organic compounds
A P212121 polymorph of (+)-clusianone
aCenter for Natural and Medicinal Product Research, School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia, bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, and cDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, Malaysia
*Correspondence e-mail: tengjin.khoo@nottingham.edu.my
The title compound, C33H42O4 [systematic name: (1S,5S,7R)-3-benzoyl-4-hydroxy-8,8-dimethyl-1,5,7-tris(3-methylbut-2-enyl)bicyclo[3.3.1]nona-3-ene-2,9-dione], has a central bicyclo[3.3.1]nonane-2,4,9-trione surrounded by tetraprenylated and benzoyl groups. The compound was recrystallized several times in methanol using both a slow evaporation method and with a crystal-seeding technique. This subsequently produced diffraction-quality crystals which crystallize in the orthorhombic P212121, in contrast to a previous report of a in the Pna21 [McCandlish et al. (1976). Acta Cryst. B32, 1793–1801]. The title compound has a melting point of 365–366 K, and a specific rotation [α]20 value of +51.94°. A strong intramolecular O—H⋯O hydrogen bond is noted. In the crystal, molecules are assembled in the ab plane by weak C—H⋯O interactions.
CCDC reference: 971489
Related literature
For related structural studies, see: McCandlish et al. (1976); Santos et al. (1998, 2001). For background to Clusiaceae metabolites, see: Monache et al. (1991); de Oliveira et al. (1996). For discussion of polycyclic polyprenylated acylphloroglucinols, including their biological properties, see: Piccinelli et al. (2005); Garnsey et al. (2011); Simpkins (2013).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003; Cooper et al., 2010); molecular graphics: CAMERON (Watkin et al., 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 971489
10.1107/S1600536813031036/tk5270sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813031036/tk5270Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813031036/tk5270Isup3.cml
Clusianone is a polycyclic polyprenylated acylpholroglucinols (PPAP) isolated from the plants of the family Clusiaceae (Guttiferae) and has gained considerable interest from both the natural product and synthetic chemistry community due to its potential bioactivity. Clusianone, both naturally occurring and synthetic, exhibits anti-HIV (Piccinelli et al., 2005; Garnsey et al., 2011) and anti-cancer properties (Simpkins, 2013).
Clusianone was isolated from the roots of Clusia congestiflora and analysis of X-ray diffraction has firmly established the equatorial orientation of the 3-methyl-2-butenyl group at C-7 which crystallized in the Pna21
(McCandlish et al., 1976). Subsequent isolation of the compound from Clusia Sandiensis (Monache et al., 1991) and Clusia spiritu-santensis (de Oliveira et al., 1996) led to NMR studies of clusianone and its methyl derivative, respectively, but gave contradictory NMR data for clusianone. Unfortunately, due to the complexity of the data and the unavailability of authentic sample of clusianone, no report was made of the C7 stereochemistry. Santos and co-workers isolated 7-epiclusianone from Rheedia gardneriana and reported its NMR and X-ray showing the C7 exo (Santos et al., 1998; Santos et al., 2001). Thereafter, the of (+)-7- epiclusianone possessing an axial C7-prenyl group while comparison to clusianone isolated from the roots of Clusia congestiflora (McCandlish et al., 1976) had the C7-prenyl group as equatorial. The title compound's epimer (+)-7- epiclusianone crystallized in of P212121 (Santos et al., 1998).To date, the
of (+)-clusianone determined by X-ray crystallography at room temperature has been only confirmed by (McCandlish et al., 1976). Previously reported clusianone isolated from Clusia congestiflora crystallizes in the Pna21 The crystal was obtained from a 95% ethanol solution (McCandlish et al.,1976). However, the lack of the specific of the clusianone isolated by McCandlish et al. (1976) indicates that further investigation might be required to discover the uncertainty in stereochemistry of this compound.Herein, we report the clusianone with melting point 365–366 K and a specific rotation [α]20 value of +51.94 °. We report (+)-clusianone to crystallize in the orthorhombic P212121, Fig. 1, when crystals were isolated from methanol solution. Intramolecular O—H···O hydrogen bonds are noted, Table 1. Supramolecular layers in the ab plane are stabilised by weak C—H···O interactions, Fig. 2. The different solvent used to crystallize the compound might be the reason for the polymorph occurance.
G. Parvifolia leaves were collected from trees in a reserved forest, Sungai Congkak, Selangor, Malaysia. The leaves (133 g) were dried, powdered and macerated with n-hexane (3 x 1.0 L) frequently over three days. Each maceration were filtered, evaporated and then dried using a rotary evaporator under reduced pressure at 40 °C. The hexane extract of the leaves (9.7 g) was then chromatographed on silica gel (70-230 mesh) and eluted with diethyl ether and evaporated. This fraction of the extract which contains a major portion of chlorophyll compounds was then mixed with silica gel:activated α]20 was +51.94 °. The specific was measured using an ADP-440 Perkin Elmer digital polarimeter using a sodium lamp at 589 nm. The melting point was recorded on Stuart's melting point apparatus SMP100. All the data analysis relevant to melting point, specific rotation and X-ray were repeated three times to determine the reproducibility of the data and various parameters.
in proportion of 1:3:1, respectively, and placed in a column with a porous frit. The material was eluted with hexane (500 ml) followed by dichloromethane (500 ml) with the aid of vacuum pressure. To isolate the compound, the dichloromethane dried fractions (4.8 g) was further chromatographed on silica gel (70-230 mesh) and eluted with mixtures of cyclohexane/chloroform and chloroform/methanol of increasing polarity. A total of 122 fractions were collected in 20 ml vials and fractions from F51—F60 were crystallized via slow methanol evaporation. Growth of diffraction quality crystals were obtained through several recrystallizations in methanol using both slow evaporation method and crystal seeding technique over a period of 10 days. Yellow cubic crystals (119 mg) were obtained and the melting point was 365-366 K and the specific [Crystal data, data collection and structure
details are summarized in Table 1. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 and O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints except the hydroxyl hydrogen which were refined freely (Cooper et al., 2010).Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003; Cooper et al., 2010); molecular graphics: CAMERON (Watkin et al., 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. View of the molecule showing intramolecular hydrogen bond. | |
Fig. 2. Partial packing diagram showing the C—H···O intermolecular interactions. Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, y + 1/2, -z + 3/2; (iii) -x + 2, y - 1/2, -z + 3/2; (iv) -x + 1, y + 1/2, -z + 3/2. |
C33H42O4 | Dx = 1.174 Mg m−3 |
Mr = 502.69 | Melting point: 365 K |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 19011 reflections |
a = 9.2035 (2) Å | θ = 3–71° |
b = 13.4629 (2) Å | µ = 0.59 mm−1 |
c = 22.9607 (5) Å | T = 100 K |
V = 2844.96 (10) Å3 | Prismatic, colourless |
Z = 4 | 0.21 × 0.14 × 0.08 mm |
F(000) = 1088 |
Oxford Diffraction Gemini diffractometer | 5498 independent reflections |
Radiation source: Cu Ka | 5269 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.034 |
ω scans | θmax = 71.6°, θmin = 3.8° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2002) | h = −11→11 |
Tmin = 0.86, Tmax = 0.95 | k = −16→16 |
39826 measured reflections | l = −28→28 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.034 | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 1.02P] , where P = (max(Fo2,0) + 2Fc2)/3 |
wR(F2) = 0.084 | (Δ/σ)max = 0.001 |
S = 0.96 | Δρmax = 0.24 e Å−3 |
5498 reflections | Δρmin = −0.18 e Å−3 |
335 parameters | Absolute structure: Flack (1983), 2383 Friedel pairs |
0 restraints | Absolute structure parameter: −0.04 (15) |
Primary atom site location: other |
C33H42O4 | V = 2844.96 (10) Å3 |
Mr = 502.69 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 9.2035 (2) Å | µ = 0.59 mm−1 |
b = 13.4629 (2) Å | T = 100 K |
c = 22.9607 (5) Å | 0.21 × 0.14 × 0.08 mm |
Oxford Diffraction Gemini diffractometer | 5498 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2002) | 5269 reflections with I > 2.0σ(I) |
Tmin = 0.86, Tmax = 0.95 | Rint = 0.034 |
39826 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.084 | Δρmax = 0.24 e Å−3 |
S = 0.96 | Δρmin = −0.18 e Å−3 |
5498 reflections | Absolute structure: Flack (1983), 2383 Friedel pairs |
335 parameters | Absolute structure parameter: −0.04 (15) |
0 restraints |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat with a nominal stability of 0.1 K. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.01156 (11) | 0.23087 (8) | 0.70014 (5) | 0.0254 | |
H1 | 0.9976 | 0.3386 | 0.7123 | 0.0500* | |
C2 | 0.89022 (15) | 0.21427 (11) | 0.67631 (6) | 0.0196 | |
C3 | 0.87580 (15) | 0.11723 (10) | 0.64619 (6) | 0.0196 | |
C4 | 0.81066 (17) | 0.10926 (12) | 0.59161 (7) | 0.0252 | |
C5 | 0.81469 (18) | 0.01993 (13) | 0.56225 (7) | 0.0333 | |
C6 | 0.87951 (19) | −0.06283 (13) | 0.58714 (8) | 0.0364 | |
C7 | 0.94348 (19) | −0.05514 (12) | 0.64160 (8) | 0.0338 | |
C8 | 0.94353 (17) | 0.03472 (11) | 0.67054 (7) | 0.0260 | |
C9 | 0.78010 (15) | 0.29113 (10) | 0.67650 (6) | 0.0189 | |
C10 | 0.82224 (15) | 0.38637 (11) | 0.69421 (6) | 0.0200 | |
O11 | 0.95023 (11) | 0.40387 (7) | 0.71561 (4) | 0.0244 | |
C12 | 0.72277 (16) | 0.47533 (10) | 0.69123 (6) | 0.0207 | |
C13 | 0.60033 (16) | 0.45383 (10) | 0.64825 (6) | 0.0204 | |
O14 | 0.56632 (12) | 0.51181 (7) | 0.61064 (5) | 0.0285 | |
C15 | 0.51798 (15) | 0.35827 (10) | 0.66056 (6) | 0.0198 | |
C16 | 0.62421 (15) | 0.26982 (10) | 0.66719 (6) | 0.0187 | |
O17 | 0.57659 (11) | 0.18581 (7) | 0.66667 (5) | 0.0232 | |
C18 | 0.43562 (16) | 0.37607 (10) | 0.72158 (6) | 0.0215 | |
C19 | 0.55121 (16) | 0.40042 (10) | 0.76906 (6) | 0.0211 | |
C20 | 0.64960 (16) | 0.48756 (11) | 0.75201 (6) | 0.0220 | |
C21 | 0.48510 (17) | 0.42104 (11) | 0.83005 (7) | 0.0255 | |
C22 | 0.59687 (18) | 0.41885 (11) | 0.87765 (7) | 0.0268 | |
C23 | 0.61287 (19) | 0.35035 (12) | 0.91878 (7) | 0.0297 | |
C24 | 0.7280 (2) | 0.36145 (15) | 0.96492 (8) | 0.0415 | |
C25 | 0.5211 (2) | 0.25871 (14) | 0.92400 (9) | 0.0454 | |
C26 | 0.32752 (17) | 0.46277 (12) | 0.71414 (7) | 0.0286 | |
C27 | 0.35104 (16) | 0.28311 (12) | 0.73993 (7) | 0.0275 | |
C28 | 0.41309 (16) | 0.33433 (10) | 0.60982 (6) | 0.0227 | |
C29 | 0.48887 (16) | 0.31514 (11) | 0.55260 (7) | 0.0234 | |
C30 | 0.48971 (16) | 0.23037 (11) | 0.52250 (6) | 0.0235 | |
C31 | 0.41774 (19) | 0.13577 (11) | 0.54147 (7) | 0.0297 | |
C32 | 0.56841 (18) | 0.22262 (12) | 0.46514 (7) | 0.0286 | |
C33 | 0.80586 (17) | 0.57064 (11) | 0.67524 (6) | 0.0238 | |
C34 | 0.90501 (18) | 0.55841 (11) | 0.62358 (6) | 0.0269 | |
C35 | 1.03353 (17) | 0.60074 (10) | 0.61558 (6) | 0.0242 | |
C36 | 1.10148 (18) | 0.67277 (11) | 0.65730 (7) | 0.0283 | |
C37 | 1.1235 (2) | 0.57708 (12) | 0.56262 (7) | 0.0336 | |
H41 | 0.7629 | 0.1648 | 0.5747 | 0.0322* | |
H51 | 0.7720 | 0.0154 | 0.5245 | 0.0408* | |
H61 | 0.8767 | −0.1239 | 0.5662 | 0.0448* | |
H71 | 0.9882 | −0.1120 | 0.6603 | 0.0423* | |
H81 | 0.9888 | 0.0410 | 0.7073 | 0.0323* | |
H191 | 0.6141 | 0.3413 | 0.7739 | 0.0240* | |
H201 | 0.7285 | 0.4939 | 0.7814 | 0.0255* | |
H202 | 0.5948 | 0.5492 | 0.7515 | 0.0250* | |
H211 | 0.4404 | 0.4855 | 0.8298 | 0.0302* | |
H212 | 0.4098 | 0.3724 | 0.8376 | 0.0308* | |
H221 | 0.6650 | 0.4724 | 0.8783 | 0.0333* | |
H241 | 0.7808 | 0.4252 | 0.9604 | 0.0629* | |
H242 | 0.6826 | 0.3587 | 1.0029 | 0.0630* | |
H243 | 0.7968 | 0.3064 | 0.9624 | 0.0633* | |
H251 | 0.4774 | 0.2571 | 0.9626 | 0.0712* | |
H252 | 0.4405 | 0.2558 | 0.8975 | 0.0712* | |
H253 | 0.5783 | 0.1996 | 0.9203 | 0.0711* | |
H261 | 0.2489 | 0.4460 | 0.6869 | 0.0435* | |
H262 | 0.3726 | 0.5228 | 0.7009 | 0.0443* | |
H263 | 0.2793 | 0.4760 | 0.7516 | 0.0424* | |
H271 | 0.2827 | 0.2989 | 0.7720 | 0.0415* | |
H272 | 0.4133 | 0.2300 | 0.7529 | 0.0415* | |
H273 | 0.2935 | 0.2588 | 0.7065 | 0.0413* | |
H281 | 0.3488 | 0.3913 | 0.6046 | 0.0275* | |
H282 | 0.3528 | 0.2790 | 0.6214 | 0.0274* | |
H291 | 0.5415 | 0.3699 | 0.5369 | 0.0295* | |
H311 | 0.3450 | 0.1161 | 0.5121 | 0.0463* | |
H312 | 0.3641 | 0.1421 | 0.5785 | 0.0443* | |
H313 | 0.4882 | 0.0812 | 0.5462 | 0.0471* | |
H321 | 0.5028 | 0.1978 | 0.4355 | 0.0443* | |
H322 | 0.6530 | 0.1781 | 0.4687 | 0.0436* | |
H323 | 0.6061 | 0.2878 | 0.4517 | 0.0438* | |
H331 | 0.8619 | 0.5902 | 0.7093 | 0.0268* | |
H332 | 0.7355 | 0.6225 | 0.6683 | 0.0297* | |
H341 | 0.8682 | 0.5150 | 0.5937 | 0.0329* | |
H361 | 1.1371 | 0.7325 | 0.6379 | 0.0438* | |
H362 | 1.1884 | 0.6436 | 0.6753 | 0.0454* | |
H363 | 1.0391 | 0.6926 | 0.6877 | 0.0428* | |
H371 | 1.1424 | 0.6355 | 0.5392 | 0.0501* | |
H372 | 1.0793 | 0.5284 | 0.5373 | 0.0518* | |
H373 | 1.2186 | 0.5520 | 0.5739 | 0.0518* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0188 (5) | 0.0295 (5) | 0.0279 (5) | 0.0028 (4) | −0.0055 (4) | −0.0029 (4) |
C2 | 0.0186 (7) | 0.0247 (7) | 0.0157 (6) | −0.0013 (6) | 0.0009 (5) | 0.0033 (5) |
C3 | 0.0143 (6) | 0.0228 (7) | 0.0216 (7) | 0.0013 (6) | 0.0031 (5) | 0.0010 (5) |
C4 | 0.0223 (7) | 0.0281 (8) | 0.0250 (7) | 0.0033 (6) | −0.0014 (6) | −0.0008 (6) |
C5 | 0.0277 (8) | 0.0415 (9) | 0.0307 (8) | 0.0014 (7) | −0.0041 (7) | −0.0124 (7) |
C6 | 0.0330 (9) | 0.0281 (8) | 0.0480 (10) | 0.0050 (7) | 0.0038 (8) | −0.0156 (7) |
C7 | 0.0331 (9) | 0.0251 (7) | 0.0432 (9) | 0.0107 (7) | 0.0017 (7) | 0.0014 (7) |
C8 | 0.0231 (7) | 0.0299 (8) | 0.0251 (7) | 0.0045 (6) | −0.0002 (6) | 0.0012 (6) |
C9 | 0.0199 (7) | 0.0209 (7) | 0.0160 (6) | 0.0006 (5) | 0.0006 (5) | 0.0015 (5) |
C10 | 0.0192 (6) | 0.0250 (7) | 0.0157 (6) | −0.0026 (6) | 0.0016 (5) | 0.0013 (5) |
O11 | 0.0215 (5) | 0.0246 (5) | 0.0270 (5) | −0.0021 (4) | −0.0028 (4) | −0.0040 (4) |
C12 | 0.0222 (7) | 0.0186 (7) | 0.0215 (7) | −0.0026 (5) | 0.0020 (6) | −0.0015 (5) |
C13 | 0.0213 (7) | 0.0186 (6) | 0.0214 (7) | 0.0034 (6) | 0.0024 (6) | −0.0028 (5) |
O14 | 0.0349 (6) | 0.0215 (5) | 0.0291 (6) | 0.0015 (4) | −0.0056 (5) | 0.0039 (4) |
C15 | 0.0170 (6) | 0.0196 (6) | 0.0227 (7) | 0.0005 (5) | −0.0002 (5) | −0.0006 (5) |
C16 | 0.0194 (6) | 0.0199 (6) | 0.0169 (6) | 0.0011 (5) | 0.0005 (5) | −0.0007 (5) |
O17 | 0.0195 (5) | 0.0185 (5) | 0.0318 (6) | −0.0007 (4) | 0.0004 (4) | −0.0005 (4) |
C18 | 0.0181 (7) | 0.0214 (7) | 0.0248 (7) | 0.0010 (6) | 0.0026 (6) | −0.0010 (5) |
C19 | 0.0213 (7) | 0.0179 (6) | 0.0242 (7) | 0.0021 (5) | 0.0028 (6) | −0.0005 (5) |
C20 | 0.0236 (7) | 0.0200 (7) | 0.0223 (7) | 0.0000 (6) | 0.0018 (6) | −0.0023 (5) |
C21 | 0.0270 (7) | 0.0222 (7) | 0.0272 (7) | 0.0026 (6) | 0.0057 (6) | −0.0009 (6) |
C22 | 0.0305 (8) | 0.0241 (7) | 0.0259 (7) | −0.0004 (6) | 0.0081 (6) | −0.0059 (6) |
C23 | 0.0340 (8) | 0.0285 (8) | 0.0267 (8) | 0.0077 (7) | 0.0078 (7) | −0.0029 (6) |
C24 | 0.0491 (11) | 0.0477 (10) | 0.0278 (9) | 0.0143 (9) | 0.0009 (8) | −0.0037 (8) |
C25 | 0.0507 (12) | 0.0352 (10) | 0.0503 (11) | 0.0003 (9) | 0.0050 (10) | 0.0126 (8) |
C26 | 0.0232 (7) | 0.0291 (8) | 0.0335 (8) | 0.0066 (6) | 0.0013 (7) | −0.0016 (7) |
C27 | 0.0225 (8) | 0.0293 (8) | 0.0306 (8) | −0.0031 (6) | 0.0043 (6) | −0.0013 (7) |
C28 | 0.0178 (7) | 0.0214 (6) | 0.0290 (8) | 0.0030 (5) | −0.0052 (6) | −0.0002 (6) |
C29 | 0.0196 (7) | 0.0252 (7) | 0.0254 (7) | −0.0011 (6) | −0.0056 (6) | 0.0039 (6) |
C30 | 0.0187 (7) | 0.0283 (7) | 0.0235 (7) | 0.0022 (6) | −0.0060 (6) | 0.0012 (6) |
C31 | 0.0312 (8) | 0.0258 (7) | 0.0322 (8) | 0.0000 (7) | 0.0025 (7) | −0.0028 (6) |
C32 | 0.0283 (8) | 0.0328 (8) | 0.0247 (7) | −0.0003 (7) | −0.0015 (6) | 0.0001 (6) |
C33 | 0.0282 (8) | 0.0199 (7) | 0.0232 (7) | −0.0041 (6) | 0.0019 (6) | −0.0015 (6) |
C34 | 0.0381 (9) | 0.0209 (6) | 0.0217 (7) | −0.0045 (6) | 0.0022 (7) | −0.0021 (6) |
C35 | 0.0327 (8) | 0.0173 (6) | 0.0227 (7) | 0.0020 (6) | 0.0033 (6) | 0.0028 (5) |
C36 | 0.0280 (8) | 0.0250 (7) | 0.0317 (8) | −0.0024 (6) | 0.0034 (6) | −0.0012 (6) |
C37 | 0.0409 (9) | 0.0267 (8) | 0.0332 (9) | −0.0057 (7) | 0.0124 (8) | −0.0030 (6) |
O1—C2 | 1.2635 (17) | C23—C24 | 1.506 (3) |
H1—O11 | 0.984 | C23—C25 | 1.500 (3) |
C2—C3 | 1.4842 (19) | C24—H241 | 0.992 |
C2—C9 | 1.448 (2) | C24—H242 | 0.968 |
C3—C4 | 1.393 (2) | C24—H243 | 0.977 |
C3—C8 | 1.391 (2) | C25—H251 | 0.974 |
C4—C5 | 1.379 (2) | C25—H252 | 0.960 |
C4—H41 | 0.950 | C25—H253 | 0.958 |
C5—C6 | 1.387 (3) | C26—H261 | 0.983 |
C5—H51 | 0.953 | C26—H262 | 0.958 |
C6—C7 | 1.386 (3) | C26—H263 | 0.984 |
C6—H61 | 0.953 | C27—H271 | 0.992 |
C7—C8 | 1.380 (2) | C27—H272 | 0.964 |
C7—H71 | 0.969 | C27—H273 | 0.988 |
C8—H81 | 0.945 | C28—C29 | 1.510 (2) |
C9—C10 | 1.400 (2) | C28—H281 | 0.975 |
C9—C16 | 1.479 (2) | C28—H282 | 0.967 |
C10—O11 | 1.2979 (17) | C29—C30 | 1.334 (2) |
C10—C12 | 1.509 (2) | C29—H291 | 0.953 |
C12—C13 | 1.526 (2) | C30—C31 | 1.500 (2) |
C12—C20 | 1.5582 (19) | C30—C32 | 1.507 (2) |
C12—C33 | 1.5381 (19) | C31—H311 | 0.987 |
C13—O14 | 1.2054 (18) | C31—H312 | 0.987 |
C13—C15 | 1.5198 (19) | C31—H313 | 0.986 |
C15—C16 | 1.5482 (19) | C32—H321 | 0.969 |
C15—C18 | 1.6110 (19) | C32—H322 | 0.986 |
C15—C28 | 1.5469 (19) | C32—H323 | 0.993 |
C16—O17 | 1.2131 (17) | C33—C34 | 1.506 (2) |
C18—C19 | 1.558 (2) | C33—H331 | 0.973 |
C18—C26 | 1.543 (2) | C33—H332 | 0.966 |
C18—C27 | 1.533 (2) | C34—C35 | 1.326 (2) |
C19—C20 | 1.5328 (19) | C34—H341 | 0.964 |
C19—C21 | 1.552 (2) | C35—C36 | 1.500 (2) |
C19—H191 | 0.990 | C35—C37 | 1.505 (2) |
C20—H201 | 0.994 | C36—H361 | 0.977 |
C20—H202 | 0.971 | C36—H362 | 0.982 |
C21—C22 | 1.501 (2) | C36—H363 | 0.943 |
C21—H211 | 0.961 | C37—H371 | 0.969 |
C21—H212 | 0.969 | C37—H372 | 0.966 |
C22—C23 | 1.328 (2) | C37—H373 | 0.973 |
C22—H221 | 0.955 | ||
O1—C2—C3 | 115.88 (13) | C22—C23—C25 | 124.43 (16) |
O1—C2—C9 | 119.39 (13) | C24—C23—C25 | 114.94 (15) |
C3—C2—C9 | 124.59 (12) | C23—C24—H241 | 110.9 |
C2—C3—C4 | 121.69 (13) | C23—C24—H242 | 109.1 |
C2—C3—C8 | 118.39 (13) | H241—C24—H242 | 109.8 |
C4—C3—C8 | 119.53 (14) | C23—C24—H243 | 109.8 |
C3—C4—C5 | 119.68 (15) | H241—C24—H243 | 109.4 |
C3—C4—H41 | 120.4 | H242—C24—H243 | 107.7 |
C5—C4—H41 | 119.9 | C23—C25—H251 | 108.9 |
C4—C5—C6 | 120.70 (15) | C23—C25—H252 | 114.7 |
C4—C5—H51 | 119.3 | H251—C25—H252 | 104.9 |
C6—C5—H51 | 120.0 | C23—C25—H253 | 111.5 |
C5—C6—C7 | 119.63 (15) | H251—C25—H253 | 106.8 |
C5—C6—H61 | 118.2 | H252—C25—H253 | 109.5 |
C7—C6—H61 | 122.1 | C18—C26—H261 | 111.8 |
C6—C7—C8 | 120.00 (15) | C18—C26—H262 | 113.2 |
C6—C7—H71 | 121.4 | H261—C26—H262 | 108.1 |
C8—C7—H71 | 118.6 | C18—C26—H263 | 109.3 |
C3—C8—C7 | 120.41 (14) | H261—C26—H263 | 105.5 |
C3—C8—H81 | 119.0 | H262—C26—H263 | 108.7 |
C7—C8—H81 | 120.6 | C18—C27—H271 | 110.6 |
C2—C9—C10 | 117.48 (13) | C18—C27—H272 | 112.9 |
C2—C9—C16 | 122.67 (13) | H271—C27—H272 | 107.8 |
C10—C9—C16 | 119.24 (13) | C18—C27—H273 | 109.2 |
C9—C10—O11 | 121.85 (13) | H271—C27—H273 | 108.0 |
C9—C10—C12 | 123.08 (13) | H272—C27—H273 | 108.3 |
O11—C10—C12 | 115.06 (12) | C15—C28—C29 | 113.75 (11) |
H1—O11—C10 | 102.2 | C15—C28—H281 | 107.9 |
C10—C12—C13 | 109.07 (11) | C29—C28—H281 | 107.9 |
C10—C12—C20 | 107.79 (11) | C15—C28—H282 | 108.1 |
C13—C12—C20 | 106.27 (11) | C29—C28—H282 | 111.9 |
C10—C12—C33 | 111.80 (12) | H281—C28—H282 | 107.0 |
C13—C12—C33 | 111.78 (12) | C28—C29—C30 | 126.86 (14) |
C20—C12—C33 | 109.91 (11) | C28—C29—H291 | 115.6 |
C12—C13—O14 | 122.17 (13) | C30—C29—H291 | 117.5 |
C12—C13—C15 | 114.12 (11) | C29—C30—C31 | 124.98 (14) |
O14—C13—C15 | 123.50 (13) | C29—C30—C32 | 120.98 (14) |
C13—C15—C16 | 110.76 (11) | C31—C30—C32 | 114.03 (13) |
C13—C15—C18 | 105.69 (11) | C30—C31—H311 | 109.2 |
C16—C15—C18 | 109.03 (11) | C30—C31—H312 | 113.4 |
C13—C15—C28 | 110.33 (11) | H311—C31—H312 | 105.8 |
C16—C15—C28 | 107.93 (11) | C30—C31—H313 | 112.0 |
C18—C15—C28 | 113.10 (11) | H311—C31—H313 | 108.7 |
C15—C16—C9 | 118.54 (12) | H312—C31—H313 | 107.4 |
C15—C16—O17 | 119.21 (13) | C30—C32—H321 | 109.7 |
C9—C16—O17 | 122.20 (13) | C30—C32—H322 | 110.4 |
C15—C18—C19 | 108.57 (11) | H321—C32—H322 | 110.0 |
C15—C18—C26 | 108.64 (12) | C30—C32—H323 | 112.3 |
C19—C18—C26 | 111.01 (12) | H321—C32—H323 | 107.7 |
C15—C18—C27 | 110.89 (12) | H322—C32—H323 | 106.7 |
C19—C18—C27 | 109.04 (12) | C12—C33—C34 | 113.47 (12) |
C26—C18—C27 | 108.70 (12) | C12—C33—H331 | 107.3 |
C18—C19—C20 | 112.70 (11) | C34—C33—H331 | 110.0 |
C18—C19—C21 | 113.66 (12) | C12—C33—H332 | 108.0 |
C20—C19—C21 | 108.97 (11) | C34—C33—H332 | 110.8 |
C18—C19—H191 | 108.0 | H331—C33—H332 | 107.0 |
C20—C19—H191 | 107.4 | C33—C34—C35 | 127.09 (14) |
C21—C19—H191 | 105.7 | C33—C34—H341 | 114.5 |
C19—C20—C12 | 113.78 (11) | C35—C34—H341 | 118.4 |
C19—C20—H201 | 108.9 | C34—C35—C36 | 124.15 (14) |
C12—C20—H201 | 107.5 | C34—C35—C37 | 120.78 (14) |
C19—C20—H202 | 110.5 | C36—C35—C37 | 115.06 (14) |
C12—C20—H202 | 107.7 | C35—C36—H361 | 112.4 |
H201—C20—H202 | 108.2 | C35—C36—H362 | 110.5 |
C19—C21—C22 | 112.63 (12) | H361—C36—H362 | 104.3 |
C19—C21—H211 | 108.9 | C35—C36—H363 | 113.8 |
C22—C21—H211 | 108.4 | H361—C36—H363 | 108.0 |
C19—C21—H212 | 108.7 | H362—C36—H363 | 107.3 |
C22—C21—H212 | 110.3 | C35—C37—H371 | 112.1 |
H211—C21—H212 | 107.8 | C35—C37—H372 | 113.5 |
C21—C22—C23 | 127.39 (15) | H371—C37—H372 | 106.9 |
C21—C22—H221 | 116.5 | C35—C37—H373 | 110.7 |
C23—C22—H221 | 116.1 | H371—C37—H373 | 105.5 |
C22—C23—C24 | 120.62 (16) | H372—C37—H373 | 107.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H1···O1 | 0.98 | 1.48 | 2.4227 (14) | 158 |
C27—H273···O1i | 0.99 | 2.63 | 3.330 (2) | 128 |
C36—H363···O1ii | 0.94 | 2.67 | 3.523 (2) | 151 |
C8—H81···O11iii | 0.95 | 2.62 | 3.300 (2) | 129 |
C21—H211···O17iv | 0.96 | 2.70 | 3.610 (2) | 158 |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+2, y−1/2, −z+3/2; (iv) −x+1, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H1···O1 | 0.98 | 1.48 | 2.4227 (14) | 158 |
C27—H273···O1i | 0.99 | 2.63 | 3.330 (2) | 128 |
C36—H363···O1ii | 0.94 | 2.67 | 3.523 (2) | 151 |
C8—H81···O11iii | 0.95 | 2.62 | 3.300 (2) | 129 |
C21—H211···O17iv | 0.96 | 2.70 | 3.610 (2) | 158 |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+2, y−1/2, −z+3/2; (iv) −x+1, y+1/2, −z+3/2. |
Acknowledgements
The authors would like to thank the Ministry of Science, Technology and Innovation in Malaysia (MOSTI 02–02-12-SF0055) for providing a grant for this study. Professor C. Moody is thanked for access to instrumentation at the University of Nottingham, UK.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Garnsey, M. R., Matous, J. A., Kwiek, J. J. & Coltart, D. M. (2011). Bioorg. Med. Chem. Lett. 21, 2406–2409. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
McCandlish, L. E., Hanson, J. C. & Stout, G. H. (1976). Acta Cryst. B32, 1793–1801. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Monache, F. D., Monache, G. D. & Gacs-Baitz, E. (1991). Phytochemistry, 30, 2003–2005. CrossRef Google Scholar
Oliveira, C. M. A. de, Porto, A. M., Bittrich, V., Vencato, I. & Marsaioli, A. J. (1996). Tetrahedron Lett. 37, 6427–6430. Google Scholar
Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Piccinelli, A. L., Cuesta-Rubio, O., Chica, M. B., Mahmood, N., Pagano, B., Pavone, M., Barone, V. & Rastrelli, L. (2005). Tetrahedron, 61, 8206–8211. Web of Science CrossRef CAS Google Scholar
Santos, M. H., Nagem, T. J., Braz-Filho, R., Lula, I. S. & Speziali, N. L. (2001). Magn. Reson. Chem. 39, 155–159. Google Scholar
Santos, M. H., Speziali, N. L., Nagem, T. J. & Oliveira, T. T. (1998). Acta Cryst. C54, 1990–1992. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Simpkins, N. S. (2013). Chem. Commun. 49, 1042–1051. Web of Science CrossRef CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.