organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Octylindoline-2,3-dione

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batouta, Rabat, Morocco, cInstitute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: fatimazahrae_qachchachi@yahoo.fr

(Received 12 November 2013; accepted 15 November 2013; online 23 November 2013)

In the title compound, C16H21NO2, the indoline ring and the two ketone O atoms are approximately coplanar, the largest deviation from the mean plane being 0.063 (2) Å. The mean plane through the fused ring system is nearly perpendicular to the mean plane passing through the 1-octyl chain [dihedral angle = 77.53 (17)°]. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For the biological activity of indoline derivatives, see: Bhrigu et al. (2010[Bhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug Res. 2, 229-235.]); Malhotra et al. (2011[Malhotra, S., Balwani, S., Dhawan, A., Singh, B. K., Kumar, S., Thimmulappa, R., Biswal, S., Olsen, C. E., Van der Eycken, E., Prasad, A. K., Ghosh, B. & Parmar, V. S. (2011). Med. Chem. Commun. 2, 743-751.]); Da Silva et al. (2001[Da Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]); Ramachandran (2011[Ramachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289-294.]); Smitha et al. (2008[Smitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621-636.]). For the structure of a related compound, see: Mamari et al. (2010[Mamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1410.]).

[Scheme 1]

Experimental

Crystal data
  • C16H21NO2

  • Mr = 259.34

  • Monoclinic, P 21 /c

  • a = 20.266 (4) Å

  • b = 4.6925 (1) Å

  • c = 15.7807 (11) Å

  • β = 108.941 (18)°

  • V = 1419.5 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 123 K

  • 0.31 × 0.07 × 0.04 mm

Data collection
  • Oxford Diffraction SuperNova (single source at offset, Atlas) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2012[Oxford Diffraction (2012). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.899, Tmax = 0.979

  • 13541 measured reflections

  • 2811 independent reflections

  • 2462 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.167

  • S = 1.18

  • 2811 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.49 3.156 (3) 129
C6—H6⋯O2ii 0.93 2.57 3.260 (3) 131
C4—H4⋯O2iii 0.93 2.55 3.470 (3) 170
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+3, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2012[Oxford Diffraction (2012). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Isatin, 1H-indole-2,3-dione, is a heterocyclic compound of significant importance in medicinal chemistry. It is a synthetically versatile molecule, a precursor for a large number of pharmacologically active compounds. Isatin and its derivatives have aroused great attention in recent years due to their wide variety of biological activities, relevant to application as insecticides and fungicides and in a broad range of drug therapies, including anticancer drugs, antibiotics and antidepressants (Bhrigu et al., 2010; Malhotra et al., 2011; Da Silva et al., 2001; Ramachandran, 2011; Smitha et al., 2008). As a continuation of our research work devoted to the development of isatin derivatives (Mamari et al., 2010), we report in this paper the synthesis of a new indoline-2,3-dione derivative by action of alkyl halides to explore other applications.

The molecule of title compound is build up from a fused five- and six-membered rings linked to a 1-octyl chain and to two ketonic oxygen atoms as shown in Fig. 1. The indoline ring and the two ketonic oxygen atoms are nearly coplanar, with the largest deviation from the mean plane of 0.063 (2) Å for atom O2. The fused ring system plan is nearly perpendicular to the mean plane passing through the 1-octyl chain as indicated by the torsion angle C1–N1–C9–C10 of -93.2 (2)°. In the crystal, the molecules are linked by C–H···O hydrogen bonds (Table 1) to build a three-dimensional network as shown in Fig. 2.

Related literature top

For the biological activity of indoline derivatives, see: Bhrigu et al. (2010); Malhotra et al. (2011); Da Silva et al. (2001); Ramachandran (2011); Smitha et al. (2008). For the structure of a related compound, see: Mamari et al. (2010).

Experimental top

To a solution of isatin (0.5 g, 3.4 mmol) dissolved in DMF (30 ml) was added 1-bromooctane (0.7 ml, 3.4 mmol), potassium carbonate (0.61 g, 4.4 mmol) and a catalytic amount of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol). The mixture was stirred for 48 h and the reaction monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals (yield: 72%; mp = 317 K).

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.93–0.97 Å and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2012); cell refinement: CrysAlis PRO (Oxford Diffraction, 2012); data reduction: CrysAlis PRO (Oxford Diffraction, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular plot the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Intermolecular hydrogen interactions (dashed lines) in the title compound. Atoms labelled with suffixes a, b and c are generated by the symmetry operators 1-x, 3-y, 1-z; x, 3/2-y, 1/2+z and x, 5/2-y, 1/2+z, respectively.
1-Octylindoline-2,3-dione top
Crystal data top
C16H21NO2F(000) = 560
Mr = 259.34Dx = 1.214 Mg m3
Monoclinic, P21/cMelting point: 317 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.5418 Å
a = 20.266 (4) ÅCell parameters from 5321 reflections
b = 4.6925 (1) Åθ = 3.0–73.5°
c = 15.7807 (11) ŵ = 0.63 mm1
β = 108.941 (18)°T = 123 K
V = 1419.5 (3) Å3Plate, orange
Z = 40.31 × 0.07 × 0.04 mm
Data collection top
Oxford Diffraction SuperNova (single source at offset, Atlas)
diffractometer
2811 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2462 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 20.7092 pixels mm-1θmax = 73.7°, θmin = 4.6°
ω scansh = 2425
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2012); analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)]
k = 55
Tmin = 0.899, Tmax = 0.979l = 1719
13541 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0633P)2 + 1.1901P]
where P = (Fo2 + 2Fc2)/3
2811 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H21NO2V = 1419.5 (3) Å3
Mr = 259.34Z = 4
Monoclinic, P21/cCu Kα radiation
a = 20.266 (4) ŵ = 0.63 mm1
b = 4.6925 (1) ÅT = 123 K
c = 15.7807 (11) Å0.31 × 0.07 × 0.04 mm
β = 108.941 (18)°
Data collection top
Oxford Diffraction SuperNova (single source at offset, Atlas)
diffractometer
2811 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2012); analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)]
2462 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.979Rint = 0.029
13541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.18Δρmax = 0.49 e Å3
2811 reflectionsΔρmin = 0.22 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33354 (9)0.7667 (4)0.34657 (10)0.0397 (4)
O20.44511 (8)1.1900 (4)0.42454 (10)0.0385 (4)
N10.32574 (9)0.7836 (4)0.48939 (11)0.0272 (4)
C10.35221 (11)0.8574 (5)0.42319 (14)0.0299 (5)
C20.40999 (10)1.0835 (5)0.46468 (14)0.0288 (5)
C30.40798 (10)1.1295 (4)0.55543 (13)0.0258 (4)
C40.44509 (10)1.3124 (5)0.62281 (15)0.0296 (5)
H40.47911.43250.61480.036*
C50.43015 (11)1.3116 (5)0.70275 (14)0.0308 (5)
H50.45401.43430.74880.037*
C60.37992 (11)1.1290 (5)0.71428 (13)0.0290 (5)
H60.37101.13100.76850.035*
C70.34230 (10)0.9420 (5)0.64691 (13)0.0272 (4)
H70.30890.81960.65530.033*
C80.35685 (9)0.9471 (4)0.56786 (13)0.0241 (4)
C90.26652 (10)0.5930 (5)0.47581 (15)0.0303 (5)
H9A0.27320.48190.52980.036*
H9B0.26450.46180.42750.036*
C100.19768 (10)0.7542 (5)0.45315 (15)0.0300 (5)
H10A0.19400.88370.40390.036*
H10B0.19760.86740.50450.036*
C110.13437 (10)0.5572 (5)0.42731 (15)0.0305 (5)
H11A0.13820.42620.47630.037*
H11B0.13410.44550.37540.037*
C120.06565 (10)0.7207 (5)0.40574 (15)0.0311 (5)
H12A0.06510.82300.45890.037*
H12B0.06350.86050.35970.037*
C130.00107 (10)0.5314 (5)0.37394 (15)0.0317 (5)
H13A0.00140.42980.32050.038*
H13B0.00310.39120.41990.038*
C140.06690 (11)0.6980 (5)0.35310 (15)0.0327 (5)
H14A0.06830.84120.30820.039*
H14B0.06750.79620.40690.039*
C150.13189 (11)0.5123 (5)0.31923 (16)0.0358 (5)
H15A0.13060.36830.36380.043*
H15B0.13170.41540.26500.043*
C160.19929 (12)0.6838 (6)0.29952 (18)0.0429 (6)
H16A0.23860.55780.27880.064*
H16B0.20150.82340.25420.064*
H16C0.20010.77780.35320.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0396 (9)0.0494 (10)0.0293 (8)0.0081 (7)0.0102 (7)0.0051 (7)
O20.0303 (8)0.0559 (11)0.0335 (8)0.0040 (7)0.0160 (7)0.0132 (7)
N10.0222 (8)0.0314 (9)0.0271 (9)0.0000 (7)0.0067 (7)0.0028 (7)
C10.0265 (10)0.0372 (12)0.0262 (10)0.0098 (8)0.0087 (8)0.0014 (8)
C20.0224 (9)0.0349 (11)0.0297 (10)0.0088 (8)0.0092 (8)0.0086 (9)
C30.0225 (9)0.0285 (10)0.0275 (10)0.0050 (7)0.0096 (8)0.0072 (8)
C40.0207 (9)0.0307 (11)0.0364 (11)0.0008 (8)0.0078 (8)0.0049 (9)
C50.0267 (10)0.0319 (11)0.0312 (11)0.0000 (8)0.0059 (8)0.0013 (8)
C60.0275 (10)0.0353 (11)0.0243 (10)0.0047 (8)0.0084 (8)0.0026 (8)
C70.0240 (9)0.0306 (11)0.0286 (10)0.0001 (8)0.0107 (8)0.0031 (8)
C80.0188 (9)0.0257 (10)0.0263 (9)0.0040 (7)0.0053 (7)0.0011 (8)
C90.0250 (10)0.0284 (11)0.0350 (11)0.0012 (8)0.0064 (8)0.0031 (8)
C100.0247 (10)0.0299 (11)0.0340 (11)0.0014 (8)0.0074 (8)0.0014 (8)
C110.0238 (10)0.0311 (11)0.0345 (11)0.0004 (8)0.0063 (8)0.0026 (9)
C120.0236 (10)0.0324 (11)0.0353 (11)0.0011 (8)0.0067 (8)0.0013 (9)
C130.0253 (10)0.0337 (12)0.0347 (11)0.0000 (8)0.0079 (8)0.0023 (9)
C140.0256 (11)0.0365 (12)0.0344 (11)0.0004 (9)0.0075 (9)0.0005 (9)
C150.0271 (11)0.0404 (13)0.0388 (12)0.0014 (9)0.0092 (9)0.0039 (10)
C160.0244 (11)0.0546 (15)0.0462 (14)0.0006 (10)0.0069 (10)0.0003 (12)
Geometric parameters (Å, º) top
O1—C11.220 (3)C10—H10A0.9700
O2—C21.204 (3)C10—H10B0.9700
N1—C11.365 (3)C11—C121.528 (3)
N1—C81.419 (3)C11—H11A0.9700
N1—C91.456 (3)C11—H11B0.9700
C1—C21.558 (3)C12—C131.526 (3)
C2—C31.462 (3)C12—H12A0.9700
C3—C41.383 (3)C12—H12B0.9700
C3—C81.406 (3)C13—C141.524 (3)
C4—C51.390 (3)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—C61.387 (3)C14—C151.524 (3)
C5—H50.9300C14—H14A0.9700
C6—C71.398 (3)C14—H14B0.9700
C6—H60.9300C15—C161.528 (3)
C7—C81.372 (3)C15—H15A0.9700
C7—H70.9300C15—H15B0.9700
C9—C101.524 (3)C16—H16A0.9600
C9—H9A0.9700C16—H16B0.9600
C9—H9B0.9700C16—H16C0.9600
C10—C111.526 (3)
C1—N1—C8110.93 (17)H10A—C10—H10B107.8
C1—N1—C9123.59 (18)C10—C11—C12112.44 (18)
C8—N1—C9124.91 (17)C10—C11—H11A109.1
O1—C1—N1126.7 (2)C12—C11—H11A109.1
O1—C1—C2127.1 (2)C10—C11—H11B109.1
N1—C1—C2106.24 (17)C12—C11—H11B109.1
O2—C2—C3131.6 (2)H11A—C11—H11B107.8
O2—C2—C1123.6 (2)C13—C12—C11113.79 (18)
C3—C2—C1104.83 (16)C13—C12—H12A108.8
C4—C3—C8120.78 (18)C11—C12—H12A108.8
C4—C3—C2131.56 (19)C13—C12—H12B108.8
C8—C3—C2107.65 (18)C11—C12—H12B108.8
C3—C4—C5118.16 (19)H12A—C12—H12B107.7
C3—C4—H4120.9C14—C13—C12113.04 (18)
C5—C4—H4120.9C14—C13—H13A109.0
C6—C5—C4120.4 (2)C12—C13—H13A109.0
C6—C5—H5119.8C14—C13—H13B109.0
C4—C5—H5119.8C12—C13—H13B109.0
C5—C6—C7122.01 (19)H13A—C13—H13B107.8
C5—C6—H6119.0C13—C14—C15113.60 (19)
C7—C6—H6119.0C13—C14—H14A108.8
C8—C7—C6117.09 (19)C15—C14—H14A108.8
C8—C7—H7121.5C13—C14—H14B108.8
C6—C7—H7121.5C15—C14—H14B108.8
C7—C8—C3121.54 (19)H14A—C14—H14B107.7
C7—C8—N1128.20 (18)C14—C15—C16112.6 (2)
C3—C8—N1110.25 (17)C14—C15—H15A109.1
N1—C9—C10112.20 (17)C16—C15—H15A109.1
N1—C9—H9A109.2C14—C15—H15B109.1
C10—C9—H9A109.2C16—C15—H15B109.1
N1—C9—H9B109.2H15A—C15—H15B107.8
C10—C9—H9B109.2C15—C16—H16A109.5
H9A—C9—H9B107.9C15—C16—H16B109.5
C9—C10—C11112.85 (17)H16A—C16—H16B109.5
C9—C10—H10A109.0C15—C16—H16C109.5
C11—C10—H10A109.0H16A—C16—H16C109.5
C9—C10—H10B109.0H16B—C16—H16C109.5
C11—C10—H10B109.0
C8—N1—C1—O1175.8 (2)C6—C7—C8—N1179.05 (19)
C9—N1—C1—O14.1 (3)C4—C3—C8—C70.5 (3)
C8—N1—C1—C23.3 (2)C2—C3—C8—C7179.61 (18)
C9—N1—C1—C2174.96 (17)C4—C3—C8—N1179.39 (18)
O1—C1—C2—O22.5 (3)C2—C3—C8—N10.3 (2)
N1—C1—C2—O2178.42 (19)C1—N1—C8—C7177.49 (19)
O1—C1—C2—C3176.1 (2)C9—N1—C8—C75.9 (3)
N1—C1—C2—C33.0 (2)C1—N1—C8—C32.4 (2)
O2—C2—C3—C41.1 (4)C9—N1—C8—C3173.93 (18)
C1—C2—C3—C4177.4 (2)C1—N1—C9—C1093.2 (2)
O2—C2—C3—C8180.0 (2)C8—N1—C9—C1077.3 (2)
C1—C2—C3—C81.6 (2)N1—C9—C10—C11172.83 (17)
C8—C3—C4—C50.3 (3)C9—C10—C11—C12179.35 (18)
C2—C3—C4—C5178.5 (2)C10—C11—C12—C13176.35 (18)
C3—C4—C5—C60.8 (3)C11—C12—C13—C14179.79 (18)
C4—C5—C6—C70.5 (3)C12—C13—C14—C15178.69 (18)
C5—C6—C7—C80.3 (3)C13—C14—C15—C16179.56 (19)
C6—C7—C8—C30.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.493.156 (3)129
C6—H6···O2ii0.932.573.260 (3)131
C4—H4···O2iii0.932.553.470 (3)170
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+5/2, z+1/2; (iii) x+1, y+3, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.493.156 (3)129.0
C6—H6···O2ii0.932.573.260 (3)131.0
C4—H4···O2iii0.932.553.470 (3)170.2
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+5/2, z+1/2; (iii) x+1, y+3, z+1.
 

References

First citationBhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug Res. 2, 229–235.  CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDa Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalhotra, S., Balwani, S., Dhawan, A., Singh, B. K., Kumar, S., Thimmulappa, R., Biswal, S., Olsen, C. E., Van der Eycken, E., Prasad, A. K., Ghosh, B. & Parmar, V. S. (2011). Med. Chem. Commun. 2, 743–751.  Web of Science CrossRef CAS Google Scholar
First citationMamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2012). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRamachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289–294.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621–636.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds