organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1816-o1817

6-(4-Amino­phen­yl)-2-meth­­oxy-4-phenyl­nicotino­nitrile

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 8 November 2013; accepted 18 November 2013; online 23 November 2013)

In the structure of the title nicotino­nitrile derivative, C19H15N3O, the pyridine ring makes dihedral angles of 11.50 (7) and 43.36 (8)° with the 4-amino­phenyl and phenyl rings, respectively, and the dihedral angle between the phenyl rings is 36.28°. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds into wave-like sheets parallel to (10-2). These sheets are stacked by ππ inter­actions between the 4-amino­phenyl rings of adjacent sheets, with centroid–centroid distances of 3.7499 (9) Å. C—H⋯π inter­actions are also present.

Related literature

For the synthesis and applications of nicotino­nitrile derivatives, see: Al-Jaber et al. (2012[Al-Jaber, N. A., Bougasim, A. S. A. & Karah, M. M. S. (2012). J. Saudi Chem. Soc. 16, 45-53.]); Brandt et al. (2010[Brandt, W., Mologni, L., Preu, L., Lemcke, T., Gambacorti-Passerini, C. & Kunick, C. (2010). Eur. J. Med. Chem. 45, 2919-2927.]); El-Sayed et al. (2011[El-Sayed, H. A., Moustafa, A. H., Haikal, A. E.-F. Z., Abu-El-Halawa, R. & Ashry, E. S. H. E. (2011). Eur. J. Med. Chem. 46, 2948-2954.]); Ji et al. (2007[Ji, J., Bunnelle, W. H., Anderson, D. J., Faltynek, C., Dyhring, T., Ahring, P. K., Rueter, L. E., Curzon, P., Buckley, M. J., Marsh, K. C., Kempf-Grote, A. & Meyer, M. D. (2007). Biochem. Pharmacol. 74, 1253-1262.]); Kim et al. (2005[Kim, K.-R., Rhee, S.-D., Kim, H. Y., Jung, W. H., Yang, S.-D., Kim, S. S., Ahn, J. H. & Cheon, H. G. (2005). Eur. J. Pharmacol. 518, 63-70.]); Koner et al. (2012[Koner, R. R., Sinha, S., Kumar, S., Nandi, C. K. & Ghosh, S. (2012). Tetrahedron Lett. 53, 2302-2307.]); Raghukumar et al. (2003[Raghukumar, V., Thirumalai, D., Ramakrishnan, V. T., Karunakara, V. & Ramamurthy, P. (2003). Tetrahedron, 59, 3761-3768.]); Zhou et al. (2006[Zhou, W.-J., Ji, S.-J. & Shen, Z.-L. (2006). J. Organomet. Chem. 691, 1356-1360.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Chantrapromma et al. (2013[Chantrapromma, S., Suwunwong, T., Ruanwas, P., Quah, C. K. & Fun, H.-K. (2013). Acta Cryst. E69, o1500-o1501.]); Suwunwong et al. (2012[Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o2812-o2813.], 2013[Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2013). J. Chem. Crystallogr. 43, 538-543.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15N3O

  • Mr = 301.34

  • Monoclinic, P 21 /c

  • a = 10.9448 (12) Å

  • b = 18.960 (2) Å

  • c = 7.4738 (8) Å

  • β = 94.743 (2)°

  • V = 1545.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.56 × 0.17 × 0.06 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.995

  • 14200 measured reflections

  • 3696 independent reflections

  • 2689 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.143

  • S = 1.07

  • 3696 reflections

  • 217 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N1⋯N3i 0.915 (19) 2.338 (19) 3.2416 (18) 169.5 (19)
N1—H1N1⋯N3ii 0.91 (2) 2.28 (2) 3.1773 (19) 168 (2)
C11—H11ACg3iii 0.95 2.87 3.7667 (17) 158
C19—H19CCg2iv 0.98 2.69 3.5156 (17) 142
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Nicotinonitrile derivatives are substituted pyridines synthesized from the condensation of α,β-unsaturated ketones with malononitrile (Al-Jaber et al., 2012; Zhou et al., 2006). They have a wide range of bioactivities including antitumor, antimicrobial, analgesic, anti-hyperglycemic and antiproliferative activities (Brandt et al., 2010; El-Sayed et al., 2011; Ji et al., 2007; Kim et al., 2005). Nicotinonitriles also find applications as non-linear optical (Raghukumar et al., 2003) and fluorescent materials (Koner et al., 2012). Continuing our ongoing research on fluorescent materials (Chantrapromma et al., 2013; Suwunwong et al., 2012; 2013), the title compound (I) was synthesized and its fluorescent properties were studied. Our results found that (I) possesses significant fluorescent properties that will be discussed elsewhere, together with those of other closely related compounds. Herein the crystal structure of (I) is reported.

The title compound (I), C19H15N3O, is a non-planar molecule (Fig. 1). The pyridine ring makes dihedral angles of 11.50 (7)° and 43.36 (8)° with the 4-aminophenyl and phenyl rings, respectively, and the dihedral angle between the two phenyl rings is 36.28°. The methoxy group lies in the plane of the pyridine ring with an rms deviation of 0.0102 (1) Å for the eight non-H atoms (C7–C9/C16–C17/C19/N2/O1) and the torsion angle C19–O1–C16–N2 = -1.2 (2)°. The cyano group is also roughly co-planar with the pyridine ring with an rms deviation of 0.0406 (1) Å from the ring plane. The bond distances in (I) agree with the literature values (Allen et al., 1987) and are comparable to those found in closely related structures (Chantrapromma et al., 2013 and Suwunwong et al., 2012; 2013).

In the crystal structure (Fig. 2), molecules are linked by intermolecular N—H···N hydrogen bonds (Table 1) forming screw chains. These chains are further linked by N—H···N hydrogen bonds into a two dimensional structure as wave-like sheets parallel to the (1 0 - 2) plane (Fig. 3). These sheets are stacked by π···π interactions between 4-aminophenyl rings of the adjacent sheets with Cg1···Cg1iii, iv distances of 3.7499 (9) Å; Cg1 is the centroid of the N2/C7–C9/C16–C17 pyridine ring. The crystal is further stabilized by C–H···π interactions (Table 1).

Related literature top

For the synthesis and applications of nicotinonitrile derivatives, see: Al-Jaber et al. (2012); Brandt et al. (2010); El-Sayed et al. (2011); Ji et al. (2007); Kim et al. (2005); Koner et al. (2012); Raghukumar et al. (2003); Zhou et al. (2006). For bond-length data, see: Allen et al. (1987). For related structures, see: Chantrapromma et al. (2013); Suwunwong et al. (2012, 2013).

Experimental top

The title compound (I) was synthesized by stirring a solution of (E)-1-(4-aminophenyl)-3-phenylprop-2-en-1-one (0.22 g, 1 mmol) in methanol (10 ml) with freshly prepared sodium methoxide (1.0 mmol of sodium in 20 ml of methanol). An excess of malononitrile (0.13 g, 2 mmol) was then added with continuous stirring at room temperature until a precipitate was obtained. The resulting solid was filtered. Yellow plate-shaped single crystals of the title compound suitable for X-ray structure determination was recrystallized from ethanol/methanol (1:1 v/v) by slow evaporation of the solvent at room temperature over several days. Mp. 475–476 K.

Refinement top

The amino H atoms were located from difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.95 Å for aromatic and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed approximately along the c axis. N—H···N hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Wave-like sheets of the title compound viewed approximately along the a axis. N—H···N hydrogen bonds are shown as dashed lines.
6-(4-Aminophenyl)-2-methoxy-4-phenylnicotinonitrile top
Crystal data top
C19H15N3OF(000) = 632
Mr = 301.34Dx = 1.295 Mg m3
Monoclinic, P21/cMelting point = 475–476 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.9448 (12) ÅCell parameters from 3696 reflections
b = 18.960 (2) Åθ = 2.2–28.0°
c = 7.4738 (8) ŵ = 0.08 mm1
β = 94.743 (2)°T = 100 K
V = 1545.6 (3) Å3Plate, yellow
Z = 40.56 × 0.17 × 0.06 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3696 independent reflections
Radiation source: sealed tube2689 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.955, Tmax = 0.995k = 2425
14200 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0815P)2 + 0.0098P]
where P = (Fo2 + 2Fc2)/3
3696 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C19H15N3OV = 1545.6 (3) Å3
Mr = 301.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9448 (12) ŵ = 0.08 mm1
b = 18.960 (2) ÅT = 100 K
c = 7.4738 (8) Å0.56 × 0.17 × 0.06 mm
β = 94.743 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3696 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2689 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.995Rint = 0.051
14200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.30 e Å3
3696 reflectionsΔρmin = 0.28 e Å3
217 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41334 (9)0.11886 (5)0.32484 (15)0.0232 (3)
N10.87443 (12)0.47258 (7)0.5990 (2)0.0275 (3)
H2N10.9480 (17)0.4498 (10)0.619 (3)0.036 (5)*
H1N10.8776 (17)0.5170 (11)0.554 (3)0.043 (6)*
N20.48483 (11)0.23181 (6)0.37739 (17)0.0197 (3)
N30.12753 (11)0.11690 (6)0.1173 (2)0.0262 (3)
C10.56914 (12)0.34757 (7)0.4295 (2)0.0188 (3)
C20.56860 (13)0.42059 (7)0.4009 (2)0.0211 (3)
H2A0.49740.44210.34350.025*
C30.66877 (13)0.46216 (7)0.4540 (2)0.0222 (3)
H3A0.66590.51150.43200.027*
C40.77484 (13)0.43173 (7)0.5405 (2)0.0211 (3)
C50.77592 (13)0.35885 (8)0.5715 (2)0.0231 (3)
H5A0.84650.33740.63100.028*
C60.67552 (13)0.31784 (7)0.5163 (2)0.0218 (3)
H6A0.67850.26840.53750.026*
C70.46428 (12)0.30246 (7)0.3692 (2)0.0191 (3)
C80.34949 (13)0.32942 (7)0.3085 (2)0.0193 (3)
H8A0.33650.37900.30800.023*
C90.25383 (12)0.28457 (7)0.2485 (2)0.0188 (3)
C100.13113 (13)0.31369 (7)0.1898 (2)0.0205 (3)
C110.02459 (13)0.28273 (8)0.2451 (2)0.0245 (3)
H11A0.03010.24200.31930.029*
C120.08913 (14)0.31153 (9)0.1918 (2)0.0315 (4)
H12A0.16130.29090.23130.038*
C130.09812 (16)0.37035 (9)0.0810 (3)0.0366 (5)
H13A0.17630.38940.04320.044*
C140.00695 (16)0.40117 (8)0.0257 (3)0.0336 (4)
H14A0.00080.44130.05060.040*
C150.12153 (14)0.37363 (8)0.0814 (2)0.0253 (4)
H15A0.19350.39570.04550.030*
C160.39525 (12)0.18928 (7)0.3197 (2)0.0192 (3)
C170.27805 (12)0.21180 (7)0.2504 (2)0.0196 (3)
C180.19270 (13)0.16011 (7)0.1769 (2)0.0207 (3)
C190.53384 (14)0.09527 (8)0.3919 (2)0.0253 (4)
H19A0.53730.04370.38700.038*
H19B0.55090.11090.51640.038*
H19C0.59520.11520.31790.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0235 (5)0.0159 (5)0.0299 (7)0.0003 (4)0.0009 (5)0.0005 (4)
N10.0209 (7)0.0207 (6)0.0401 (9)0.0028 (5)0.0015 (6)0.0034 (6)
N20.0220 (6)0.0173 (6)0.0195 (7)0.0007 (4)0.0010 (5)0.0008 (5)
N30.0258 (7)0.0226 (6)0.0298 (8)0.0015 (5)0.0006 (6)0.0012 (6)
C10.0190 (7)0.0201 (7)0.0172 (8)0.0004 (5)0.0018 (6)0.0022 (6)
C20.0190 (7)0.0212 (7)0.0231 (8)0.0017 (5)0.0009 (6)0.0008 (6)
C30.0223 (7)0.0166 (6)0.0277 (9)0.0001 (5)0.0020 (6)0.0003 (6)
C40.0192 (7)0.0213 (7)0.0230 (8)0.0025 (5)0.0033 (6)0.0010 (6)
C50.0197 (7)0.0207 (7)0.0285 (9)0.0004 (5)0.0010 (6)0.0004 (6)
C60.0226 (7)0.0169 (6)0.0260 (9)0.0004 (5)0.0023 (6)0.0006 (6)
C70.0231 (7)0.0183 (6)0.0161 (8)0.0008 (5)0.0029 (6)0.0010 (6)
C80.0225 (7)0.0163 (6)0.0190 (8)0.0000 (5)0.0017 (6)0.0013 (6)
C90.0208 (7)0.0202 (7)0.0155 (8)0.0011 (5)0.0028 (5)0.0011 (6)
C100.0225 (7)0.0214 (7)0.0169 (8)0.0010 (5)0.0021 (6)0.0056 (6)
C110.0241 (7)0.0260 (7)0.0233 (9)0.0008 (6)0.0010 (6)0.0077 (7)
C120.0229 (8)0.0363 (8)0.0348 (10)0.0010 (6)0.0002 (7)0.0150 (8)
C130.0314 (9)0.0347 (9)0.0414 (11)0.0114 (7)0.0105 (8)0.0154 (8)
C140.0424 (9)0.0238 (7)0.0323 (10)0.0099 (7)0.0101 (8)0.0056 (7)
C150.0316 (8)0.0200 (7)0.0235 (9)0.0010 (6)0.0023 (7)0.0052 (6)
C160.0240 (7)0.0163 (6)0.0177 (8)0.0014 (5)0.0041 (6)0.0006 (6)
C170.0197 (7)0.0212 (7)0.0179 (8)0.0025 (5)0.0015 (6)0.0011 (6)
C180.0224 (7)0.0194 (6)0.0201 (8)0.0001 (5)0.0016 (6)0.0005 (6)
C190.0280 (8)0.0199 (7)0.0277 (9)0.0030 (6)0.0004 (6)0.0026 (6)
Geometric parameters (Å, º) top
O1—C161.3498 (16)C8—C91.3937 (18)
O1—C191.4427 (17)C8—H8A0.9500
N1—C41.3786 (18)C9—C171.405 (2)
N1—H2N10.916 (19)C9—C101.4844 (18)
N1—H1N10.91 (2)C10—C151.395 (2)
N2—C161.3144 (17)C10—C111.398 (2)
N2—C71.3589 (17)C11—C121.387 (2)
N3—C181.1513 (18)C11—H11A0.9500
C1—C21.401 (2)C12—C131.388 (3)
C1—C61.4032 (18)C12—H12A0.9500
C1—C71.4718 (18)C13—C141.383 (3)
C2—C31.3815 (19)C13—H13A0.9500
C2—H2A0.9500C14—C151.390 (2)
C3—C41.4052 (19)C14—H14A0.9500
C3—H3A0.9500C15—H15A0.9500
C4—C51.401 (2)C16—C171.4094 (19)
C5—C61.3811 (19)C17—C181.4317 (19)
C5—H5A0.9500C19—H19A0.9800
C6—H6A0.9500C19—H19B0.9800
C7—C81.3968 (19)C19—H19C0.9800
C16—O1—C19116.38 (10)C15—C10—C11119.30 (13)
C4—N1—H2N1116.6 (11)C15—C10—C9119.85 (13)
C4—N1—H1N1117.2 (12)C11—C10—C9120.84 (14)
H2N1—N1—H1N1116.0 (17)C12—C11—C10120.01 (15)
C16—N2—C7118.28 (12)C12—C11—H11A120.0
C2—C1—C6117.41 (12)C10—C11—H11A120.0
C2—C1—C7122.29 (12)C11—C12—C13120.37 (16)
C6—C1—C7120.29 (12)C11—C12—H12A119.8
C3—C2—C1121.80 (13)C13—C12—H12A119.8
C3—C2—H2A119.1C14—C13—C12119.87 (15)
C1—C2—H2A119.1C14—C13—H13A120.1
C2—C3—C4120.24 (13)C12—C13—H13A120.1
C2—C3—H3A119.9C13—C14—C15120.24 (16)
C4—C3—H3A119.9C13—C14—H14A119.9
N1—C4—C5120.41 (13)C15—C14—H14A119.9
N1—C4—C3121.11 (13)C14—C15—C10120.19 (16)
C5—C4—C3118.45 (12)C14—C15—H15A119.9
C6—C5—C4120.69 (13)C10—C15—H15A119.9
C6—C5—H5A119.7N2—C16—O1119.59 (12)
C4—C5—H5A119.7N2—C16—C17124.49 (13)
C5—C6—C1121.41 (13)O1—C16—C17115.92 (12)
C5—C6—H6A119.3C9—C17—C16117.80 (12)
C1—C6—H6A119.3C9—C17—C18123.51 (12)
N2—C7—C8121.10 (12)C16—C17—C18118.60 (13)
N2—C7—C1115.91 (12)N3—C18—C17177.54 (15)
C8—C7—C1122.99 (12)O1—C19—H19A109.5
C9—C8—C7120.85 (12)O1—C19—H19B109.5
C9—C8—H8A119.6H19A—C19—H19B109.5
C7—C8—H8A119.6O1—C19—H19C109.5
C8—C9—C17117.39 (12)H19A—C19—H19C109.5
C8—C9—C10120.36 (12)H19B—C19—H19C109.5
C17—C9—C10122.24 (12)
C6—C1—C2—C30.6 (2)C8—C9—C10—C11135.09 (16)
C7—C1—C2—C3178.29 (15)C17—C9—C10—C1143.4 (2)
C1—C2—C3—C40.5 (2)C15—C10—C11—C120.2 (2)
C2—C3—C4—N1178.14 (15)C9—C10—C11—C12178.71 (14)
C2—C3—C4—C50.2 (2)C10—C11—C12—C131.1 (2)
N1—C4—C5—C6178.73 (16)C11—C12—C13—C141.0 (3)
C3—C4—C5—C60.7 (2)C12—C13—C14—C150.3 (3)
C4—C5—C6—C10.7 (2)C13—C14—C15—C101.6 (3)
C2—C1—C6—C50.0 (2)C11—C10—C15—C141.5 (2)
C7—C1—C6—C5178.90 (15)C9—C10—C15—C14179.94 (14)
C16—N2—C7—C82.8 (2)C7—N2—C16—O1179.46 (13)
C16—N2—C7—C1177.88 (13)C7—N2—C16—C170.5 (2)
C2—C1—C7—N2169.00 (15)C19—O1—C16—N21.2 (2)
C6—C1—C7—N29.9 (2)C19—O1—C16—C17178.69 (14)
C2—C1—C7—C811.7 (2)C8—C9—C17—C162.7 (2)
C6—C1—C7—C8169.48 (15)C10—C9—C17—C16175.87 (14)
N2—C7—C8—C92.3 (2)C8—C9—C17—C18173.75 (14)
C1—C7—C8—C9178.41 (14)C10—C9—C17—C187.7 (2)
C7—C8—C9—C170.5 (2)N2—C16—C17—C92.3 (2)
C7—C8—C9—C10178.05 (14)O1—C16—C17—C9177.76 (14)
C8—C9—C10—C1543.4 (2)N2—C16—C17—C18174.30 (15)
C17—C9—C10—C15138.05 (15)O1—C16—C17—C185.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H2N1···N3i0.915 (19)2.338 (19)3.2416 (18)169.5 (19)
N1—H1N1···N3ii0.91 (2)2.28 (2)3.1773 (19)168 (2)
C11—H11A···Cg3iii0.952.873.7667 (17)158
C19—H19C···Cg2iv0.982.693.5156 (17)142
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z1/2; (iv) x, y1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H2N1···N3i0.915 (19)2.338 (19)3.2416 (18)169.5 (19)
N1—H1N1···N3ii0.91 (2)2.28 (2)3.1773 (19)168 (2)
C11—H11A···Cg3iii0.952.873.7667 (17)158
C19—H19C···Cg2iv0.982.693.5156 (17)142
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z1/2; (iv) x, y1/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

TS and SC thank the Thailand Research Fund through the Royal Golden Jubilee PhD Program (grant No. PHD/0257/2553) for financial support. The authors extend their appreciation to the Prince of Songkla University and the Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.

References

First citationAl-Jaber, N. A., Bougasim, A. S. A. & Karah, M. M. S. (2012). J. Saudi Chem. Soc. 16, 45–53.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrandt, W., Mologni, L., Preu, L., Lemcke, T., Gambacorti-Passerini, C. & Kunick, C. (2010). Eur. J. Med. Chem. 45, 2919–2927.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Suwunwong, T., Ruanwas, P., Quah, C. K. & Fun, H.-K. (2013). Acta Cryst. E69, o1500–o1501.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEl-Sayed, H. A., Moustafa, A. H., Haikal, A. E.-F. Z., Abu-El-Halawa, R. & Ashry, E. S. H. E. (2011). Eur. J. Med. Chem. 46, 2948–2954.  Web of Science CAS PubMed Google Scholar
First citationJi, J., Bunnelle, W. H., Anderson, D. J., Faltynek, C., Dyhring, T., Ahring, P. K., Rueter, L. E., Curzon, P., Buckley, M. J., Marsh, K. C., Kempf-Grote, A. & Meyer, M. D. (2007). Biochem. Pharmacol. 74, 1253–1262.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, K.-R., Rhee, S.-D., Kim, H. Y., Jung, W. H., Yang, S.-D., Kim, S. S., Ahn, J. H. & Cheon, H. G. (2005). Eur. J. Pharmacol. 518, 63–70.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoner, R. R., Sinha, S., Kumar, S., Nandi, C. K. & Ghosh, S. (2012). Tetrahedron Lett. 53, 2302–2307.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRaghukumar, V., Thirumalai, D., Ramakrishnan, V. T., Karunakara, V. & Ramamurthy, P. (2003). Tetrahedron, 59, 3761–3768.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o2812–o2813.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S. & Fun, H.-K. (2013). J. Chem. Crystallogr. 43, 538–543.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, W.-J., Ji, S.-J. & Shen, Z.-L. (2006). J. Organomet. Chem. 691, 1356–1360.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1816-o1817
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds