl4—Bi2—Cl6ii86.87 (3)C4—C5—H5D109.0
Cl5—Bi2—Cl6ii93.00 (3)C6—C5—H5D109.0
Cl5ii—Bi2—Cl6ii87.00 (3)H5E—C5—H5D107.8
Cl6—Bi2—Cl6ii180.00 (6)N3—C6—C5112.2 (3)
C1—N1—H1A109.5N3—C6—H6E109.2
C1—N1—H1B109.5C5—C6—H6E109.2
H1A—N1—H1B109.5N3—C6—H6D109.2
C1—N1—H1C109.5C5—C6—H6D109.2
H1A—N1—H1C109.5H6E—C6—H6D107.9
H1B—N1—H1C109.5C6—N3—H3A109.5
N1—C1—C2111.4 (3)C6—N3—H3B109.5
N1—C1—H1E109.4H3A—N3—H3B109.5
C2—C1—H1E109.4C6—N3—H3C109.5
N1—C1—H1D109.4H3A—N3—H3C109.5
C2—C1—H1D109.4H3B—N3—H3C109.5
H1E—C1—H1D108.0H1W—OW—H2W115 (3)
C1—C2—C3112.3 (3)
N1—C1—C2—C3179.9 (3)C3—N2—C4—C5177.7 (3)
C1—C2—C3—N269.7 (4)N2—C4—C5—C6173.8 (3)
C2—C3—N2—C4178.8 (3)C4—C5—C6—N376.5 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl4iii0.892.343.174 (3)156
N1—H1B···Cl2iv0.892.733.339 (3)127
N1—H1B···Cl1v0.892.823.474 (3)132
N1—H1C···Cl3iv0.892.433.293 (3)163
N2—H2B···OW0.901.912.804 (4)173
N2—H2A···Cl2v0.902.633.316 (3)134
N2—H2A···Cl1iv0.902.713.347 (3)129
N3—H3A···Cl60.892.483.362 (3)169
N3—H3B···Cl1vi0.892.813.412 (3)126
N3—H3B···Cl3ii0.892.813.612 (3)151
N3—H3C···Cl5vii0.892.443.269 (3)155
OW—H1W···Cl60.84 (2)2.83 (3)3.620 (4)157 (6)
OW—H2W···Cl3iv0.86 (2)2.82 (4)3.478 (4)135 (5)
Symmetry codes: (ii) x+1, y+1, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1; (v) x+1, y1, z; (vi) x, y1, z1; (vii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl4i0.892.343.174 (3)155.7
N1—H1B···Cl2ii0.892.733.339 (3)126.5
N1—H1B···Cl1iii0.892.823.474 (3)131.5
N1—H1C···Cl3ii0.892.433.293 (3)163.4
N2—H2B···OW0.901.912.804 (4)172.5
N2—H2A···Cl2iii0.902.633.316 (3)134.1
N2—H2A···Cl1ii0.902.713.347 (3)129.1
N3—H3A···Cl60.892.483.362 (3)169.1
N3—H3B···Cl1iv0.892.813.412 (3)126.1
N3—H3B···Cl3v0.892.813.612 (3)150.6
N3—H3C···Cl5vi0.892.443.269 (3)154.9
OW—H1W···Cl60.844 (19)2.83 (3)3.620 (4)157 (6)
OW—H2W···Cl3ii0.857 (19)2.82 (4)3.478 (4)135 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y1, z; (iv) x, y1, z1; (v) x+1, y+1, z; (vi) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research.

References

First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaabouni, S., Kamoun, S. & Jaud, J. (1998). J. Chem. Crystallogr. 28, 209–212.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1717–m1718.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuasri, A., Rhandour, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m437.  CSD CrossRef IUCr Journals Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond. p. 260. Ithaca: Cornell University Press.  Google Scholar
First citationRhandour, A., Ouasri, A., Roussel, P. & Mazzah, A. (2011). J. Mol. Struct. 990, 95–101.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds