organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-4,5-Di­phenyl-1-[1-phenyl-3-(phenyl­sulfan­yl)propan-2-yl]-2-(thio­phen-2-yl)-1H-imidazole

aSchool of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: henangongda@yahoo.com

(Received 11 November 2013; accepted 25 November 2013; online 30 November 2013)

In the title compound, C34H28N2S2, the central imidazole ring (r.m.s. deviation = 0.0015 Å) forms dihedral angles of 55.7 (3), 17.94 (11) and 86.27 (11)°, respectively, with the mean planes of the attached thienyl and two phenyl substituents. The thienyl ring shows ring-flip disorder [occupancy ratio = 0.647 (2):0.353 (2)]. The chiral centre maintains the S configuration of the L-phenyl­alaninol starting material. Intra- and inter­molecular C—H⋯S hydrogen bonds involving the disordered thienyl ring are observed.

Related literature

For the synthesis of aryl sulfides, see: Mispelaere-Canivet et al. (2005[Mispelaere-Canivet, C., Spindler, J. F., Perrio, S. & Beslin, P. (2005). Tetrahedron, 61, 5253-5259.]); Zhang et al. (2007[Zhang, Y., Ngeow, K. C. & Ying, J. Y. (2007). Org. Lett. 9, 3495-3498.]); Wu et al. (2009[Wu, J. R., Lin, C. H. & Lee, C. F. (2009). Chem. Commun. pp. 4450-4452.]); Lv & Bao (2007[Lv, X. & Bao, W. L. (2007). J. Org. Chem. 72, 3863-3867.]). For related compounds synthesized by our group, see: Mao et al. (2010[Mao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418-2415.]); Yang et al. (2012[Yang, L., Xiao, Y., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o1670.]); Xiao et al. (2012[Xiao, Y., Yang, L., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o264.]); Gao et al. (2013[Gao, J., Yang, L., Mai, W., Yuan, J. & Mao, P. (2013). Acta Cryst. E69, o1379.]).

[Scheme 1]

Experimental

Crystal data
  • C34H28N2S2

  • Mr = 528.70

  • Orthorhombic, P 21 21 21

  • a = 12.7882 (7) Å

  • b = 13.7906 (6) Å

  • c = 16.0636 (7) Å

  • V = 2832.9 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.89 mm−1

  • T = 291 K

  • 0.26 × 0.23 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.] Tmin = 0.906, Tmax = 1.000

  • 10599 measured reflections

  • 5065 independent reflections

  • 4456 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.03

  • 5065 reflections

  • 356 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2202 Friedel pairs

  • Absolute structure parameter: 0.00 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21B⋯S1i 0.97 2.75 3.677 (3) 161
C22—H22⋯S1A 0.98 2.73 3.468 (5) 132
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Aryl sulfides are important organic compounds with biological, pharmaceutical, and materials interest. Among various methods for the preparation of S-containing compounds, transitionmetal-catalyzed C—S formation has become the most versatile strategy in modern organic chemistry (Mispelaere-Canivet et al., 2005; Zhang et al., 2007; Wu et al., 2009; Lv et al., 2007). Our group is interested in the synthesis and application of chiral imidazolium derived from natural amino acids (Mao et al., 2010; Yang et al., 2012; Xiao et al., 2012; Gao et al., 2013). During the study, we observed that the condensation of L-phenylalaninol, dibenzoyl, thiophene-2-carbaldehyde and ammonium acetate afforded (S)-2-(4,5-diphenyl-2-(thiophen-2-yl)-1H-imidazol-1-yl)-3-phenylpropan-1-ol (I), which was converted to p-toluenesulfonate (II) upon treatment with p-toluensulfonyl chloride. The following reaction of II with thiophenol catalyzed by CuI under basic condition produced the title compound (III) smoothly.

The molecular structure of the title compound (III) is shown in Figure 1. The imidazole ring (C7/C8/N2/C30/N1) is essentially planar, the maximum deviation being 0.002 (2) Å for atom C7. The thienyl ring shows ring-flip disorder, the major and minor components of the disorder having an occupancy factor of 0.647 (2) and 0.353 (2), respectively. The dihedral angle between the mean plane through the thienyl ring and the imidazole ring is 55.7 (3)°. The dihedral angles between the two phenyl substituents (C1—C6, C9—C14) and the imidazole ring are 17.94 (11) and 86.27 (11)°. The chiral C22 carbon atom maintains the S configuration of the L-phenylalaninol starting material. In the crystal structure, intra- and intermolecular C—H···S hydrogen bonds involving the disordered thienyl ring (Table 1) are observed.

Related literature top

For the synthesis of aryl sulfides, see: Mispelaere-Canivet et al. (2005); Zhang et al. (2007); Wu et al. (2009); Lv & Bao (2007). For related compounds synthesized by our group, see: Mao et al. (2010); Yang et al. (2012); Xiao et al. (2012); Gao et al. (2013).

Experimental top

NaH (0.048 g, 2 mmol) was added to an anhydrous 1,4-dioxane (20 ml) solution containing compound I (0.087 g, 0.2 mmol) and the mixture was kept at r.t. for 0.5 h. p-Toluenesulfonyl chloride (0.114 g, 0.6 mmol) was then added and the reaction was followed by TLC detection until the raw material disappeared. Evaporation of the solvent gave the crude product of p-toluenesulfonate (II), which was then purified by silica column chromatography. In a 50 ml flask, p-toluenesulfonate (II, 0.295 g, 0.5 mmol), thiophenol (0.110 g, 1 mmol), cuprous iodide (0.001 g, 0.005 mmol), and potassium hydroxide (0.056 g, 1 mmol) were dissolved in 1,4-dioxane (10 ml), and the solution was heated to 120°C for 12 h under an argon atmosphere. The volatile compounds were then removed in vacuo and a brown, oily residue remained, which was purified by silica column chromatography. Crystallization in MeOH afforded colourless crystals of the title compound (III).

Refinement top

The S–C and C—C bond distances involving the disordered S1, S1A, C32, C32A, C33, C33A and C34A atoms were constrained to be 2.5 (2) and 1.4 (2) Å, respectively. The ADPs of atom C17 were restrained to be nearly isotropic. H atoms were placed geometrically and refined as riding, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids. Hydrogen atoms, except for that associated to the chiral C22 atom, are omitted for clarity.
(S)-4,5-Diphenyl-1-[1-phenyl-3-(phenylsulfanyl)propan-2-yl]-2-(thiophen-2-yl)-1H-imidazole top
Crystal data top
C34H28N2S2Dx = 1.240 Mg m3
Mr = 528.70Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, P212121Cell parameters from 4362 reflections
a = 12.7882 (7) Åθ = 5.4–72.0°
b = 13.7906 (6) ŵ = 1.89 mm1
c = 16.0636 (7) ÅT = 291 K
V = 2832.9 (2) Å3Prism, colourless
Z = 40.26 × 0.23 × 0.2 mm
F(000) = 1112
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
5065 independent reflections
Radiation source: Enhance (Cu) X-ray Source4456 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.2312 pixels mm-1θmax = 67.1°, θmin = 4.2°
ω scansh = 1514
Absorption correction: multi-scan
CrysAlis PRO; Agilent, 2011
k = 1616
Tmin = 0.906, Tmax = 1.000l = 1913
10599 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.3647P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5065 reflectionsΔρmax = 0.19 e Å3
356 parametersΔρmin = 0.17 e Å3
18 restraintsAbsolute structure: Flack (1983), 2202 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Crystal data top
C34H28N2S2V = 2832.9 (2) Å3
Mr = 528.70Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 12.7882 (7) ŵ = 1.89 mm1
b = 13.7906 (6) ÅT = 291 K
c = 16.0636 (7) Å0.26 × 0.23 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
5065 independent reflections
Absorption correction: multi-scan
CrysAlis PRO; Agilent, 2011
4456 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 1.000Rint = 0.021
10599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.127Δρmax = 0.19 e Å3
S = 1.03Δρmin = 0.17 e Å3
5065 reflectionsAbsolute structure: Flack (1983), 2202 Friedel pairs
356 parametersAbsolute structure parameter: 0.00 (2)
18 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.81367 (14)0.86015 (13)0.18676 (10)0.0729 (4)0.647 (2)
S1A1.0259 (4)0.8013 (3)0.1389 (3)0.0729 (4)0.353 (2)
S20.81179 (9)0.59192 (7)0.34985 (7)0.1012 (3)
N10.94171 (17)0.89681 (13)0.35239 (13)0.0577 (5)
N20.99498 (16)0.74395 (13)0.34692 (13)0.0580 (5)
C10.9468 (3)1.0322 (2)0.48649 (18)0.0746 (7)
H10.94861.05430.43180.089*
C20.9363 (3)1.0980 (2)0.5507 (2)0.0894 (10)
H20.93111.16390.53880.107*
C30.9334 (3)1.0675 (3)0.6313 (2)0.0899 (10)
H30.92791.11230.67430.108*
C40.9387 (4)0.9715 (3)0.6481 (2)0.1072 (13)
H40.93580.95040.70300.129*
C50.9485 (4)0.9043 (3)0.5844 (2)0.0957 (11)
H50.95100.83840.59690.115*
C60.9547 (2)0.9346 (2)0.50214 (16)0.0636 (6)
C70.9663 (2)0.86640 (18)0.43152 (15)0.0586 (5)
C80.9998 (2)0.77216 (18)0.43000 (16)0.0581 (5)
C91.0384 (2)0.70951 (18)0.49927 (17)0.0636 (6)
C101.1412 (3)0.7148 (3)0.5238 (2)0.0880 (10)
H101.18640.75730.49690.106*
C111.1781 (3)0.6576 (4)0.5881 (2)0.1129 (15)
H111.24810.66080.60350.136*
C121.1111 (5)0.5961 (3)0.6291 (3)0.1145 (15)
H121.13590.55730.67220.137*
C131.0084 (4)0.5919 (3)0.6068 (3)0.1089 (14)
H130.96300.55100.63520.131*
C140.9716 (3)0.6484 (2)0.5419 (2)0.0862 (9)
H140.90140.64520.52700.103*
C151.2350 (3)0.7748 (3)0.2846 (2)0.0915 (10)
H151.21660.79900.33660.110*
C161.2929 (4)0.8319 (5)0.2318 (3)0.1296 (17)
H161.31380.89380.24760.156*
C171.3196 (5)0.7947 (6)0.1542 (4)0.162 (2)
H171.35660.83230.11620.195*
C181.2909 (5)0.7026 (6)0.1346 (4)0.171 (3)
H181.31220.67680.08390.205*
C191.2322 (4)0.6470 (5)0.1861 (3)0.140 (2)
H191.21170.58520.16980.169*
C201.2032 (2)0.6824 (3)0.2626 (2)0.0829 (9)
C211.1339 (3)0.6223 (2)0.3168 (3)0.0912 (10)
H21A1.15600.62980.37420.109*
H21B1.14260.55460.30190.109*
C221.0172 (2)0.64862 (18)0.3103 (2)0.0718 (7)
H221.00120.65370.25080.086*
C230.9491 (3)0.5675 (2)0.3445 (2)0.0892 (9)
H23A0.97340.55180.40010.107*
H23B0.95940.51050.31010.107*
C240.7696 (3)0.5971 (2)0.2451 (3)0.0890 (9)
C250.8234 (3)0.5596 (3)0.1775 (3)0.1055 (11)
H250.88840.53080.18560.127*
C260.7819 (4)0.5644 (4)0.0983 (3)0.1259 (17)
H260.81870.53820.05380.151*
C270.6879 (4)0.6071 (4)0.0850 (4)0.1328 (17)
H270.66070.61130.03140.159*
C280.6332 (4)0.6443 (4)0.1515 (4)0.1305 (17)
H280.56810.67270.14290.157*
C290.6739 (3)0.6397 (3)0.2305 (3)0.1080 (13)
H290.63640.66580.27480.130*
C300.9593 (2)0.82233 (16)0.30391 (15)0.0548 (5)
C310.9363 (2)0.82435 (16)0.21422 (16)0.0590 (6)
C320.9968 (7)0.8110 (9)0.1418 (7)0.108 (4)0.647 (2)
H321.06640.79120.14240.130*0.647 (2)
C32A0.8446 (13)0.8515 (15)0.1757 (10)0.108 (4)0.353 (2)
H32A0.78440.86490.20600.130*0.353 (2)
C330.9421 (13)0.8304 (11)0.0703 (5)0.099 (3)0.647 (2)
H330.96870.82420.01670.118*0.647 (2)
C33A0.847 (3)0.858 (3)0.0864 (10)0.099 (3)0.353 (2)
H33A0.79100.87520.05200.118*0.353 (2)
C340.8463 (12)0.8591 (13)0.0882 (7)0.094 (3)0.647 (2)
H340.79960.87780.04690.113*0.647 (2)
C34A0.946 (2)0.835 (2)0.0614 (14)0.094 (3)0.353 (2)
H34A0.96780.83760.00610.113*0.353 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0778 (9)0.0781 (7)0.0629 (6)0.0021 (6)0.0096 (5)0.0013 (5)
S1A0.0778 (9)0.0781 (7)0.0629 (6)0.0021 (6)0.0096 (5)0.0013 (5)
S20.1050 (6)0.0971 (6)0.1016 (6)0.0232 (5)0.0174 (5)0.0074 (5)
N10.0672 (12)0.0472 (9)0.0586 (11)0.0048 (9)0.0024 (10)0.0020 (8)
N20.0631 (11)0.0494 (9)0.0614 (11)0.0049 (8)0.0007 (9)0.0001 (9)
C10.092 (2)0.0657 (15)0.0662 (16)0.0033 (15)0.0043 (15)0.0062 (12)
C20.111 (3)0.0676 (16)0.090 (2)0.0007 (18)0.0077 (19)0.0194 (16)
C30.095 (2)0.093 (2)0.081 (2)0.0054 (18)0.0012 (18)0.0309 (17)
C40.143 (4)0.122 (3)0.0566 (17)0.029 (3)0.003 (2)0.0110 (19)
C50.138 (3)0.084 (2)0.0645 (17)0.020 (2)0.0056 (19)0.0057 (15)
C60.0631 (14)0.0697 (14)0.0579 (13)0.0050 (12)0.0044 (12)0.0070 (11)
C70.0614 (13)0.0564 (12)0.0581 (13)0.0033 (11)0.0056 (10)0.0021 (10)
C80.0581 (13)0.0563 (12)0.0599 (13)0.0021 (10)0.0029 (11)0.0039 (10)
C90.0706 (15)0.0593 (12)0.0610 (13)0.0089 (12)0.0025 (12)0.0053 (11)
C100.0692 (18)0.118 (3)0.0768 (19)0.0072 (18)0.0058 (15)0.0165 (18)
C110.093 (3)0.166 (4)0.079 (2)0.047 (3)0.017 (2)0.013 (3)
C120.160 (4)0.102 (3)0.081 (2)0.044 (3)0.015 (3)0.023 (2)
C130.154 (4)0.088 (2)0.085 (2)0.009 (3)0.003 (2)0.0303 (19)
C140.089 (2)0.0846 (19)0.085 (2)0.0069 (17)0.0022 (17)0.0202 (17)
C150.091 (2)0.103 (2)0.080 (2)0.0019 (19)0.0002 (17)0.0148 (19)
C160.088 (3)0.172 (5)0.129 (4)0.022 (3)0.003 (3)0.021 (4)
C170.109 (3)0.236 (6)0.143 (4)0.015 (4)0.045 (3)0.031 (4)
C180.142 (4)0.264 (6)0.107 (3)0.017 (5)0.051 (3)0.032 (4)
C190.096 (3)0.216 (6)0.110 (3)0.022 (3)0.008 (2)0.085 (4)
C200.0703 (18)0.102 (2)0.0767 (18)0.0235 (16)0.0040 (14)0.0269 (17)
C210.092 (2)0.0697 (18)0.112 (3)0.0286 (16)0.003 (2)0.0105 (18)
C220.0861 (19)0.0494 (12)0.0799 (17)0.0094 (12)0.0020 (14)0.0054 (12)
C230.114 (3)0.0509 (13)0.103 (2)0.0030 (15)0.006 (2)0.0003 (15)
C240.080 (2)0.0751 (18)0.111 (3)0.0192 (16)0.0114 (19)0.0018 (18)
C250.082 (2)0.122 (3)0.112 (3)0.007 (2)0.008 (2)0.002 (2)
C260.109 (3)0.170 (5)0.099 (3)0.032 (3)0.005 (3)0.002 (3)
C270.107 (3)0.159 (5)0.132 (4)0.035 (4)0.015 (3)0.024 (4)
C280.100 (3)0.120 (4)0.171 (5)0.012 (3)0.025 (4)0.008 (4)
C290.094 (3)0.084 (2)0.146 (4)0.012 (2)0.004 (3)0.008 (2)
C300.0603 (13)0.0486 (11)0.0556 (12)0.0022 (10)0.0015 (10)0.0009 (9)
C310.0662 (15)0.0494 (11)0.0615 (13)0.0035 (11)0.0043 (11)0.0035 (10)
C320.097 (7)0.131 (7)0.096 (5)0.002 (5)0.012 (5)0.023 (4)
C32A0.097 (7)0.131 (7)0.096 (5)0.002 (5)0.012 (5)0.023 (4)
C330.125 (7)0.127 (7)0.044 (3)0.004 (5)0.015 (3)0.024 (4)
C33A0.125 (7)0.127 (7)0.044 (3)0.004 (5)0.015 (3)0.024 (4)
C340.087 (5)0.112 (6)0.084 (4)0.001 (4)0.033 (4)0.003 (4)
C34A0.087 (5)0.112 (6)0.084 (4)0.001 (4)0.033 (4)0.003 (4)
Geometric parameters (Å, º) top
S1—C311.702 (3)C16—C171.391 (8)
S1—C341.637 (12)C17—H170.9300
S1A—C311.696 (5)C17—C181.359 (9)
S1A—C34A1.673 (18)C18—H180.9300
S2—C231.789 (4)C18—C191.355 (9)
S2—C241.769 (4)C19—H190.9300
N1—C71.375 (3)C19—C201.373 (5)
N1—C301.308 (3)C20—C211.493 (5)
N2—C81.392 (3)C21—H21A0.9700
N2—C221.468 (3)C21—H21B0.9700
N2—C301.361 (3)C21—C221.539 (4)
C1—H10.9300C22—H220.9800
C1—C21.381 (4)C22—C231.521 (4)
C1—C61.373 (4)C23—H23A0.9700
C2—H20.9300C23—H23B0.9700
C2—C31.361 (5)C24—C251.386 (5)
C3—H30.9300C24—C291.377 (6)
C3—C41.353 (5)C25—H250.9300
C4—H40.9300C25—C261.379 (6)
C4—C51.386 (5)C26—H260.9300
C5—H50.9300C26—C271.355 (8)
C5—C61.388 (4)C27—H270.9300
C6—C71.481 (3)C27—C281.376 (7)
C7—C81.369 (4)C28—H280.9300
C8—C91.493 (3)C28—C291.374 (7)
C9—C101.374 (4)C29—H290.9300
C9—C141.382 (4)C30—C311.471 (3)
C10—H100.9300C31—C321.410 (11)
C10—C111.383 (5)C31—C32A1.377 (16)
C11—H110.9300C32—H320.9300
C11—C121.373 (6)C32—C331.371 (11)
C12—H120.9300C32A—H32A0.9300
C12—C131.363 (7)C32A—C33A1.438 (18)
C13—H130.9300C33—H330.9300
C13—C141.383 (5)C33—C341.318 (12)
C14—H140.9300C33A—H33A0.9300
C15—H150.9300C33A—C34A1.375 (18)
C15—C161.374 (6)C34—H340.9300
C15—C201.383 (5)C34A—H34A0.9300
C16—H160.9300
C34—S1—C3190.7 (5)C19—C20—C21119.0 (4)
C34A—S1A—C3193.9 (10)C20—C21—H21A108.8
C24—S2—C23105.15 (18)C20—C21—H21B108.8
C30—N1—C7105.8 (2)C20—C21—C22113.9 (3)
C8—N2—C22128.8 (2)H21A—C21—H21B107.7
C30—N2—C8106.22 (19)C22—C21—H21A108.8
C30—N2—C22124.9 (2)C22—C21—H21B108.8
C2—C1—H1119.5N2—C22—C21111.8 (2)
C6—C1—H1119.5N2—C22—H22106.6
C6—C1—C2121.0 (3)N2—C22—C23113.7 (3)
C1—C2—H2119.7C21—C22—H22106.6
C3—C2—C1120.6 (3)C23—C22—C21111.0 (3)
C3—C2—H2119.7C23—C22—H22106.6
C2—C3—H3120.3S2—C23—H23A108.2
C4—C3—C2119.4 (3)S2—C23—H23B108.2
C4—C3—H3120.3C22—C23—S2116.2 (2)
C3—C4—H4119.6C22—C23—H23A108.2
C3—C4—C5120.8 (3)C22—C23—H23B108.2
C5—C4—H4119.6H23A—C23—H23B107.4
C4—C5—H5119.8C25—C24—S2125.4 (3)
C4—C5—C6120.4 (3)C29—C24—S2116.7 (3)
C6—C5—H5119.8C29—C24—C25117.9 (4)
C1—C6—C5117.7 (3)C24—C25—H25119.6
C1—C6—C7119.3 (2)C26—C25—C24120.9 (4)
C5—C6—C7122.9 (3)C26—C25—H25119.6
N1—C7—C6119.5 (2)C25—C26—H26119.7
C8—C7—N1110.2 (2)C27—C26—C25120.6 (5)
C8—C7—C6130.4 (2)C27—C26—H26119.7
N2—C8—C9124.6 (2)C26—C27—H27120.4
C7—C8—N2105.6 (2)C26—C27—C28119.3 (5)
C7—C8—C9129.8 (2)C28—C27—H27120.4
C10—C9—C8120.0 (3)C27—C28—H28119.7
C10—C9—C14118.8 (3)C29—C28—C27120.5 (5)
C14—C9—C8121.2 (3)C29—C28—H28119.7
C9—C10—H10119.6C24—C29—H29119.6
C9—C10—C11120.7 (4)C28—C29—C24120.9 (5)
C11—C10—H10119.6C28—C29—H29119.6
C10—C11—H11120.1N1—C30—N2112.3 (2)
C12—C11—C10119.8 (4)N1—C30—C31122.2 (2)
C12—C11—H11120.1N2—C30—C31125.4 (2)
C11—C12—H12120.0S1A—C31—S1119.4 (2)
C13—C12—C11120.1 (3)C30—C31—S1116.4 (2)
C13—C12—H12120.0C30—C31—S1A124.1 (2)
C12—C13—H13119.9C32—C31—S1109.3 (4)
C12—C13—C14120.2 (4)C32—C31—C30134.1 (5)
C14—C13—H13119.9C32A—C31—S1A107.8 (7)
C9—C14—C13120.4 (4)C32A—C31—C30128.0 (7)
C9—C14—H14119.8C32A—C31—C3297.6 (7)
C13—C14—H14119.8C31—C32—H32123.7
C16—C15—H15119.0C33—C32—C31112.6 (8)
C16—C15—C20121.9 (4)C33—C32—H32123.7
C20—C15—H15119.0C31—C32A—H32A121.6
C15—C16—H16120.8C31—C32A—C33A116.8 (17)
C15—C16—C17118.3 (6)C33A—C32A—H32A121.6
C17—C16—H16120.8C32—C33—H33124.8
C16—C17—H17120.5C34—C33—C32110.5 (9)
C18—C17—C16119.1 (6)C34—C33—H33124.8
C18—C17—H17120.5C32A—C33A—H33A126.5
C17—C18—H18118.8C34A—C33A—C32A107 (2)
C19—C18—C17122.5 (6)C34A—C33A—H33A126.5
C19—C18—H18118.8S1—C34—H34121.6
C18—C19—H19120.1C33—C34—S1116.8 (8)
C18—C19—C20119.7 (6)C33—C34—H34121.6
C20—C19—H19120.1S1A—C34A—H34A122.9
C15—C20—C21122.5 (3)C33A—C34A—S1A114 (2)
C19—C20—C15118.4 (4)C33A—C34A—H34A122.9
S1—C31—C32—C330.3 (12)C15—C20—C21—C2280.1 (4)
S1—C31—C32A—C33A177 (6)C16—C15—C20—C191.0 (6)
S1A—C31—C32—C33176 (4)C16—C15—C20—C21175.5 (4)
S1A—C31—C32A—C33A3 (2)C16—C17—C18—C193.6 (12)
S2—C24—C25—C26177.7 (4)C17—C18—C19—C202.5 (11)
S2—C24—C29—C28177.9 (3)C18—C19—C20—C150.1 (7)
N1—C7—C8—N20.3 (3)C18—C19—C20—C21176.8 (5)
N1—C7—C8—C9177.5 (3)C19—C20—C21—C2296.4 (4)
N1—C30—C31—S151.8 (3)C20—C15—C16—C170.1 (7)
N1—C30—C31—S1A123.7 (3)C20—C21—C22—N269.4 (4)
N1—C30—C31—C32121.4 (7)C20—C21—C22—C23162.5 (3)
N1—C30—C31—C32A50.8 (12)C21—C22—C23—S2174.6 (2)
N2—C8—C9—C1093.9 (4)C22—N2—C8—C7176.8 (3)
N2—C8—C9—C1488.7 (4)C22—N2—C8—C95.3 (4)
N2—C22—C23—S247.4 (4)C22—N2—C30—N1177.2 (2)
N2—C30—C31—S1124.4 (2)C22—N2—C30—C310.6 (4)
N2—C30—C31—S1A60.1 (4)C23—S2—C24—C2518.5 (4)
N2—C30—C31—C3262.3 (8)C23—S2—C24—C29163.3 (3)
N2—C30—C31—C32A125.4 (12)C24—S2—C23—C2268.8 (3)
C1—C2—C3—C41.4 (7)C24—C25—C26—C270.8 (8)
C1—C6—C7—N117.1 (4)C25—C24—C29—C280.4 (6)
C1—C6—C7—C8162.5 (3)C25—C26—C27—C281.1 (8)
C2—C1—C6—C51.9 (5)C26—C27—C28—C291.1 (8)
C2—C1—C6—C7179.8 (3)C27—C28—C29—C240.8 (7)
C2—C3—C4—C50.9 (7)C29—C24—C25—C260.5 (6)
C3—C4—C5—C61.0 (7)C30—N1—C7—C6180.0 (2)
C4—C5—C6—C12.4 (6)C30—N1—C7—C80.4 (3)
C4—C5—C6—C7179.4 (4)C30—N2—C8—C70.1 (3)
C5—C6—C7—N1161.1 (3)C30—N2—C8—C9177.8 (2)
C5—C6—C7—C819.3 (5)C30—N2—C22—C21116.0 (3)
C6—C1—C2—C30.0 (6)C30—N2—C22—C23117.3 (3)
C6—C7—C8—N2179.9 (3)C30—C31—C32—C33173.3 (8)
C6—C7—C8—C92.1 (5)C30—C31—C32A—C33A172.6 (18)
C7—N1—C30—N20.3 (3)C31—S1—C34—C332.5 (15)
C7—N1—C30—C31176.3 (2)C31—S1A—C34A—C33A5 (3)
C7—C8—C9—C1083.5 (4)C31—C32—C33—C341.5 (18)
C7—C8—C9—C1493.9 (4)C31—C32A—C33A—C34A0 (4)
C8—N2—C22—C2167.7 (4)C32—C31—C32A—C33A2 (2)
C8—N2—C22—C2359.0 (4)C32—C33—C34—S13 (2)
C8—N2—C30—N10.2 (3)C32A—C31—C32—C330.5 (12)
C8—N2—C30—C31176.4 (2)C32A—C33A—C34A—S1A4 (3)
C8—C9—C10—C11179.7 (3)C34—S1—C31—S1A2.3 (7)
C8—C9—C14—C13179.0 (3)C34—S1—C31—C30173.4 (7)
C9—C10—C11—C121.3 (6)C34—S1—C31—C321.4 (9)
C10—C9—C14—C131.6 (5)C34—S1—C31—C32A3 (5)
C10—C11—C12—C130.4 (7)C34A—S1A—C31—S13.8 (11)
C11—C12—C13—C141.0 (7)C34A—S1A—C31—C30171.5 (10)
C12—C13—C14—C90.0 (6)C34A—S1A—C31—C321 (4)
C14—C9—C10—C112.2 (5)C34A—S1A—C31—C32A3.9 (15)
C15—C16—C17—C182.3 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21B···S1i0.972.753.677 (3)161
C22—H22···S1A0.982.733.468 (5)132
Symmetry code: (i) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21B···S1i0.972.753.677 (3)161
C22—H22···S1A0.982.733.468 (5)132
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Ms Y. Zhu for technical assistance. This research was supported by the Graduate Student Innovation Fund of Henan University of Technology (No. 2012YJCX33).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, J., Yang, L., Mai, W., Yuan, J. & Mao, P. (2013). Acta Cryst. E69, o1379.  CSD CrossRef IUCr Journals Google Scholar
First citationLv, X. & Bao, W. L. (2007). J. Org. Chem. 72, 3863–3867.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418–2415.  Web of Science CrossRef CAS Google Scholar
First citationMispelaere-Canivet, C., Spindler, J. F., Perrio, S. & Beslin, P. (2005). Tetrahedron, 61, 5253–5259.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J. R., Lin, C. H. & Lee, C. F. (2009). Chem. Commun. pp. 4450–4452.  Web of Science CrossRef Google Scholar
First citationXiao, Y., Yang, L., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o264.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, L., Xiao, Y., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o1670.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y., Ngeow, K. C. & Ying, J. Y. (2007). Org. Lett. 9, 3495–3498.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds