organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­nitro­phenyl 4-bromo­benzoate

aDepartamento de Química – Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia
*Correspondence e-mail: rodimo26@yahoo.es

(Received 8 November 2013; accepted 12 November 2013; online 20 November 2013)

In the title benzoate derivative, C13H6BrN3O8, the benzene rings form a dihedral angle of 80.90 (9)°. The ester moiety forms dihedral angles of 3.2 (2) and 82.8 4(10)° with the benzene and picryl rings, respectively. The Br atom is disordered over two positions, with the site occupancy for the minor component being 0.48 (4). The crystal structure features C—H⋯O inter­actions, which generate a three-dimensional network.

Related literature

For similar esters, see: Moreno-Fuquen et al. (2013[Moreno-Fuquen, R., Mosquera, F., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013). Acta Cryst. E69, o966.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

Experimental

Crystal data
  • C13H6BrN3O8

  • Mr = 412.12

  • Monoclinic, P 21 /c

  • a = 10.8409 (5) Å

  • b = 10.0152 (7) Å

  • c = 13.9777 (7) Å

  • β = 99.246 (3)°

  • V = 1497.89 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.80 mm−1

  • T = 295 K

  • 0.34 × 0.13 × 0.11 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.668, Tmax = 0.753

  • 10473 measured reflections

  • 3340 independent reflections

  • 2092 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.134

  • S = 1.02

  • 3340 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.93 2.48 3.169 (4) 131
C12—H12⋯O1ii 0.93 2.49 3.273 (4) 142
C5—H5⋯O8iii 0.93 2.46 3.384 (4) 173
C3—H3⋯O6iv 0.93 2.42 3.291 (4) 157
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Experimental top

Synthesis and crystallization top

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title molecule was obtained through a two-step reaction. First 4-bromo­benzoic acid (0.223 g, 0.541 mmol) was refluxed in an excess of thio­nyl chloride (10 ml) for 1 h. Then, thio­nyl chloride was distilled off under reduced pressure to purify the 4-bromo­benzoyl chloride which was obtained as a pale-yellow translucent liquid. The same reaction flask was rearranged and a solution of picric acid (0.115 g, 0.541 mmol) in aceto­nitrile, was added drop-wise with constant stirring. The reaction mixture was left to reflux for about 1 h. A pale-yellow solid was obtained after leaving the solvent to evaporate. Crystals of good quality and suitable for single-crystal X-ray diffraction were grown from its aceto­nitrile solution. M.pt 457 (1) K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H-atoms were positioned at geometrically idealized positions with C—H distances of 0.93 Å, and with Uiso(H) = 1.2Ueq(C). The Br atom was disordered over two positions [site occupancy for the minor component = 0.48 (4)].

Results and discussion top

In the present work, the structure of the 2,4,6-tri­nitro­phenyl 4-bromo­benzoate (I) has been determined and is part of a series of picryl substituted-esters compounds that have been synthesized in our research group. The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles are normal and are comparable with those reported for related compounds (Moreno-Fuquen et al., 2013). The title molecule is twisted: the benzene rings form a dihedral angle of 80.90 (9)°. The central ester moiety C1—O7—C7(O8)—C8 is effectively planar (r.m.s. deviation of all non-hydrogen atoms = 0.0122 Å) and it forms angles of 3.2 (3) and 82.84 (10)° with the benzoate and the picryl rings, respectively. The nitro groups form dihedral angles with the attached benzene ring of 3.7 (3), 8.8 (3) and 20.8 (2)° for O1—N1—O2, O3—N2—O4 and O5—N3—O6, respectively.

In the crystal, in a first substructure, the molecules are inter­twined by weak C—H···O inter­actions, forming helical chains along [100]. The C10 atom of the benzoate ring acts as a hydrogen-bond donor to atom O2 at (-x+1, +y+1/2, -z+3/2). Growth in this direction is reinforced by the weak C5—H5···O8 inter­action, in which the C5 atom of the picryl ring acts as hydrogen-bond donor to carbonyl atom O8 at (-x+2,+y+1/2, -z+3/2). In this same substructure the C12 atom in the molecule acts as a hydrogen-bond donor to nitro-O1 atom at (-x+1, -y, -z+1), whose inter­action contributes to the growth of the crystal along [010]. The combination of these three contacts generate R22(20) and R66(38) rings along [100] (Fig. 2). In a second substructure shown in Fig. 3, it can be observed the formation of a chain of molecules through the weak C3—H3···O6 inter­actions. The C3 atom acts as hydrogen-bond donor to O6 atom of the nitro group in the molecule at (x, -y+1/2, +z+1/2), forming C(7) chains along [001]. Thus, the crystal system is a three-dimensional structure, sustained via C—H···O inter­actions (see Table 1; Nardelli, 1995). No Br···Br inter­actions are found in the crystal structure.

Related literature top

For similar esters, see: Moreno-Fuquen et al. (2013). For hydrogen bonding, see: Nardelli (1995).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of helical chains which running along [100] and [010]. Symmetry codes: (i) -x+1, +y+1/2, -z+3/2; (ii) -x+1, -y, -z+1; (iii) -x+2, +y+1/2, -z+3/2.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of chains of molecules which running along [001]. Symmetry code: (iv) x, -y+1/2,+z+1/2.
2,4,6-Trinitrophenyl 4-bromobenzoate top
Crystal data top
C13H6BrN3O8F(000) = 816
Mr = 412.12Dx = 1.827 Mg m3
Monoclinic, P21/cMelting point: 457(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.8409 (5) ÅCell parameters from 6103 reflections
b = 10.0152 (7) Åθ = 2.9–27.5°
c = 13.9777 (7) ŵ = 2.80 mm1
β = 99.246 (3)°T = 295 K
V = 1497.89 (15) Å3Block, pale yellow
Z = 40.34 × 0.13 × 0.11 mm
Data collection top
Nonius KappaCCD
diffractometer
3340 independent reflections
Radiation source: fine-focus sealed tube2092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
CCD rotation images, thick slices scansθmax = 27.6°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1413
Tmin = 0.668, Tmax = 0.753k = 1113
10473 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.3604P]
where P = (Fo2 + 2Fc2)/3
3340 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C13H6BrN3O8V = 1497.89 (15) Å3
Mr = 412.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8409 (5) ŵ = 2.80 mm1
b = 10.0152 (7) ÅT = 295 K
c = 13.9777 (7) Å0.34 × 0.13 × 0.11 mm
β = 99.246 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3340 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2092 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.753Rint = 0.060
10473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
3340 reflectionsΔρmin = 0.50 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br1A0.3092 (13)0.2505 (17)0.2655 (8)0.100 (2)0.48 (4)
Br1B0.2896 (6)0.2267 (6)0.2775 (5)0.0781 (10)0.52 (4)
O70.70356 (18)0.2879 (2)0.69502 (15)0.0547 (5)
O80.8026 (2)0.1287 (3)0.62476 (17)0.0831 (8)
N10.6967 (3)0.0905 (3)0.8454 (2)0.0606 (7)
C130.6090 (3)0.1222 (3)0.4631 (2)0.0517 (7)
H130.67280.05980.46460.062*
N30.9026 (2)0.4791 (3)0.7109 (2)0.0630 (7)
O60.8478 (3)0.4642 (3)0.62908 (16)0.0870 (8)
C60.8938 (3)0.3763 (3)0.78448 (19)0.0475 (6)
O10.6128 (3)0.0871 (3)0.7775 (2)0.0940 (9)
C80.6080 (3)0.2073 (3)0.5414 (2)0.0478 (7)
C50.9857 (3)0.3788 (3)0.8661 (2)0.0515 (7)
H51.04860.44290.87310.062*
O20.7002 (3)0.0195 (3)0.9141 (2)0.1052 (11)
O41.1481 (3)0.3782 (3)1.0350 (2)0.0979 (10)
O50.9625 (3)0.5792 (3)0.7381 (2)0.1012 (10)
C120.5168 (3)0.1292 (3)0.3836 (2)0.0579 (8)
H120.51830.07290.33080.070*
C70.7141 (3)0.1995 (3)0.6211 (2)0.0525 (7)
C30.8886 (3)0.1888 (3)0.9281 (2)0.0496 (7)
H30.88780.12500.97640.060*
C40.9808 (3)0.2838 (3)0.9359 (2)0.0501 (7)
N21.0775 (3)0.2846 (3)1.0231 (2)0.0663 (8)
C10.7978 (2)0.2826 (3)0.77309 (18)0.0456 (6)
O31.0787 (3)0.1913 (3)1.0790 (2)0.1036 (10)
C20.7973 (3)0.1898 (3)0.84741 (19)0.0472 (6)
C90.5104 (3)0.2978 (4)0.5407 (2)0.0615 (8)
H90.50800.35370.59350.074*
C100.4172 (3)0.3040 (4)0.4609 (3)0.0714 (10)
H100.35150.36400.45970.086*
C110.4220 (3)0.2211 (3)0.3833 (2)0.0621 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.086 (3)0.139 (4)0.0585 (17)0.037 (2)0.0375 (19)0.026 (2)
Br1B0.0657 (12)0.087 (2)0.0686 (17)0.0096 (11)0.0283 (9)0.0107 (9)
O70.0510 (11)0.0685 (13)0.0392 (10)0.0097 (9)0.0088 (8)0.0089 (10)
O80.0712 (15)0.104 (2)0.0630 (14)0.0406 (14)0.0233 (11)0.0294 (14)
N10.0652 (16)0.0599 (16)0.0532 (15)0.0119 (13)0.0010 (13)0.0088 (13)
C130.0490 (15)0.0539 (17)0.0486 (15)0.0026 (12)0.0027 (13)0.0045 (14)
N30.0569 (15)0.0748 (19)0.0550 (16)0.0002 (14)0.0021 (12)0.0124 (14)
O60.124 (2)0.0891 (19)0.0434 (13)0.0033 (16)0.0012 (14)0.0082 (13)
C60.0503 (15)0.0517 (16)0.0384 (14)0.0037 (12)0.0008 (11)0.0024 (13)
O10.0849 (17)0.095 (2)0.0896 (19)0.0353 (15)0.0253 (15)0.0026 (16)
C80.0465 (14)0.0545 (17)0.0392 (14)0.0024 (12)0.0029 (12)0.0010 (13)
C50.0476 (15)0.0572 (17)0.0470 (16)0.0027 (12)0.0004 (12)0.0035 (14)
O20.120 (2)0.112 (2)0.0748 (18)0.060 (2)0.0083 (17)0.0232 (17)
O40.0877 (18)0.113 (2)0.0782 (18)0.0375 (17)0.0326 (14)0.0049 (16)
O50.0850 (18)0.102 (2)0.103 (2)0.0365 (16)0.0261 (16)0.0474 (18)
C120.0588 (17)0.0632 (19)0.0469 (16)0.0008 (14)0.0062 (13)0.0123 (15)
C70.0522 (16)0.0636 (19)0.0378 (15)0.0066 (14)0.0042 (12)0.0073 (14)
C30.0576 (16)0.0526 (17)0.0361 (14)0.0007 (13)0.0002 (12)0.0006 (13)
C40.0478 (15)0.0589 (18)0.0392 (15)0.0009 (13)0.0061 (12)0.0030 (14)
N20.0621 (16)0.080 (2)0.0495 (15)0.0071 (15)0.0141 (13)0.0007 (15)
C10.0439 (14)0.0572 (17)0.0326 (13)0.0046 (12)0.0036 (11)0.0070 (12)
O30.105 (2)0.112 (2)0.0749 (18)0.0181 (18)0.0409 (17)0.0316 (18)
C20.0508 (15)0.0494 (16)0.0394 (14)0.0040 (12)0.0011 (12)0.0071 (13)
C90.0556 (17)0.075 (2)0.0479 (17)0.0163 (16)0.0087 (14)0.0156 (16)
C100.0628 (19)0.086 (3)0.058 (2)0.0252 (18)0.0121 (16)0.0195 (19)
C110.0549 (17)0.075 (2)0.0489 (17)0.0057 (15)0.0149 (14)0.0107 (16)
Geometric parameters (Å, º) top
Br1A—C111.909 (7)C8—C71.469 (4)
Br1B—C111.889 (6)C5—C41.371 (4)
O7—C11.371 (3)C5—H50.9300
O7—C71.379 (4)O4—N21.205 (4)
O8—C71.188 (4)C12—C111.380 (5)
N1—O21.191 (4)C12—H120.9300
N1—O11.205 (3)C3—C41.372 (4)
N1—C21.473 (4)C3—C21.376 (4)
C13—C121.371 (4)C3—H30.9300
C13—C81.389 (4)C4—N21.474 (4)
C13—H130.9300N2—O31.217 (4)
N3—O61.210 (3)C1—C21.394 (4)
N3—O51.222 (4)C9—C101.381 (4)
N3—C61.469 (4)C9—H90.9300
C6—C51.389 (4)C10—C111.374 (5)
C6—C11.392 (4)C10—H100.9300
C8—C91.392 (4)
C1—O7—C7115.5 (2)C4—C3—H3120.7
O2—N1—O1122.8 (3)C2—C3—H3120.7
O2—N1—C2117.4 (3)C5—C4—C3122.4 (3)
O1—N1—C2119.8 (3)C5—C4—N2118.8 (3)
C12—C13—C8120.7 (3)C3—C4—N2118.8 (3)
C12—C13—H13119.6O4—N2—O3124.6 (3)
C8—C13—H13119.6O4—N2—C4118.0 (3)
O6—N3—O5123.5 (3)O3—N2—C4117.4 (3)
O6—N3—C6119.9 (3)O7—C1—C6120.8 (2)
O5—N3—C6116.6 (3)O7—C1—C2121.9 (2)
C5—C6—C1122.1 (3)C6—C1—C2117.2 (2)
C5—C6—N3116.4 (3)C3—C2—C1121.9 (3)
C1—C6—N3121.6 (2)C3—C2—N1116.3 (3)
C13—C8—C9119.7 (3)C1—C2—N1121.8 (2)
C13—C8—C7117.5 (2)C10—C9—C8119.5 (3)
C9—C8—C7122.8 (3)C10—C9—H9120.3
C4—C5—C6117.9 (3)C8—C9—H9120.3
C4—C5—H5121.0C11—C10—C9119.6 (3)
C6—C5—H5121.0C11—C10—H10120.2
C13—C12—C11118.8 (3)C9—C10—H10120.2
C13—C12—H12120.6C10—C11—C12121.6 (3)
C11—C12—H12120.6C10—C11—Br1B118.7 (3)
O8—C7—O7121.0 (3)C12—C11—Br1B119.6 (3)
O8—C7—C8126.3 (3)C10—C11—Br1A119.2 (3)
O7—C7—C8112.7 (2)C12—C11—Br1A118.6 (3)
C4—C3—C2118.6 (3)
O6—N3—C6—C5161.2 (3)C7—O7—C1—C283.5 (3)
O5—N3—C6—C521.7 (4)C5—C6—C1—O7175.6 (3)
O6—N3—C6—C119.3 (4)N3—C6—C1—O73.9 (4)
O5—N3—C6—C1157.8 (3)C5—C6—C1—C20.1 (4)
C12—C13—C8—C92.1 (5)N3—C6—C1—C2179.6 (3)
C12—C13—C8—C7176.2 (3)C4—C3—C2—C11.3 (4)
C1—C6—C5—C41.0 (4)C4—C3—C2—N1176.6 (3)
N3—C6—C5—C4179.6 (3)O7—C1—C2—C3176.7 (2)
C8—C13—C12—C110.9 (5)C6—C1—C2—C31.0 (4)
C1—O7—C7—O83.2 (5)O7—C1—C2—N11.2 (4)
C1—O7—C7—C8178.0 (2)C6—C1—C2—N1176.8 (3)
C13—C8—C7—O81.5 (5)O2—N1—C2—C31.7 (4)
C9—C8—C7—O8176.8 (4)O1—N1—C2—C3179.0 (3)
C13—C8—C7—O7179.9 (3)O2—N1—C2—C1176.2 (3)
C9—C8—C7—O71.8 (4)O1—N1—C2—C11.1 (4)
C6—C5—C4—C30.7 (4)C13—C8—C9—C101.6 (5)
C6—C5—C4—N2180.0 (3)C7—C8—C9—C10176.7 (3)
C2—C3—C4—C50.5 (5)C8—C9—C10—C110.1 (6)
C2—C3—C4—N2178.9 (3)C9—C10—C11—C121.3 (6)
C5—C4—N2—O48.8 (5)C9—C10—C11—Br1B177.4 (4)
C3—C4—N2—O4170.6 (3)C9—C10—C11—Br1A169.6 (9)
C5—C4—N2—O3172.5 (3)C13—C12—C11—C100.8 (6)
C3—C4—N2—O38.1 (5)C13—C12—C11—Br1B176.9 (3)
C7—O7—C1—C6101.0 (3)C13—C12—C11—Br1A170.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.483.169 (4)131
C12—H12···O1ii0.932.493.273 (4)142
C5—H5···O8iii0.932.463.384 (4)173
C3—H3···O6iv0.932.423.291 (4)157
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z+1; (iii) x+2, y+1/2, z+3/2; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.483.169 (4)131
C12—H12···O1ii0.932.493.273 (4)142
C5—H5···O8iii0.932.463.384 (4)173
C3—H3···O6iv0.932.423.291 (4)157
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z+1; (iii) x+2, y+1/2, z+3/2; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

RMF thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Mosquera, F., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013). Acta Cryst. E69, o966.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds