organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1851-o1852

2-[(E)-2-(4-Hy­dr­oxy-3-meth­­oxy­phen­yl)ethen­yl]-1-methylpyridinium 4-bromo­benzene­sulfonate monohydrate

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bFaculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 16 November 2013; accepted 22 November 2013; online 30 November 2013)

The title salt crystallized as the monohydrate C15H16NO2+·C6H4BrSO3·H2O. The cation exists in an E conformation with respect to the ethynyl bond and is essentially planar, with a dihedral angle of 6.52 (14)° between the pyridinium and the benzene rings. The hy­droxy and meth­oxy substituents are coplanar with the benzene ring to which they are attached, with an r.m.s. deviation of 0.0116 (3) Å for the nine non-H atoms [Cmeth­yl—O—C—C torsion angle = −0.8 (4)°]. In the crystal, the cations and anions are stacked by ππ inter­actions, with centroid–centroid distances of 3.7818 (19) and 3.9004 (17) Å. The cations, anions and water mol­ecules are linked by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

For applications of stilbene derivatives, see: Chanawanno et al. (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]); Frombaum et al. (2012[Frombaum, M., Le Clanche, S., Bonnefont-Rousselot, D. & Borderie, D. (2012). Biochimie, 94, 269-276.]); Hussain et al. (2009[Hussain, M., Khan, K. M., Ali, S. I., Parveen, R. & Shim, W. S. (2009). Fibers Polym. 10, 407-412.]); Jindawong et al. (2005[Jindawong, B., Chantrapromma, S., Fun, H.-K., Yu, X.-L. & Karalai, C. (2005). Acta Cryst. E61, o1340-o1342.]); Kobkeatthawin et al. (2009[Kobkeatthawin, T., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o76-o77.]); Li et al. (2013[Li, X., Lu, H., He, D., Luo, C. & Huang, J. (2013). J. Fluoresc. 23, 1039-1044.]); Ruanwas et al. (2010[Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padakid, M. & Isloor, A. M. (2010). Synth. Met. 160, 819-824.]). For related structures, see, Chanawanno et al. (2009[Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2009). X-ray Struct. Anal. Online, 25, 127-128.]); Chantrapromma et al. (2013[Chantrapromma, S., Ruanwas, P., Jindawong, B. & Fun, H.-K. (2013). Acta Cryst. E69, o1623-o1624.]); Fun et al. (2011[Fun, H. K., Chantrapromma, S. & Jansrisewangwong, P. (2011). Acta Cryst. E67, o105-o106.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16NO2+·C6H4BrO3S·H2O

  • Mr = 496.37

  • Triclinic, [P \overline 1]

  • a = 9.8201 (13) Å

  • b = 10.3315 (14) Å

  • c = 12.4914 (17) Å

  • α = 99.898 (2)°

  • β = 111.134 (2)°

  • γ = 107.042 (2)°

  • V = 1074.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.05 mm−1

  • T = 100 K

  • 0.59 × 0.15 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.378, Tmax = 0.768

  • 11172 measured reflections

  • 4186 independent reflections

  • 3356 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.113

  • S = 1.05

  • 4186 reflections

  • 281 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1Wi 0.82 1.88 2.685 (4) 169
O1W—H2W1⋯O4ii 0.81 (5) 2.03 (5) 2.834 (4) 172 (5)
O1W—H1W1⋯O3iii 0.81 (4) 1.99 (5) 2.793 (5) 173 (5)
C1—H1A⋯O5iv 0.93 2.57 3.491 (4) 170
C2—H2A⋯O1v 0.93 2.51 3.440 (4) 176
C2—H2A⋯O2v 0.93 2.60 3.183 (4) 121
C3—H3A⋯O2v 0.93 2.54 3.160 (4) 124
C14—H14A⋯O4iv 0.96 2.54 3.448 (5) 158
Symmetry codes: (i) x-1, y, z-1; (ii) x-1, y, z; (iii) -x+1, -y, -z+1; (iv) -x+2, -y+1, -z+1; (v) x+1, y+1, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Stilbene-based compounds have been reported to possess a wide range of biological activities including antibacterial (Chanawanno et al., 2010) and antioxidant (Frombaum et al., 2012) activities and also non-linear optical (Ruanwas et al., 2010) and fluorescent properties (Li et al., 2013). We have previously reported several crystal structures and applications of stilbene derivatives (Chanawanno et al., 2009; 2010, Kobkeatthawin et al., 2009, Ruanwas et al., 2010). Due to these interesting properties, the title pyridinium-stilbene salt, (I), was synthesized. We report herein the synthesis and crystal structure of (I).

The asymmetric unit of (I) consists of a C15H16NO2+ cation, a C6H4BrSO3- anion and an H2O molecule (Fig. 1). The cation exists in an E configuration with respect to the C6 C7 double bond [1.318 (4) Å] and the C5—C6—C7—C8 torsion angle is -178.0 (3)°. The cation is essentially planar with a dihedral angle between the pyridinium and benzene rings of the cation being 6.52 (14)°. The hydroxy and methoxy substituents lie close to the plane of the C8–C13 benzene ring with the r.m.s. deviation of 0.0116 (3) Å for the nine non-H atoms and with the torsion angle C15–O1–C10–C9 = -0.8 (4)°. All bond lengths (Allen et al., 1987) in both the cation and anion are normal and compare well with those found in closely related structures (Chanawanno et al., 2009; Chantrapromma et al., 2013; Fun et al., 2011).

In the crystal packing (Fig. 2), weak C2—H2A···O1 and C3—H3A···O2 interactions (Table 1) link together two inversely-related adjacent cations, generating an R22(8) ring motif (Bernstein et al., 1995). The O1W—H1W1···O3 and O1W—H2W1···O4 hydrogen bonds (Table 1) linked between two water molecules and two anions forming an R24(12) ring motif. The cations, anions and water molecules are further linked through intermolecular O–H···O hydrogen bonds and weak C—H···O interactions into a three dimensional network (Fig. 2 and Table 1). ππ interactions with distances Cg1···Cg3vi = 3.7818 (19) Å and Cg2···Cg3ii = 3.9004 (17) Å were observed (Fig. 3); Cg1, Cg2 and Cg3 are the centroids of C1–C5/N1, C8–C13 and C16–C21 rings, respectively [symmetry code (vi) = 1 - x, 1 - y, 1 - z].

Related literature top

For applications of stilbene derivatives, see: Chanawanno et al. (2010); Frombaum et al. (2012); Hussain et al. (2009); Jindawong et al. (2005); Kobkeatthawin et al. (2009); Li et al. (2013); Ruanwas et al. (2010). For related structures, see, Chanawanno et al. (2009); Chantrapromma et al. (2013); Fun et al. (2011). For bond-length data, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986).

Experimental top

1-Methyl-2-[(E)-2-(3-methoxy-4-hydroxyphenyl)ethenyl]pyridinium iodide (compound A) was prepared by mixing a solution (1:1:1 molar ratio) of 1,2-dimethylpyridinium iodide (3.02 g, 12.84 mmol), vanillin (4-hydroxy-3-methoxybenzaldehyde, 1.95 g, 12.82 mmol) and piperidine (1.09 g, 12.80 mmol). The resulting solution was refluxed for 3 h under a nitrogen atmosphere. The solid which formed was filtered, washed with diethylether and recrystallized from methanol, to give brown crystals of compound A (2.69 g, 57% yield Mp. 526–527 K). Thereafter, the title compound was synthesized by mixing a solution of compound A (0.21 g, 0.58 mmol) in hot methanol (60 ml) and a solution of silver (I) 4-bromobenzenesulfonate (Jindawong et al., 2005), (0.20 g, 0.58 mmol) in hot methanol (40 ml). Upon mixing, a yellow precipitate of silver iodide was immediately formed which was removed by filtration and the orange filtrate was evaporated under reduced pressure to yield the title compound as an orange solid (0.27 g, 91% yield). Orange block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature over several days, Mp. 490–491 K.

Refinement top

Water H atoms were located in difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O—H) = 0.82 Å, d(C—H) = 0.93 Å for aromatic and CH, and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed approximately along the b axis. Only H atoms involved in O—H···O hydrogen bonds and weak C—H···O interactions are shown for clarity. Hydrogen bonds are drawn as dashed lines.
[Figure 3] Fig. 3. ππ interactions between aromatic rings of the cations and anions.
2-[(E)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-methylpyridinium 4-bromobenzenesulfonate monohydrate top
Crystal data top
C15H16NO2+·C6H4BrO3S·H2OZ = 2
Mr = 496.37F(000) = 508
Triclinic, P1Dx = 1.535 Mg m3
Hall symbol: -P 1Melting point = 490–491 K
a = 9.8201 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3315 (14) ÅCell parameters from 4186 reflections
c = 12.4914 (17) Åθ = 1.8–26.0°
α = 99.898 (2)°µ = 2.05 mm1
β = 111.134 (2)°T = 100 K
γ = 107.042 (2)°Block, orange
V = 1074.1 (3) Å30.59 × 0.15 × 0.14 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4186 independent reflections
Radiation source: sealed tube3356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.378, Tmax = 0.768k = 1212
11172 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.8763P]
where P = (Fo2 + 2Fc2)/3
4186 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
C15H16NO2+·C6H4BrO3S·H2Oγ = 107.042 (2)°
Mr = 496.37V = 1074.1 (3) Å3
Triclinic, P1Z = 2
a = 9.8201 (13) ÅMo Kα radiation
b = 10.3315 (14) ŵ = 2.05 mm1
c = 12.4914 (17) ÅT = 100 K
α = 99.898 (2)°0.59 × 0.15 × 0.14 mm
β = 111.134 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4186 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3356 reflections with I > 2σ(I)
Tmin = 0.378, Tmax = 0.768Rint = 0.021
11172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.93 e Å3
4186 reflectionsΔρmin = 0.94 e Å3
281 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.41562 (5)0.27735 (5)0.15160 (5)0.0940 (2)
S11.07185 (8)0.19371 (9)0.35750 (8)0.0644 (2)
O10.2430 (2)0.1320 (2)0.12616 (19)0.0664 (6)
O20.4997 (2)0.1780 (2)0.22714 (18)0.0617 (5)
H1O20.58070.19420.24560.092*
O31.0331 (3)0.0475 (3)0.3536 (3)0.1036 (10)
O41.1634 (3)0.2910 (3)0.4784 (2)0.1020 (9)
O51.1441 (3)0.2289 (3)0.2791 (3)0.0922 (8)
N10.3889 (2)0.6912 (2)0.43554 (19)0.0449 (5)
C10.4991 (3)0.7901 (3)0.5431 (2)0.0542 (7)
H1A0.59570.78230.58120.065*
C20.4719 (4)0.8995 (3)0.5961 (3)0.0566 (7)
H2A0.54830.96600.66980.068*
C30.3287 (4)0.9101 (3)0.5387 (3)0.0586 (7)
H3A0.30800.98480.57320.070*
C40.2177 (3)0.8115 (3)0.4318 (3)0.0555 (7)
H4A0.12150.81990.39360.067*
C50.2451 (3)0.6974 (3)0.3778 (2)0.0455 (6)
C60.1282 (3)0.5869 (3)0.2659 (2)0.0478 (6)
H6A0.15320.51140.23880.057*
C70.0113 (3)0.5867 (3)0.2003 (2)0.0492 (6)
H7A0.03200.66480.22810.059*
C80.1367 (3)0.4785 (3)0.0895 (2)0.0435 (6)
C90.1236 (3)0.3541 (3)0.0378 (2)0.0443 (6)
H9A0.03180.33840.07500.053*
C100.2452 (3)0.2549 (3)0.0674 (2)0.0446 (6)
C110.3846 (3)0.2778 (3)0.1224 (2)0.0446 (6)
C120.3978 (3)0.3996 (3)0.0715 (2)0.0484 (6)
H12A0.49020.41480.10790.058*
C130.2746 (3)0.4999 (3)0.0333 (2)0.0513 (6)
H13A0.28430.58250.06650.062*
C140.4288 (3)0.5777 (3)0.3817 (3)0.0575 (7)
H14A0.53700.59390.43040.086*
H14B0.41480.57820.30170.086*
H14C0.36070.48710.37800.086*
C150.1033 (4)0.1044 (4)0.0758 (3)0.0733 (10)
H15A0.11620.01600.12600.110*
H15B0.08470.09840.00380.110*
H15C0.01470.18020.07120.110*
C160.8901 (3)0.2169 (3)0.3001 (2)0.0474 (6)
C170.8818 (4)0.3438 (3)0.3475 (3)0.0577 (7)
H17A0.97130.41640.41030.069*
C180.7421 (4)0.3636 (3)0.3025 (3)0.0649 (8)
H18A0.73650.44920.33390.078*
C190.6110 (3)0.2548 (3)0.2102 (3)0.0568 (7)
C200.6163 (3)0.1274 (3)0.1621 (3)0.0547 (7)
H20A0.52590.05460.10020.066*
C210.7575 (3)0.1089 (3)0.2070 (2)0.0519 (6)
H21A0.76330.02380.17440.062*
O1W0.2172 (3)0.1988 (3)0.6854 (3)0.0753 (7)
H2W10.196 (5)0.217 (5)0.622 (4)0.093 (16)*
H1W10.148 (5)0.124 (4)0.671 (3)0.079 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0699 (3)0.1027 (3)0.1419 (4)0.0567 (2)0.0504 (3)0.0641 (3)
S10.0390 (4)0.0670 (5)0.0786 (6)0.0186 (3)0.0175 (4)0.0237 (4)
O10.0524 (11)0.0487 (11)0.0694 (13)0.0257 (9)0.0008 (10)0.0031 (10)
O20.0436 (10)0.0497 (11)0.0594 (12)0.0154 (9)0.0018 (9)0.0002 (9)
O30.0558 (14)0.0819 (17)0.171 (3)0.0330 (13)0.0319 (16)0.0612 (19)
O40.0677 (16)0.118 (2)0.0798 (18)0.0354 (16)0.0017 (14)0.0105 (16)
O50.0644 (15)0.112 (2)0.122 (2)0.0398 (15)0.0553 (16)0.0469 (18)
N10.0371 (11)0.0485 (12)0.0416 (12)0.0127 (9)0.0123 (9)0.0139 (10)
C10.0380 (14)0.0643 (18)0.0439 (15)0.0100 (13)0.0079 (12)0.0178 (13)
C20.0526 (16)0.0527 (16)0.0403 (15)0.0047 (13)0.0113 (13)0.0048 (12)
C30.0587 (18)0.0557 (17)0.0496 (16)0.0162 (14)0.0207 (14)0.0056 (13)
C40.0462 (15)0.0586 (17)0.0508 (16)0.0210 (13)0.0139 (13)0.0065 (13)
C50.0386 (13)0.0493 (15)0.0412 (14)0.0135 (11)0.0133 (11)0.0125 (11)
C60.0393 (13)0.0471 (14)0.0441 (14)0.0154 (11)0.0103 (11)0.0042 (11)
C70.0467 (14)0.0477 (15)0.0440 (14)0.0187 (12)0.0133 (12)0.0062 (12)
C80.0391 (13)0.0471 (14)0.0377 (13)0.0163 (11)0.0118 (11)0.0092 (11)
C90.0344 (12)0.0466 (14)0.0454 (14)0.0168 (11)0.0097 (11)0.0137 (11)
C100.0416 (13)0.0389 (13)0.0461 (14)0.0150 (11)0.0130 (11)0.0107 (11)
C110.0362 (12)0.0407 (13)0.0424 (14)0.0091 (10)0.0075 (11)0.0104 (11)
C120.0361 (13)0.0537 (15)0.0470 (15)0.0202 (12)0.0092 (11)0.0110 (12)
C130.0462 (15)0.0524 (15)0.0478 (15)0.0246 (12)0.0124 (12)0.0063 (12)
C140.0448 (15)0.0613 (17)0.0609 (18)0.0240 (13)0.0149 (13)0.0182 (14)
C150.0608 (19)0.0602 (19)0.084 (2)0.0365 (16)0.0133 (17)0.0043 (17)
C160.0414 (13)0.0529 (15)0.0481 (15)0.0163 (12)0.0204 (12)0.0178 (12)
C170.0547 (17)0.0511 (16)0.0597 (18)0.0130 (13)0.0259 (15)0.0107 (14)
C180.070 (2)0.0483 (16)0.089 (2)0.0268 (15)0.0453 (19)0.0212 (16)
C190.0525 (16)0.0658 (19)0.0734 (19)0.0317 (15)0.0359 (15)0.0370 (16)
C200.0464 (15)0.0619 (17)0.0501 (16)0.0190 (13)0.0174 (13)0.0159 (13)
C210.0498 (15)0.0536 (16)0.0513 (16)0.0227 (13)0.0217 (13)0.0098 (13)
O1W0.0510 (14)0.0705 (17)0.0782 (19)0.0190 (13)0.0064 (12)0.0174 (14)
Geometric parameters (Å, º) top
Br1—C191.892 (3)C8—C91.398 (4)
S1—O31.433 (3)C9—C101.375 (4)
S1—O51.438 (3)C9—H9A0.9300
S1—O41.438 (3)C10—C111.404 (4)
S1—C161.773 (3)C11—C121.373 (4)
O1—C101.363 (3)C12—C131.382 (4)
O1—C151.425 (3)C12—H12A0.9300
O2—C111.356 (3)C13—H13A0.9300
O2—H1O20.8200C14—H14A0.9600
N1—C11.360 (3)C14—H14B0.9600
N1—C51.361 (3)C14—H14C0.9600
N1—C141.473 (4)C15—H15A0.9600
C1—C21.355 (4)C15—H15B0.9600
C1—H1A0.9300C15—H15C0.9600
C2—C31.376 (4)C16—C211.380 (4)
C2—H2A0.9300C16—C171.381 (4)
C3—C41.357 (4)C17—C181.373 (4)
C3—H3A0.9300C17—H17A0.9300
C4—C51.400 (4)C18—C191.374 (5)
C4—H4A0.9300C18—H18A0.9300
C5—C61.449 (4)C19—C201.374 (4)
C6—C71.318 (4)C20—C211.380 (4)
C6—H6A0.9300C20—H20A0.9300
C7—C81.454 (4)C21—H21A0.9300
C7—H7A0.9300O1W—H2W10.81 (4)
C8—C131.385 (4)O1W—H1W10.80 (4)
O3—S1—O5112.54 (19)O2—C11—C12122.9 (2)
O3—S1—O4112.9 (2)O2—C11—C10117.3 (2)
O5—S1—O4112.02 (19)C12—C11—C10119.8 (2)
O3—S1—C16106.57 (14)C11—C12—C13120.4 (2)
O5—S1—C16105.90 (14)C11—C12—H12A119.8
O4—S1—C16106.35 (15)C13—C12—H12A119.8
C10—O1—C15117.7 (2)C12—C13—C8120.6 (2)
C11—O2—H1O2109.5C12—C13—H13A119.7
C1—N1—C5121.0 (2)C8—C13—H13A119.7
C1—N1—C14118.6 (2)N1—C14—H14A109.5
C5—N1—C14120.4 (2)N1—C14—H14B109.5
C2—C1—N1121.7 (3)H14A—C14—H14B109.5
C2—C1—H1A119.1N1—C14—H14C109.5
N1—C1—H1A119.1H14A—C14—H14C109.5
C1—C2—C3118.6 (3)H14B—C14—H14C109.5
C1—C2—H2A120.7O1—C15—H15A109.5
C3—C2—H2A120.7O1—C15—H15B109.5
C4—C3—C2120.1 (3)H15A—C15—H15B109.5
C4—C3—H3A120.0O1—C15—H15C109.5
C2—C3—H3A120.0H15A—C15—H15C109.5
C3—C4—C5121.3 (3)H15B—C15—H15C109.5
C3—C4—H4A119.4C21—C16—C17120.0 (3)
C5—C4—H4A119.4C21—C16—S1120.0 (2)
N1—C5—C4117.3 (2)C17—C16—S1120.0 (2)
N1—C5—C6119.4 (2)C18—C17—C16120.4 (3)
C4—C5—C6123.3 (2)C18—C17—H17A119.8
C7—C6—C5124.1 (3)C16—C17—H17A119.8
C7—C6—H6A118.0C17—C18—C19118.9 (3)
C5—C6—H6A118.0C17—C18—H18A120.6
C6—C7—C8127.6 (3)C19—C18—H18A120.6
C6—C7—H7A116.2C18—C19—C20121.7 (3)
C8—C7—H7A116.2C18—C19—Br1119.4 (2)
C13—C8—C9118.9 (2)C20—C19—Br1118.8 (2)
C13—C8—C7118.4 (2)C19—C20—C21119.1 (3)
C9—C8—C7122.7 (2)C19—C20—H20A120.5
C10—C9—C8120.7 (2)C21—C20—H20A120.5
C10—C9—H9A119.7C16—C21—C20119.9 (3)
C8—C9—H9A119.7C16—C21—H21A120.0
O1—C10—C9125.3 (2)C20—C21—H21A120.0
O1—C10—C11115.1 (2)H2W1—O1W—H1W1105 (4)
C9—C10—C11119.6 (2)
C5—N1—C1—C21.1 (4)O1—C10—C11—C12178.8 (2)
C14—N1—C1—C2178.2 (3)C9—C10—C11—C120.8 (4)
N1—C1—C2—C30.2 (4)O2—C11—C12—C13177.9 (3)
C1—C2—C3—C40.6 (5)C10—C11—C12—C130.1 (4)
C2—C3—C4—C50.2 (5)C11—C12—C13—C80.7 (4)
C1—N1—C5—C41.9 (4)C9—C8—C13—C120.5 (4)
C14—N1—C5—C4177.4 (3)C7—C8—C13—C12179.4 (3)
C1—N1—C5—C6177.4 (2)O3—S1—C16—C2136.2 (3)
C14—N1—C5—C63.3 (4)O5—S1—C16—C2183.9 (3)
C3—C4—C5—N11.5 (4)O4—S1—C16—C21156.8 (2)
C3—C4—C5—C6177.8 (3)O3—S1—C16—C17144.8 (3)
N1—C5—C6—C7176.7 (3)O5—S1—C16—C1795.2 (3)
C4—C5—C6—C74.1 (4)O4—S1—C16—C1724.2 (3)
C5—C6—C7—C8178.0 (3)C21—C16—C17—C180.0 (4)
C6—C7—C8—C13179.1 (3)S1—C16—C17—C18179.0 (2)
C6—C7—C8—C91.0 (5)C16—C17—C18—C190.4 (5)
C13—C8—C9—C100.4 (4)C17—C18—C19—C200.1 (5)
C7—C8—C9—C10179.8 (2)C17—C18—C19—Br1177.5 (2)
C15—O1—C10—C90.8 (4)C18—C19—C20—C210.6 (5)
C15—O1—C10—C11178.8 (3)Br1—C19—C20—C21178.2 (2)
C8—C9—C10—O1178.6 (3)C17—C16—C21—C200.7 (4)
C8—C9—C10—C111.0 (4)S1—C16—C21—C20179.7 (2)
O1—C10—C11—O20.8 (4)C19—C20—C21—C161.0 (4)
C9—C10—C11—O2178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1Wi0.821.882.685 (4)169
O1W—H2W1···O4ii0.81 (5)2.03 (5)2.834 (4)172 (5)
O1W—H1W1···O3iii0.81 (4)1.99 (5)2.793 (5)173 (5)
C1—H1A···O5iv0.932.573.491 (4)170
C2—H2A···O1v0.932.513.440 (4)176
C2—H2A···O2v0.932.603.183 (4)121
C3—H3A···O2v0.932.543.160 (4)124
C14—H14A···O4iv0.962.543.448 (5)158
Symmetry codes: (i) x1, y, z1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1Wi0.821.882.685 (4)169
O1W—H2W1···O4ii0.81 (5)2.03 (5)2.834 (4)172 (5)
O1W—H1W1···O3iii0.81 (4)1.99 (5)2.793 (5)173 (5)
C1—H1A···O5iv0.932.573.491 (4)170
C2—H2A···O1v0.932.513.440 (4)176
C2—H2A···O2v0.932.603.183 (4)121
C3—H3A···O2v0.932.543.160 (4)124
C14—H14A···O4iv0.962.543.448 (5)158
Symmetry codes: (i) x1, y, z1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Prince of Songkla University for generous support and also thank the Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChanawanno, K., Chantrapromma, S. & Fun, H.-K. (2009). X-ray Struct. Anal. Online, 25, 127–128.  CSD CrossRef CAS Google Scholar
First citationChantrapromma, S., Ruanwas, P., Jindawong, B. & Fun, H.-K. (2013). Acta Cryst. E69, o1623–o1624.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrombaum, M., Le Clanche, S., Bonnefont-Rousselot, D. & Borderie, D. (2012). Biochimie, 94, 269–276.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFun, H. K., Chantrapromma, S. & Jansrisewangwong, P. (2011). Acta Cryst. E67, o105–o106.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHussain, M., Khan, K. M., Ali, S. I., Parveen, R. & Shim, W. S. (2009). Fibers Polym. 10, 407–412.  Web of Science CrossRef CAS Google Scholar
First citationJindawong, B., Chantrapromma, S., Fun, H.-K., Yu, X.-L. & Karalai, C. (2005). Acta Cryst. E61, o1340–o1342.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKobkeatthawin, T., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o76–o77.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, X., Lu, H., He, D., Luo, C. & Huang, J. (2013). J. Fluoresc. 23, 1039–1044.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRuanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padakid, M. & Isloor, A. M. (2010). Synth. Met. 160, 819–824.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1851-o1852
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds