organic compounds
2-Methoxy-3-(trimethylsilyl)phenylboronic acid
aPhysical Chemistry Department, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
*Correspondence e-mail: serek@ch.pw.edu.pl
The molecular structure of the title compound, C10H17BO3Si, features an intramolecular O—H⋯O hydrogen bond; the boronic group group has an exo–endo conformation. In the crystal, the molecules interact with each other by O—H⋯O hydrogen bonds, producing centrosymmetric dimers that are linked by weak π–π stacking interactions featuring specific short B⋯C contacts [e.g. 3.372 (2) Å], forming an infinite columnar structure aligned along the a-axis direction.
CCDC reference: 972872
Related literature
For structures of related ortho-alkoxy arylboronic acids, see: Cyrański et al. (2012). For binding energies of other boronic acid dimers, see: Cyrański et al. (2008); Durka et al. (2012). For the PIXEL program, see Gavezzotti (2003). For the synthesis, see: Durka et al. (2010).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
CCDC reference: 972872
10.1107/S1600536813031656/tk5273sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813031656/tk5273Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813031656/tk5273Isup3.cml
The preparation of the title compound (I) was described previously (Durka et al., 2010). Crystals suitable for single-crystal X-ray
were grown by slow evaporation of an acetone solution of (I).Crystal data, data collection and structure
details are summarized in Table 1. All hydrogen atoms were placed in calculated positions with C—H distances of 0.95 Å (phenyl) and 0.98 Å (methyl), and an O—H distance of 0.84 Å, and with Uiso(phenyl-H) = 1.2Ueq(C), Uiso(methyl-H) = 1.5Ueq(C) and Uiso(hydroxyl-H)=1.5Ueq(O).The ability of arylboronic acids to form supramolecular structures via hydrogen-bonding interactions of B(OH)2 groups is well known. The molecular structure of (I) is shown in Fig. 1. The boronic group is only slightly twisted with respect to the benzene ring whereas the methoxy group is twisted almost perpendicularly. The trimethylsilyl group is slightly bent with respect to the aromatic ring. The boronic group has an exo-endo conformation. The endo-oriented OH group is engaged into the intramolecular O—H···O bond with the methoxy O atom to form a six-membered ring typical of structures of related ortho-alkoxyarylboronic acids (Cyrański et al., 2012). The molecules of (I) are linked via almost linear O—H···O bridges to give centrosymmetric dimers. The periodic calculations performed in PIXEL programme (Gavezzotti, 2003) show that the dimer interaction energy is equal to -58.5 kJ/mol, which is comparable to the binding energies of other π—π stacking interactions of aromatic rings in the parallel-displaced fashion. The boron atoms are also engaged in these mutual interactions, which is manifested by a relatively short B1···C2 contact of 3.372 (2) Å. Short B1···C2 interactions were described in more detail for the structures of fluorinated 1,4-phenylenediboronic acids (Durka et al., 2012). Thus, another centrosymmetric motif can be distinguished. The interaction energy of such dimers amounts to -33.5 kJ/mol. As a result of H-bonding and π—π interactions, a specific columnar network is formed in the a axis direction (Figs 2 & 3). The total cohesive energy calculated for equals to -111.7 kJ/mol. In conclusion, hydrogen-bonding interactions of boronic groups are operative to form centrosymmetric dimeric structure of (I). The extended supramolecular assembly is due to π—π stacking interactions of aromatic rings additionally involving the boron atoms.
dimers reported in the literature (Cyrański et al., 2008; Durka et al., 2012). The supramolecular architecture in (I) extends throughData collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: PLATON (Spek, 2009).C10H17BO3Si | Dx = 1.218 Mg m−3 |
Mr = 224.14 | Melting point: 353 K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1832 (11) Å | Cell parameters from 1540 reflections |
b = 9.7082 (10) Å | θ = 2.7–28.7° |
c = 14.1415 (16) Å | µ = 0.18 mm−1 |
β = 104.26 (1)° | T = 100 K |
V = 1221.9 (2) Å3 | Unshaped, colourless |
Z = 4 | 0.16 × 0.12 × 0.10 mm |
F(000) = 480 |
Bruker APEXII diffractometer | 2939 independent reflections |
Radiation source: TXS rotating anode | 2154 reflections with I > 2σ(I) |
Multi-layer optics monochromator | Rint = 0.029 |
ω scans | θmax = 28.6°, θmin = 3.0° |
Absorption correction: multi-scan (Blessing, 1995) | h = −11→10 |
Tmin = 0.744, Tmax = 0.780 | k = −13→12 |
11175 measured reflections | l = −18→18 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0567P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2939 reflections | Δρmax = 0.36 e Å−3 |
136 parameters | Δρmin = −0.30 e Å−3 |
C10H17BO3Si | V = 1221.9 (2) Å3 |
Mr = 224.14 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.1832 (11) Å | µ = 0.18 mm−1 |
b = 9.7082 (10) Å | T = 100 K |
c = 14.1415 (16) Å | 0.16 × 0.12 × 0.10 mm |
β = 104.26 (1)° |
Bruker APEXII diffractometer | 2939 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 2154 reflections with I > 2σ(I) |
Tmin = 0.744, Tmax = 0.780 | Rint = 0.029 |
11175 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 1 restraint |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.36 e Å−3 |
2939 reflections | Δρmin = −0.30 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.39406 (5) | 0.65611 (4) | 0.15682 (3) | 0.01408 (12) | |
O1 | 0.70378 (11) | 0.73383 (10) | 0.12400 (7) | 0.0157 (2) | |
O3 | 0.81381 (12) | 0.97690 (11) | −0.10209 (7) | 0.0183 (2) | |
H3 | 0.9024 | 1.0067 | −0.0879 | 0.027* | |
O2 | 0.89567 (11) | 0.91160 (11) | 0.06290 (8) | 0.0181 (2) | |
H2 | 0.8636 | 0.8703 | 0.1059 | 0.027* | |
C5 | 0.62375 (16) | 0.85346 (14) | −0.02981 (11) | 0.0135 (3) | |
C1 | 0.44068 (16) | 0.73526 (14) | 0.04527 (11) | 0.0137 (3) | |
C9 | 0.47875 (18) | 0.48146 (15) | 0.18637 (11) | 0.0178 (3) | |
H9A | 0.5884 | 0.4884 | 0.2002 | 0.027* | |
H9B | 0.4423 | 0.4198 | 0.1307 | 0.027* | |
H9C | 0.4499 | 0.4447 | 0.2437 | 0.027* | |
C3 | 0.35918 (16) | 0.84434 (16) | −0.11483 (11) | 0.0156 (3) | |
H3A | 0.2810 | 0.8643 | −0.1710 | 0.019* | |
C6 | 0.58695 (16) | 0.77454 (15) | 0.04402 (11) | 0.0129 (3) | |
C4 | 0.50551 (17) | 0.88657 (15) | −0.11005 (11) | 0.0152 (3) | |
H4 | 0.5257 | 0.9389 | −0.1622 | 0.018* | |
C2 | 0.32783 (16) | 0.77273 (15) | −0.03699 (11) | 0.0153 (3) | |
H2A | 0.2267 | 0.7484 | −0.0396 | 0.018* | |
C7 | 0.77696 (18) | 0.60998 (17) | 0.10250 (12) | 0.0212 (4) | |
H7A | 0.8574 | 0.5845 | 0.1593 | 0.032* | |
H7B | 0.8197 | 0.6265 | 0.0465 | 0.032* | |
H7C | 0.7034 | 0.5350 | 0.0871 | 0.032* | |
C8 | 0.45625 (19) | 0.77761 (16) | 0.26146 (12) | 0.0201 (3) | |
H8A | 0.4101 | 0.8680 | 0.2437 | 0.030* | |
H8B | 0.5659 | 0.7866 | 0.2773 | 0.030* | |
H8C | 0.4254 | 0.7419 | 0.3184 | 0.030* | |
C10 | 0.18585 (17) | 0.63586 (17) | 0.13142 (13) | 0.0212 (4) | |
H10A | 0.1377 | 0.7259 | 0.1156 | 0.032* | |
H10B | 0.1592 | 0.5980 | 0.1892 | 0.032* | |
H10C | 0.1514 | 0.5731 | 0.0762 | 0.032* | |
B1 | 0.78433 (19) | 0.91554 (17) | −0.02287 (13) | 0.0147 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0142 (2) | 0.0130 (2) | 0.0156 (2) | −0.00051 (17) | 0.00465 (16) | 0.00139 (17) |
O1 | 0.0130 (5) | 0.0178 (5) | 0.0149 (5) | 0.0014 (4) | 0.0006 (4) | 0.0013 (4) |
O3 | 0.0152 (5) | 0.0225 (6) | 0.0175 (6) | −0.0043 (4) | 0.0045 (4) | 0.0013 (5) |
O2 | 0.0151 (5) | 0.0229 (6) | 0.0163 (5) | −0.0054 (5) | 0.0036 (4) | 0.0018 (5) |
C5 | 0.0145 (7) | 0.0115 (7) | 0.0148 (7) | −0.0002 (6) | 0.0044 (6) | −0.0022 (6) |
C1 | 0.0144 (7) | 0.0112 (7) | 0.0158 (7) | −0.0001 (6) | 0.0045 (6) | −0.0018 (6) |
C9 | 0.0205 (8) | 0.0158 (7) | 0.0172 (8) | −0.0011 (6) | 0.0046 (6) | 0.0007 (6) |
C3 | 0.0138 (7) | 0.0159 (7) | 0.0152 (7) | 0.0009 (6) | −0.0001 (6) | 0.0010 (6) |
C6 | 0.0129 (7) | 0.0120 (7) | 0.0127 (7) | 0.0009 (6) | 0.0010 (6) | −0.0019 (6) |
C4 | 0.0189 (8) | 0.0134 (7) | 0.0137 (7) | −0.0008 (6) | 0.0048 (6) | 0.0009 (6) |
C2 | 0.0120 (7) | 0.0146 (7) | 0.0189 (8) | −0.0007 (6) | 0.0032 (6) | −0.0018 (6) |
C7 | 0.0189 (8) | 0.0213 (8) | 0.0235 (9) | 0.0057 (6) | 0.0054 (7) | 0.0040 (7) |
C8 | 0.0259 (9) | 0.0175 (8) | 0.0182 (8) | −0.0007 (7) | 0.0080 (7) | 0.0000 (7) |
C10 | 0.0174 (8) | 0.0217 (8) | 0.0262 (9) | −0.0011 (6) | 0.0084 (7) | 0.0035 (7) |
B1 | 0.0154 (8) | 0.0128 (8) | 0.0168 (9) | 0.0006 (7) | 0.0055 (7) | −0.0025 (7) |
Si1—C10 | 1.8668 (16) | C9—H9B | 0.9800 |
Si1—C8 | 1.8684 (16) | C9—H9C | 0.9800 |
Si1—C9 | 1.8693 (16) | C3—C2 | 1.391 (2) |
Si1—C1 | 1.8960 (15) | C3—C4 | 1.390 (2) |
O1—C6 | 1.4103 (17) | C3—H3A | 0.9500 |
O1—C7 | 1.4458 (18) | C4—H4 | 0.9500 |
O3—B1 | 1.354 (2) | C2—H2A | 0.9500 |
O3—H3 | 0.8400 | C7—H7A | 0.9800 |
O2—B1 | 1.381 (2) | C7—H7B | 0.9800 |
O2—H2 | 0.8400 | C7—H7C | 0.9800 |
C5—C6 | 1.402 (2) | C8—H8A | 0.9800 |
C5—C4 | 1.401 (2) | C8—H8B | 0.9800 |
C5—B1 | 1.574 (2) | C8—H8C | 0.9800 |
C1—C2 | 1.402 (2) | C10—H10A | 0.9800 |
C1—C6 | 1.401 (2) | C10—H10B | 0.9800 |
C9—H9A | 0.9800 | C10—H10C | 0.9800 |
C10—Si1—C8 | 108.52 (8) | C3—C4—C5 | 121.24 (14) |
C10—Si1—C9 | 107.31 (7) | C3—C4—H4 | 119.4 |
C8—Si1—C9 | 111.49 (7) | C5—C4—H4 | 119.4 |
C10—Si1—C1 | 108.24 (7) | C3—C2—C1 | 122.12 (14) |
C8—Si1—C1 | 108.39 (7) | C3—C2—H2A | 118.9 |
C9—Si1—C1 | 112.76 (7) | C1—C2—H2A | 118.9 |
C6—O1—C7 | 111.44 (11) | O1—C7—H7A | 109.5 |
B1—O3—H3 | 109.5 | O1—C7—H7B | 109.5 |
B1—O2—H2 | 109.5 | H7A—C7—H7B | 109.5 |
C6—C5—C4 | 116.59 (13) | O1—C7—H7C | 109.5 |
C6—C5—B1 | 123.85 (13) | H7A—C7—H7C | 109.5 |
C4—C5—B1 | 119.35 (13) | H7B—C7—H7C | 109.5 |
C2—C1—C6 | 115.73 (13) | Si1—C8—H8A | 109.5 |
C2—C1—Si1 | 121.55 (11) | Si1—C8—H8B | 109.5 |
C6—C1—Si1 | 122.32 (11) | H8A—C8—H8B | 109.5 |
Si1—C9—H9A | 109.5 | Si1—C8—H8C | 109.5 |
Si1—C9—H9B | 109.5 | H8A—C8—H8C | 109.5 |
H9A—C9—H9B | 109.5 | H8B—C8—H8C | 109.5 |
Si1—C9—H9C | 109.5 | Si1—C10—H10A | 109.5 |
H9A—C9—H9C | 109.5 | Si1—C10—H10B | 109.5 |
H9B—C9—H9C | 109.5 | H10A—C10—H10B | 109.5 |
C2—C3—C4 | 119.67 (14) | Si1—C10—H10C | 109.5 |
C2—C3—H3A | 120.2 | H10A—C10—H10C | 109.5 |
C4—C3—H3A | 120.2 | H10B—C10—H10C | 109.5 |
C5—C6—C1 | 124.48 (14) | O3—B1—O2 | 118.90 (14) |
C5—C6—O1 | 118.37 (12) | O3—B1—C5 | 119.49 (14) |
C1—C6—O1 | 117.14 (13) | O2—B1—C5 | 121.60 (14) |
C10—Si1—C1—C2 | 2.07 (14) | Si1—C1—C6—O1 | 9.56 (18) |
C8—Si1—C1—C2 | −115.45 (13) | C7—O1—C6—C5 | −83.99 (16) |
C9—Si1—C1—C2 | 120.62 (12) | C7—O1—C6—C1 | 97.38 (15) |
C10—Si1—C1—C6 | 174.45 (12) | C2—C3—C4—C5 | 2.7 (2) |
C8—Si1—C1—C6 | 56.93 (14) | C6—C5—C4—C3 | 0.8 (2) |
C9—Si1—C1—C6 | −67.00 (14) | B1—C5—C4—C3 | −174.09 (14) |
C4—C5—C6—C1 | −4.2 (2) | C4—C3—C2—C1 | −3.1 (2) |
B1—C5—C6—C1 | 170.43 (14) | C6—C1—C2—C3 | 0.0 (2) |
C4—C5—C6—O1 | 177.24 (12) | Si1—C1—C2—C3 | 172.85 (11) |
B1—C5—C6—O1 | −8.1 (2) | C6—C5—B1—O3 | 172.48 (14) |
C2—C1—C6—C5 | 3.8 (2) | C4—C5—B1—O3 | −13.0 (2) |
Si1—C1—C6—C5 | −168.98 (11) | C6—C5—B1—O2 | −8.9 (2) |
C2—C1—C6—O1 | −177.64 (12) | C4—C5—B1—O2 | 165.67 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1 | 0.84 | 2.04 | 2.7532 (14) | 142 |
O3—H3···O2i | 0.84 | 1.97 | 2.8051 (14) | 175 |
Symmetry code: (i) −x+2, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1 | 0.84 | 2.04 | 2.7532 (14) | 142 |
O3—H3···O2i | 0.84 | 1.97 | 2.8051 (14) | 175 |
Symmetry code: (i) −x+2, −y+2, −z. |
Acknowledgements
The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. This work was supported by the Warsaw University of Technology. The support by Aldrich Chemical Co., Milwaukee, WI, USA, through continuous donation of chemicals and equipment is gratefully acknowledged.
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cyrański, M. K., Jezierska, A., Klimentowska, P., Panek, J. J. & Sporzyński, A. (2008). J. Phys. Org. Chem. 21, 472–482. Google Scholar
Cyrański, M. K., Klimentowska, P., Rydzewska, A., Serwatowski, J., Sporzyński, A. & Stępień, D. K. (2012). CrystEngComm, 14, 6282–6294. Google Scholar
Durka, K., Górka, J., Kurach, P., Luliński, S. & Serwatowski, J. (2010). J. Organomet. Chem. 695, 2635–2643. Web of Science CSD CrossRef CAS Google Scholar
Durka, K., Jarzembska, K. N., Kamiński, R., Luliński, S., Serwatowski, J. & Woźniak, K. (2012). Cryst. Growth Des. 12, 3720–3734. Web of Science CSD CrossRef CAS Google Scholar
Gavezzotti, A. (2003). CrystEngComm, 5, 429–438. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.