inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Revision of the Li13Si4 structure

aDepartment of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
*Correspondence e-mail: thomas.faessler@lrz.tum.de

(Received 14 October 2013; accepted 30 October 2013; online 6 November 2013)

Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li–Si system is the phase Li13Si4 (trideca­lithium tetra­silicide), the structure of which has been determined previously [Frank et al. (1975[Frank, U., Müller, W. & Schäfer, H. (1975). Z. Naturforsch. Teil B, 30, 10-13.]). Z. Naturforsch. Teil B, 30, 10–13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i) the introduction of a split position for one Li site [occupancy ratio 0.838 (7):0.162 (7)], (ii) the anisotropic refinement of atomic displacement parameters for all atoms, and (iii) a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si–Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si–Si dumbbells at z = 0.5.

Related literature

For details of the structural description of Li13Si4, see: Frank et al. (1975[Frank, U., Müller, W. & Schäfer, H. (1975). Z. Naturforsch. Teil B, 30, 10-13.]). For structural data for Li13Si4 based on computational methods, see: Chevrier et al. (2010[Chevrier, V. L., Zwanziger, J. W. & Dahn, J. R. (2010). J. Alloys Compd, 496, 25-36.]). For details of the synthesis, thermodynamic properties and crystal structures of Li17Si4, Li16.42Si4 and Li15Si4, see: Zeilinger & Benson et al. (2013[Zeilinger, M., Benson, D., Häussermann, U. & Fässler, T. F. (2013). Chem. Mater. 25, 1960-1967.]); Zeilinger & Kurylyshyn et al. (2013[Zeilinger, M., Kurylyshyn, I. M., Häussermann, U. & Fässler, T. F. (2013). Chem. Mater. doi:10.1021/cm4029885.]); Zeilinger & Baran et al. (2013[Zeilinger, M., Baran, V., Häussermann, U. & Fässler, T. F. (2013). Chem. Mater. 25, 4113-4121.]). For further thermodynamic investigations on the Li–Si system, see: Thomas et al. (2013[Thomas, D., Abdel-Hafiez, M., Gruber, T., Huttl, R., Seidel, J., Wolter, A. U. B., Buchner, B., Kortus, J. & Mertens, F. J. (2013). J. Chem. Thermodyn. 64, 205-225.]); Wang et al. (2013[Wang, P., Kozlov, A., Thomas, D., Mertens, F. & Schmid-Fetzer, R. (2013). Intermetallics, 42, 137-145.]). The behavior of silicon as anode material upon li­thia­tion/deli­thia­tion is described by Limthongkul et al. (2003[Limthongkul, P., Jang, Y. I., Dudney, N. J. & Chiang, Y. M. (2003). Acta Mater. 51, 1103-1113.]) and Obrovac & Christensen (2004[Obrovac, M. N. & Christensen, L. (2004). Electrochem. Solid State Lett. 7, A93-A96.]). For in-situ/ex-situ solid state NMR investigations of structural changes in silicon electrodes for lithium-ion batteries, see: Key et al. (2009[Key, B., Bhattacharyya, R., Morcrette, M., Seznec, V., Tarascon, J. M. & Grey, C. P. (2009). J. Am. Chem. Soc. 131, 9239-9249.], 2011[Key, B., Morcrette, M., Tarascon, J. M. & Grey, C. P. (2011). J. Am. Chem. Soc. 133, 503-512.]).

Experimental

Crystal data
  • Li13Si4

  • Mr = 202.58

  • Orthorhombic, P b a m

  • a = 7.9488 (4) Å

  • b = 15.1248 (8) Å

  • c = 4.4661 (2) Å

  • V = 536.93 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 100 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.781, Tmax = 0.818

  • 25938 measured reflections

  • 2429 independent reflections

  • 2333 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.044

  • S = 1.08

  • 2429 reflections

  • 60 parameters

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the last decade, the demand for high capacity lithium-ion batteries (LIBs) particularly fueled the research on the Li—Si phase system since as anode material, Si theoretically offers a specific capacity of 3579 mA h g-1 based on the formation of the metastable phase Li15Si4 (Obrovac & Christensen, 2004). It is well known that Li15Si4 is the only Li—Si phase that appears in crystalline form during charging and discharging processes in silicon based LIBs at room temperature (Limthongkul et al., 2003; Obrovac & Christensen, 2004). However, in order to understand the lithiation/delithiation mechanism, X-ray diffraction methods only provide sparse information and therefore other techniques such as in-situ / ex-situ solid state NMR are frequently used (Key & Bhattacharyya et al., 2009; Key & Morcrette et al., 2011).

Furthermore, a fundamental understanding of the thermodynamic relation of Li—Si phases, especially in the lithium-rich section of the phase diagram, is of considerable importance. Exemplary work is given by Zeilinger & Baran et al. (2013), Zeilinger & Benson et al. (2013), Zeilinger & Kurylyshyn et al. (2013), Thomas et al. (2013) and Wang et al. (2013). For those studies as well as for NMR investigations it is crucial that all existing Li—Si phases are structurally well characterized since otherwise a phase identification of model compounds can be difficult (Key & Bhattacharyya et al., 2009; Thomas et al., 2013). In the course of our investigations on the thermodynamic properties of Li—Si phases, we identified two new phases, Li17Si4 (Zeilinger & Benson et al., 2013) and Li16.42Si4 (Zeilinger & Kurylyshyn et al., 2013). The latter is assigned a high temperature phase existing in a temperature range of 743–891 K, the former decomposes peritectically at 754–759 K. Li16.42Si4 is compositionally embraced by the lithium-richer phase Li17Si4 and the lithium-poorer phase Li13Si4. Since the determination of the Li—Si phase diagram in the aforementioned section is carried out by thermal investigations on various samples with different Li concentrations, the structures of the relevant phases have to be ascertained for an unambiguous assignment of phases in X-ray powder diffraction patterns of those samples. However, the calculated X-ray diffraction pattern of Li13Si4 based on structural data published by Frank et al. (1975) decisively differs from the experimentally observed pattern of a Li13Si4 sample (Fig. 1). More recent data based on theoretical calculations were reported by Chevrier et al. (2010). Yet, the accordingly calculated pattern is slightly but still distinctly different (Fig. 1).

Therefore, we redetermined the structure of Li13Si4 based on single crystal X-ray diffraction data. As can be seen in Fig. 1, the resulting calculated pattern is in very good agreement with the experimental one. Main differences to the previous single-crystal X-ray structure determination by Frank et al. (1975) are i) a significantly more precise determination of atomic positions and unit-cell parameters, respectively (a = 7.99 (2) Å, b = 15.21 (3) Å, c = 4.43 (1) Å compared with a = 7.9488 (4) Å, b = 15.1248 (8) Å, c = 4.4661 (2) Å), ii) an anisotropic refinement of atomic displacement parameters for all atoms and iii) the introduction of a split position for Li6 (occupancy ratio 0.838 (7):0.162 (7)).

Regarding the structure of Li13Si4 we briefly elaborate on the main structure motifs since this has already been described in detail by Frank et al. (1975). Contrary to the lithium-richer phases Li17Si4, Li16.42Si4 and Li15Si4 where all Si atoms are isolated, Li13Si4 contains Si—Si dumbbells beside isolated Si atoms (Fig. 2a). Li—Si distances range from 2.5173 (2) Å to 3.2283 (7) Å and next nearest neighbor distances are clearly separated, starting off from 4.1899 (2) Å. The shortest Li—Li distance is 2.429 (7) Å and comparable to other Li—Si phases (Zeilinger & Benson et al., 2013). The Si—Si distance within the Si—Si dumbbells is 2.3852 (2) Å, further Si atoms are separated by distances larger than 4.4661 (2) Å. Whereas Si1 is coordinated by 12 Li and one Si atom, Si2 is exclusively surrounded by 12 Li atoms. In addition, dumbbells and isolated Si atoms are strictly separated from each other in a layer like fashion as they are located in different ab-planes (Figs. 2 b and c).

Related literature top

For details of the structural description of Li13Si4, see: Frank et al. (1975). For structural data for Li13Si4 based on computational methods, see: Chevrier et al. (2010). For details of the synthesis, thermodynamic properties and crystal structures of Li17Si4, Li16.42Si4 and Li15Si4, see: Zeilinger & Benson et al. (2013); Zeilinger & Kurylyshyn et al. (2013); Zeilinger & Baran et al. (2013). For further thermodynamic investigations on the Li–Si system, see: Thomas et al. (2013); Wang et al. (2013). The behavior of silicon as anode material upon lithiation/delithiation is described by Limthongkul et al. (2003) and Obrovac & Christensen (2004). For in-situ/ex-situ solid state NMR investigations of structural changes in silicon electrodes for lithium-ion batteries, see: Key et al. (2009, 2011).

Experimental top

In our previous work we reported on thermal investigations by differential scanning calorimetry (DSC) means which were targeting the determination of the lithium-rich section of the Li—Si phase diagram (Zeilinger & Kurylyshyn et al. 2013). Various samples with different Li—Si compositions (Li17Si4, "Li16.5Si4", "Li16Si4" and "Li14Si4") were synthesized. Crystals of Li13Si4 could be obtained from a sample with a nominal composition "Li14Si4". For the synthesis of "Li14Si4" we refer to Zeilinger & Kurylyshyn et al. (2013). Li13Si4 crystals were handled inside an Ar-filled glove box, selected under a microscope and sealed inside 0.3 mm glass capillaries for X-ray diffraction experiments.

Refinement top

For better comparison between the first structure refinement and the current redetermination, atomic coordinates and atom labels were taken from Frank et al. (1975). During the structure refinement procedure the positions of two Si and seven Li atoms were confirmed. If refined freely, the site occupation factors of all atoms converged to values very close to full occupancy for the respective sites and were therefore constrained for full occupancy. Extinction was refined to non-significant values and thus excluded from the refinement. Furthermore, an anisotropic refinement of atomic displacement parameters was possible for all atoms. This model resulted in R-values of R1 = 0.020 and wR2 = 0.059 for all data and residual electron densities of +1.223 e Å-3 and -0.740 e Å-3. However, the atomic displacement parameters for Li6 on Wyckoff position 4h (0.0895 (2), 0.25508 (9), 1/2) indicated a large prolongation in the x-direction. Additionally, significant residual electron density (+1.22 e Å-3) is located closely to Li6. To account for that, we introduced a split position for Li6. This resulted in markedly better R-values of R1 = 0.016 and wR2 = 0.044 for all data as well as acceptable residual electron densities of +0.68 e Å-3 and -0.40 e Å-3. The refined fractions are 0.838 (7) for Li6A and 0.162 (7) for Li6B. An example for a similar introduction of an atom split in lithium-rich Li—Si phases is given by Zeilinger & Kurylyshyn et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. (a) Powder X-ray diffraction pattern of a Li13Si4 sample referenced with the theoretical patterns calculated from (b) single-crystal X-ray data presented herein, previous structural data published by (c) Chevrier et al. (2010) and (d) Frank et al. (1975).
[Figure 2] Fig. 2. Structure motifs in Li13Si4: (a) perspective view along the crystallographic c-axis of the unit cell of Li13Si4 (atoms of the asymmetric unit are labeled), (b) isolated Si atoms, and (c) Si—Si dumbbells located in different ab-planes (c = 0, 1 and c = 1/2, respectively). Ellipsoids are drawn at a 80% probability level (Li = red, Si = blue; only the major component of Li6 is shown).
Tridecalithium tetrasilicide top
Crystal data top
Li13Si4Dx = 1.253 Mg m3
Mr = 202.58Melting point: 995 K
Orthorhombic, PbamMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2 2abCell parameters from 9823 reflections
a = 7.9488 (4) Åθ = 2.9–57.3°
b = 15.1248 (8) ŵ = 0.47 mm1
c = 4.4661 (2) ÅT = 100 K
V = 536.93 (5) Å3Block, metallic silver
Z = 20.2 × 0.2 × 0.2 mm
F(000) = 190
Data collection top
Bruker APEXII CCD
diffractometer
2429 independent reflections
Radiation source: rotating anode FR5912333 reflections with I > 2σ(I)
MONTEL optic monochromatorRint = 0.033
Detector resolution: 16 pixels mm-1θmax = 45.3°, θmin = 2.7°
ϕ– and ω–rotation scansh = 1315
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 2830
Tmin = 0.781, Tmax = 0.818l = 88
25938 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.015Secondary atom site location: difference Fourier map
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0204P)2 + 0.0373P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
2429 reflectionsΔρmax = 0.68 e Å3
60 parametersΔρmin = 0.40 e Å3
Crystal data top
Li13Si4V = 536.93 (5) Å3
Mr = 202.58Z = 2
Orthorhombic, PbamMo Kα radiation
a = 7.9488 (4) ŵ = 0.47 mm1
b = 15.1248 (8) ÅT = 100 K
c = 4.4661 (2) Å0.2 × 0.2 × 0.2 mm
Data collection top
Bruker APEXII CCD
diffractometer
2429 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2333 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.818Rint = 0.033
25938 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01560 parameters
wR(F2) = 0.0440 restraints
S = 1.08Δρmax = 0.68 e Å3
2429 reflectionsΔρmin = 0.40 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.426415 (11)0.431285 (6)0.50000.00704 (2)
Si20.415184 (11)0.160356 (6)0.00000.00617 (2)
Li10.15083 (11)0.02778 (6)0.00000.01635 (13)
Li20.00000.50000.00000.01727 (19)
Li30.09442 (12)0.19506 (7)0.00000.0242 (2)
Li40.27005 (11)0.34697 (6)0.00000.01476 (13)
Li50.25998 (11)0.09271 (6)0.50000.01663 (14)
Li6A0.4138 (3)0.25535 (7)0.50000.0195 (4)0.838 (7)
Li6B0.3327 (12)0.2487 (4)0.50000.0192 (15)0.162 (7)
Li70.09281 (10)0.39330 (6)0.50000.01429 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.00650 (4)0.00658 (4)0.00803 (4)0.00146 (2)0.0000.000
Si20.00659 (4)0.00652 (4)0.00541 (4)0.00044 (2)0.0000.000
Li10.0192 (3)0.0173 (3)0.0126 (3)0.0052 (3)0.0000.000
Li20.0249 (5)0.0097 (4)0.0172 (5)0.0035 (4)0.0000.000
Li30.0129 (3)0.0169 (3)0.0427 (6)0.0034 (3)0.0000.000
Li40.0133 (3)0.0173 (3)0.0137 (3)0.0004 (2)0.0000.000
Li50.0127 (3)0.0262 (4)0.0110 (3)0.0061 (3)0.0000.000
Li6A0.0374 (11)0.0107 (4)0.0104 (4)0.0041 (4)0.0000.000
Li6B0.019 (4)0.017 (2)0.022 (3)0.003 (2)0.0000.000
Li70.0105 (3)0.0204 (3)0.0119 (3)0.0008 (2)0.0000.000
Geometric parameters (Å, º) top
Si1—Si1i2.3852 (2)Li3—Li6Axii2.7585 (14)
Si1—Li6A2.6628 (12)Li3—Li6Axiii2.7585 (14)
Si1—Li5ii2.6762 (8)Li3—Li53.0191 (9)
Si1—Li72.7133 (8)Li3—Li5viii3.0191 (9)
Si1—Li1iii2.7374 (5)Li3—Li6B3.038 (7)
Si1—Li1iv2.7374 (5)Li3—Li6Bviii3.038 (7)
Si1—Li5iii2.8559 (9)Li3—Li6Bxii3.168 (7)
Si1—Li4v2.8561 (5)Li4—Li3ii2.6556 (13)
Si1—Li42.8561 (5)Li4—Li6B2.728 (3)
Si1—Li6B2.860 (7)Li4—Li6Bviii2.728 (3)
Si1—Li1vi2.9244 (6)Li4—Li72.7317 (7)
Si1—Li1ii2.9244 (6)Li4—Li7viii2.7318 (7)
Si2—Li2vii2.5174 (2)Li4—Li1iv2.8060 (12)
Si2—Li32.6031 (9)Li4—Si2xiii2.8229 (9)
Si2—Li3ii2.6099 (10)Li4—Si1viii2.8562 (5)
Si2—Li6A2.6554 (6)Li4—Li6Aviii2.8659 (11)
Si2—Li6Aviii2.6554 (6)Li4—Li6A2.8659 (11)
Si2—Li6Bviii2.684 (3)Li5—Li6B2.429 (7)
Si2—Li6B2.684 (3)Li5—Li1v2.5892 (6)
Si2—Li52.7487 (5)Li5—Li7ii2.6540 (12)
Si2—Li5viii2.7487 (5)Li5—Si1xiii2.6762 (8)
Si2—Li7ii2.7638 (5)Li5—Li6A2.7472 (18)
Si2—Li7ix2.7638 (5)Li5—Si2v2.7487 (5)
Si2—Li4ii2.8229 (9)Li5—Si1xi2.8559 (9)
Li1—Li1x2.5408 (17)Li5—Li3v3.0191 (9)
Li1—Li32.5696 (13)Li5—Li7xi3.2351 (14)
Li1—Li5viii2.5892 (6)Li6A—Si2v2.6553 (6)
Li1—Li52.5892 (6)Li6A—Li7ii2.6605 (16)
Li1—Si1vii2.7374 (5)Li6A—Li3vi2.7585 (14)
Li1—Si1xi2.7374 (5)Li6A—Li3ii2.7585 (14)
Li1—Li4vii2.8060 (12)Li6A—Li4v2.8659 (11)
Li1—Li2vii2.8071 (9)Li6A—Li73.296 (2)
Li1—Si1xii2.9244 (6)Li6A—Li3v3.5021 (19)
Li1—Si1xiii2.9244 (6)Li6B—Si2v2.684 (3)
Li2—Si2xiii2.5173 (2)Li6B—Li4v2.728 (3)
Li2—Si2iv2.5174 (2)Li6B—Li72.902 (7)
Li2—Li1xiii2.8071 (9)Li6B—Li7ii2.981 (7)
Li2—Li1iv2.8071 (9)Li6B—Li3v3.038 (7)
Li2—Li7viii2.8522 (6)Li6B—Li3vi3.168 (7)
Li2—Li7xiv2.8522 (6)Li6B—Li3ii3.168 (7)
Li2—Li7xv2.8522 (6)Li7—Li5xiii2.6540 (12)
Li2—Li72.8522 (6)Li7—Li6Axiii2.6605 (16)
Li2—Li4xv3.1567 (9)Li7—Li4v2.7317 (7)
Li2—Li43.1567 (9)Li7—Si2xiii2.7638 (5)
Li2—Li5iii3.2546 (7)Li7—Si2xvi2.7638 (5)
Li2—Li5iv3.2546 (7)Li7—Li2v2.8522 (6)
Li3—Si2xiii2.6099 (10)Li7—Li6Bxiii2.981 (7)
Li3—Li4xiii2.6556 (13)Li7—Li5iii3.2351 (14)
Li3—Li42.6884 (13)
Si1i—Si1—Li6A152.78 (5)Li3ii—Li4—Li7124.20 (2)
Si1i—Si1—Li5ii68.43 (2)Li3—Li4—Li787.21 (3)
Li6A—Si1—Li5ii84.35 (5)Li6B—Li4—Li764.21 (14)
Si1i—Si1—Li7131.60 (2)Li6Bviii—Li4—Li7154.5 (2)
Li6A—Si1—Li775.63 (5)Li3ii—Li4—Li7viii124.20 (2)
Li5ii—Si1—Li7159.98 (3)Li3—Li4—Li7viii87.21 (3)
Si1i—Si1—Li1iii69.231 (19)Li6B—Li4—Li7viii154.5 (2)
Li6A—Si1—Li1iii121.62 (2)Li6Bviii—Li4—Li7viii64.21 (14)
Li5ii—Si1—Li1iii107.13 (2)Li7—Li4—Li7viii109.66 (4)
Li7—Si1—Li1iii83.90 (2)Li3ii—Li4—Li1iv90.90 (4)
Si1i—Si1—Li1iv69.231 (19)Li3—Li4—Li1iv161.67 (4)
Li6A—Si1—Li1iv121.62 (2)Li6B—Li4—Li1iv119.34 (14)
Li5ii—Si1—Li1iv107.13 (2)Li6Bviii—Li4—Li1iv119.34 (14)
Li7—Si1—Li1iv83.90 (2)Li7—Li4—Li1iv82.28 (3)
Li1iii—Si1—Li1iv109.32 (3)Li7viii—Li4—Li1iv82.28 (3)
Si1i—Si1—Li5iii60.62 (2)Li3ii—Li4—Si2xiii163.90 (4)
Li6A—Si1—Li5iii146.60 (5)Li3—Li4—Si2xiii56.47 (3)
Li5ii—Si1—Li5iii129.047 (16)Li6B—Li4—Si2xiii99.3 (2)
Li7—Si1—Li5iii70.97 (3)Li6Bviii—Li4—Si2xiii99.3 (2)
Li1iii—Si1—Li5iii55.100 (14)Li7—Li4—Si2xiii59.65 (2)
Li1iv—Si1—Li5iii55.100 (14)Li7viii—Li4—Si2xiii59.65 (2)
Si1i—Si1—Li4v127.050 (14)Li1iv—Li4—Si2xiii105.20 (3)
Li6A—Si1—Li4v62.45 (3)Li3ii—Li4—Si171.60 (2)
Li5ii—Si1—Li4v111.752 (19)Li3—Li4—Si1127.412 (15)
Li7—Si1—Li4v58.678 (17)Li6B—Li4—Si161.57 (14)
Li1iii—Si1—Li4v60.17 (2)Li6Bviii—Li4—Si1143.5 (2)
Li1iv—Si1—Li4v141.10 (3)Li7—Li4—Si158.048 (18)
Li5iii—Si1—Li4v98.97 (2)Li7viii—Li4—Si1138.51 (4)
Si1i—Si1—Li4127.051 (14)Li1iv—Li4—Si157.815 (16)
Li6A—Si1—Li462.45 (3)Si2xiii—Li4—Si1116.896 (19)
Li5ii—Si1—Li4111.752 (19)Li3ii—Li4—Si1viii71.60 (2)
Li7—Si1—Li458.678 (17)Li3—Li4—Si1viii127.413 (15)
Li1iii—Si1—Li4141.10 (3)Li6B—Li4—Si1viii143.5 (2)
Li1iv—Si1—Li460.17 (2)Li6Bviii—Li4—Si1viii61.57 (14)
Li5iii—Si1—Li498.97 (2)Li7—Li4—Si1viii138.51 (4)
Li4v—Si1—Li4102.86 (3)Li7viii—Li4—Si1viii58.048 (18)
Si1i—Si1—Li6B165.72 (19)Li1iv—Li4—Si1viii57.814 (16)
Li6A—Si1—Li6B12.94 (15)Si2xiii—Li4—Si1viii116.896 (19)
Li5ii—Si1—Li6B97.30 (19)Si1—Li4—Si1viii102.86 (3)
Li7—Si1—Li6B62.68 (19)Li3ii—Li4—Li6Aviii59.80 (4)
Li1iii—Si1—Li6B117.15 (8)Li3—Li4—Li6Aviii78.11 (4)
Li1iv—Si1—Li6B117.15 (8)Li6B—Li4—Li6Aviii107.55 (12)
Li5iii—Si1—Li6B133.66 (19)Li6Bviii—Li4—Li6Aviii13.10 (18)
Li4v—Si1—Li6B57.02 (7)Li7—Li4—Li6Aviii165.17 (5)
Li4—Si1—Li6B57.02 (7)Li7viii—Li4—Li6Aviii72.11 (3)
Si1i—Si1—Li1vi61.073 (16)Li1iv—Li4—Li6Aviii112.45 (4)
Li6A—Si1—Li1vi103.56 (3)Si2xiii—Li4—Li6Aviii112.31 (5)
Li5ii—Si1—Li1vi54.856 (16)Si1—Li4—Li6Aviii130.66 (5)
Li7—Si1—Li1vi129.866 (14)Si1viii—Li4—Li6Aviii55.47 (3)
Li1iii—Si1—Li1vi53.20 (3)Li3ii—Li4—Li6A59.80 (4)
Li1iv—Si1—Li1vi130.304 (9)Li3—Li4—Li6A78.10 (4)
Li5iii—Si1—Li1vi97.78 (2)Li6B—Li4—Li6A13.10 (18)
Li4v—Si1—Li1vi76.29 (2)Li6Bviii—Li4—Li6A107.55 (12)
Li4—Si1—Li1vi163.14 (2)Li7—Li4—Li6A72.11 (3)
Li6B—Si1—Li1vi111.30 (11)Li7viii—Li4—Li6A165.17 (5)
Si1i—Si1—Li1ii61.073 (16)Li1iv—Li4—Li6A112.45 (4)
Li6A—Si1—Li1ii103.56 (3)Si2xiii—Li4—Li6A112.31 (5)
Li5ii—Si1—Li1ii54.856 (16)Si1—Li4—Li6A55.47 (3)
Li7—Si1—Li1ii129.866 (14)Si1viii—Li4—Li6A130.66 (5)
Li1iii—Si1—Li1ii130.304 (9)Li6Aviii—Li4—Li6A102.37 (5)
Li1iv—Si1—Li1ii53.20 (3)Li6B—Li5—Li1116.63 (6)
Li5iii—Si1—Li1ii97.78 (2)Li6B—Li5—Li1v116.63 (6)
Li4v—Si1—Li1ii163.14 (2)Li1—Li5—Li1v119.19 (5)
Li4—Si1—Li1ii76.29 (2)Li6B—Li5—Li7ii71.7 (2)
Li6B—Si1—Li1ii111.30 (11)Li1—Li5—Li7ii111.36 (3)
Li1vi—Si1—Li1ii99.56 (3)Li1v—Li5—Li7ii111.36 (3)
Li2vii—Si2—Li3117.17 (2)Li6B—Li5—Si1xiii111.6 (2)
Li2vii—Si2—Li3ii131.38 (2)Li1—Li5—Si1xiii67.45 (3)
Li3—Si2—Li3ii111.451 (16)Li1v—Li5—Si1xiii67.45 (3)
Li2vii—Si2—Li6A121.49 (2)Li7ii—Li5—Si1xiii176.78 (5)
Li3—Si2—Li6A83.51 (5)Li6B—Li5—Li6A12.67 (19)
Li3ii—Si2—Li6A63.18 (4)Li1—Li5—Li6A119.26 (3)
Li2vii—Si2—Li6Aviii121.49 (2)Li1v—Li5—Li6A119.26 (3)
Li3—Si2—Li6Aviii83.51 (5)Li7ii—Li5—Li6A58.99 (5)
Li3ii—Si2—Li6Aviii63.18 (4)Si1xiii—Li5—Li6A124.23 (6)
Li6A—Si2—Li6Aviii114.48 (4)Li6B—Li5—Si262.07 (9)
Li2vii—Si2—Li6Bviii123.03 (10)Li1—Li5—Si265.853 (16)
Li3—Si2—Li6Bviii70.1 (2)Li1v—Li5—Si2172.86 (4)
Li3ii—Si2—Li6Bviii73.51 (18)Li7ii—Li5—Si261.506 (17)
Li6A—Si2—Li6Bviii115.43 (10)Si1xiii—Li5—Si2119.680 (19)
Li6Aviii—Si2—Li6Bviii14.03 (17)Li6A—Li5—Si257.78 (2)
Li2vii—Si2—Li6B123.03 (10)Li6B—Li5—Si2v62.07 (9)
Li3—Si2—Li6B70.1 (2)Li1—Li5—Si2v172.86 (4)
Li3ii—Si2—Li6B73.51 (18)Li1v—Li5—Si2v65.854 (16)
Li6A—Si2—Li6B14.03 (17)Li7ii—Li5—Si2v61.506 (17)
Li6Aviii—Si2—Li6B115.43 (10)Si1xiii—Li5—Si2v119.680 (19)
Li6Bviii—Si2—Li6B112.6 (2)Li6A—Li5—Si2v57.78 (2)
Li2vii—Si2—Li576.21 (2)Si2—Li5—Si2v108.66 (3)
Li3—Si2—Li568.62 (2)Li6B—Li5—Si1xi162.5 (2)
Li3ii—Si2—Li5123.840 (16)Li1—Li5—Si1xi60.12 (2)
Li6A—Si2—Li561.08 (4)Li1v—Li5—Si1xi60.12 (2)
Li6Aviii—Si2—Li5151.98 (5)Li7ii—Li5—Si1xi125.82 (4)
Li6Bviii—Si2—Li5138.7 (2)Si1xiii—Li5—Si1xi50.954 (16)
Li6B—Si2—Li553.11 (15)Li6A—Li5—Si1xi175.18 (6)
Li2vii—Si2—Li5viii76.21 (2)Si2—Li5—Si1xi123.439 (18)
Li3—Si2—Li5viii68.62 (2)Si2v—Li5—Si1xi123.440 (18)
Li3ii—Si2—Li5viii123.840 (16)Li6B—Li5—Li366.78 (13)
Li6A—Si2—Li5viii151.98 (5)Li1—Li5—Li353.88 (3)
Li6Aviii—Si2—Li5viii61.08 (4)Li1v—Li5—Li3133.34 (4)
Li6Bviii—Si2—Li5viii53.11 (15)Li7ii—Li5—Li3113.18 (3)
Li6B—Si2—Li5viii138.7 (2)Si1xiii—Li5—Li368.76 (2)
Li5—Si2—Li5viii108.66 (3)Li6A—Li5—Li374.63 (4)
Li2vii—Si2—Li7ii65.184 (19)Si2—Li5—Li353.408 (19)
Li3—Si2—Li7ii124.026 (15)Si2v—Li5—Li3127.28 (4)
Li3ii—Si2—Li7ii88.12 (3)Si1xi—Li5—Li3102.25 (3)
Li6A—Si2—Li7ii58.76 (3)Li6B—Li5—Li3v66.78 (13)
Li6Aviii—Si2—Li7ii147.18 (5)Li1—Li5—Li3v133.34 (4)
Li6Bviii—Si2—Li7ii160.6 (2)Li1v—Li5—Li3v53.88 (3)
Li6B—Si2—Li7ii66.34 (14)Li7ii—Li5—Li3v113.18 (3)
Li5—Si2—Li7ii57.56 (2)Si1xiii—Li5—Li3v68.76 (2)
Li5viii—Si2—Li7ii140.93 (3)Li6A—Li5—Li3v74.63 (4)
Li2vii—Si2—Li7ix65.184 (18)Si2—Li5—Li3v127.28 (4)
Li3—Si2—Li7ix124.026 (15)Si2v—Li5—Li3v53.408 (19)
Li3ii—Si2—Li7ix88.12 (3)Si1xi—Li5—Li3v102.25 (3)
Li6A—Si2—Li7ix147.18 (5)Li3—Li5—Li3v95.40 (4)
Li6Aviii—Si2—Li7ix58.77 (3)Li6B—Li5—Li7xi145.0 (2)
Li6Bviii—Si2—Li7ix66.34 (14)Li1—Li5—Li7xi76.56 (3)
Li6B—Si2—Li7ix160.6 (2)Li1v—Li5—Li7xi76.56 (3)
Li5—Si2—Li7ix140.93 (3)Li7ii—Li5—Li7xi73.37 (4)
Li5viii—Si2—Li7ix57.56 (2)Si1xiii—Li5—Li7xi103.41 (3)
Li7ii—Si2—Li7ix107.80 (3)Li6A—Li5—Li7xi132.36 (5)
Li2vii—Si2—Li4ii72.216 (17)Si2—Li5—Li7xi100.64 (2)
Li3—Si2—Li4ii170.62 (3)Si2v—Li5—Li7xi100.64 (2)
Li3ii—Si2—Li4ii59.16 (3)Si1xi—Li5—Li7xi52.46 (2)
Li6A—Si2—Li4ii91.45 (5)Li3—Li5—Li7xi129.47 (2)
Li6Aviii—Si2—Li4ii91.45 (5)Li3v—Li5—Li7xi129.47 (2)
Li6Bviii—Si2—Li4ii105.3 (2)Si2v—Li6A—Si2114.48 (4)
Li6B—Si2—Li4ii105.3 (2)Si2v—Li6A—Li7ii62.65 (2)
Li5—Si2—Li4ii115.713 (19)Si2—Li6A—Li7ii62.65 (2)
Li5viii—Si2—Li4ii115.713 (19)Si2v—Li6A—Si1122.72 (2)
Li7ii—Si2—Li4ii58.534 (15)Si2—Li6A—Si1122.72 (2)
Li7ix—Si2—Li4ii58.534 (15)Li7ii—Li6A—Si1145.53 (10)
Li1x—Li1—Li399.26 (5)Si2v—Li6A—Li561.14 (3)
Li1x—Li1—Li5viii116.21 (3)Si2—Li6A—Li561.14 (3)
Li3—Li1—Li5viii71.64 (3)Li7ii—Li6A—Li558.76 (3)
Li1x—Li1—Li5116.21 (3)Si1—Li6A—Li5155.71 (9)
Li3—Li1—Li571.64 (3)Si2v—Li6A—Li3vi57.60 (2)
Li5viii—Li1—Li5119.19 (5)Si2—Li6A—Li3vi145.67 (8)
Li1x—Li1—Si1vii67.17 (2)Li7ii—Li6A—Li3vi87.22 (5)
Li3—Li1—Si1vii119.07 (2)Si1—Li6A—Li3vi73.07 (4)
Li5viii—Li1—Si1vii64.776 (18)Li5—Li6A—Li3vi118.37 (3)
Li5—Li1—Si1vii168.80 (4)Si2v—Li6A—Li3ii145.67 (8)
Li1x—Li1—Si1xi67.17 (2)Si2—Li6A—Li3ii57.61 (2)
Li3—Li1—Si1xi119.07 (2)Li7ii—Li6A—Li3ii87.22 (5)
Li5viii—Li1—Si1xi168.80 (4)Si1—Li6A—Li3ii73.07 (4)
Li5—Li1—Si1xi64.776 (18)Li5—Li6A—Li3ii118.37 (3)
Si1vii—Li1—Si1xi109.32 (3)Li3vi—Li6A—Li3ii108.10 (8)
Li1x—Li1—Li4vii83.64 (4)Si2v—Li6A—Li4156.71 (9)
Li3—Li1—Li4vii177.10 (5)Si2—Li6A—Li466.92 (2)
Li5viii—Li1—Li4vii107.13 (3)Li7ii—Li6A—Li4128.45 (2)
Li5—Li1—Li4vii107.13 (3)Si1—Li6A—Li462.08 (3)
Si1vii—Li1—Li4vii62.011 (17)Li5—Li6A—Li4104.80 (6)
Si1xi—Li1—Li4vii62.012 (18)Li3vi—Li6A—Li4134.98 (5)
Li1x—Li1—Li2vii152.08 (6)Li3ii—Li6A—Li456.31 (3)
Li3—Li1—Li2vii108.66 (4)Si2v—Li6A—Li4v66.92 (2)
Li5viii—Li1—Li2vii74.07 (3)Si2—Li6A—Li4v156.71 (9)
Li5—Li1—Li2vii74.07 (3)Li7ii—Li6A—Li4v128.45 (2)
Si1vii—Li1—Li2vii98.16 (2)Si1—Li6A—Li4v62.08 (3)
Si1xi—Li1—Li2vii98.16 (2)Li5—Li6A—Li4v104.80 (6)
Li4vii—Li1—Li2vii68.44 (3)Li3vi—Li6A—Li4v56.31 (3)
Li1x—Li1—Si2155.65 (6)Li3ii—Li6A—Li4v134.98 (5)
Li3—Li1—Si256.39 (3)Li4—Li6A—Li4v102.37 (5)
Li5viii—Li1—Si259.72 (2)Si2v—Li6A—Li7110.22 (5)
Li5—Li1—Si259.72 (2)Si2—Li6A—Li7110.22 (5)
Si1vii—Li1—Si2122.029 (17)Li7ii—Li6A—Li7161.59 (8)
Si1xi—Li1—Si2122.029 (17)Si1—Li6A—Li752.88 (3)
Li4vii—Li1—Si2120.71 (4)Li5—Li6A—Li7102.83 (7)
Li2vii—Li1—Si252.269 (16)Li3vi—Li6A—Li7103.34 (4)
Li1x—Li1—Si1xii59.63 (2)Li3ii—Li6A—Li7103.34 (4)
Li3—Li1—Si1xii71.64 (2)Li4—Li6A—Li752.06 (3)
Li5viii—Li1—Si1xii57.691 (19)Li4v—Li6A—Li752.06 (3)
Li5—Li1—Si1xii141.50 (4)Si2v—Li6A—Li3113.47 (6)
Si1vii—Li1—Si1xii49.695 (9)Si2—Li6A—Li347.61 (3)
Si1xi—Li1—Si1xii126.80 (3)Li7ii—Li6A—Li399.65 (4)
Li4vii—Li1—Si1xii110.06 (2)Si1—Li6A—Li3106.70 (5)
Li2vii—Li1—Si1xii129.406 (14)Li5—Li6A—Li356.23 (4)
Si2—Li1—Si1xii107.16 (2)Li3vi—Li6A—Li3164.63 (7)
Li1x—Li1—Si1xiii59.63 (2)Li3ii—Li6A—Li386.09 (2)
Li3—Li1—Si1xiii71.64 (2)Li4—Li6A—Li348.69 (3)
Li5viii—Li1—Si1xiii141.50 (4)Li4v—Li6A—Li3109.49 (7)
Li5—Li1—Si1xiii57.691 (19)Li7—Li6A—Li366.64 (4)
Si1vii—Li1—Si1xiii126.80 (3)Si2v—Li6A—Li3v47.61 (3)
Si1xi—Li1—Si1xiii49.695 (9)Si2—Li6A—Li3v113.47 (6)
Li4vii—Li1—Si1xiii110.06 (2)Li7ii—Li6A—Li3v99.65 (4)
Li2vii—Li1—Si1xiii129.406 (14)Si1—Li6A—Li3v106.70 (5)
Si2—Li1—Si1xiii107.16 (2)Li5—Li6A—Li3v56.23 (4)
Si1xii—Li1—Si1xiii99.56 (3)Li3vi—Li6A—Li3v86.09 (2)
Si2xiii—Li2—Si2iv180.000 (4)Li3ii—Li6A—Li3v164.63 (7)
Si2xiii—Li2—Li1xiii65.859 (17)Li4—Li6A—Li3v109.48 (7)
Si2iv—Li2—Li1xiii114.141 (17)Li4v—Li6A—Li3v48.69 (3)
Si2xiii—Li2—Li1iv114.142 (17)Li7—Li6A—Li3v66.64 (4)
Si2iv—Li2—Li1iv65.859 (17)Li3—Li6A—Li3v79.23 (5)
Li1xiii—Li2—Li1iv180.0Li5—Li6B—Si2v64.82 (11)
Si2xiii—Li2—Li7viii61.584 (16)Li5—Li6B—Si264.82 (11)
Si2iv—Li2—Li7viii118.416 (16)Si2v—Li6B—Si2112.6 (2)
Li1xiii—Li2—Li7viii99.849 (19)Li5—Li6B—Li4119.1 (2)
Li1iv—Li2—Li7viii80.151 (19)Si2v—Li6B—Li4175.5 (4)
Si2xiii—Li2—Li7xiv118.417 (16)Si2—Li6B—Li468.579 (18)
Si2iv—Li2—Li7xiv61.583 (16)Li5—Li6B—Li4v119.1 (2)
Li1xiii—Li2—Li7xiv80.151 (19)Si2v—Li6B—Li4v68.579 (19)
Li1iv—Li2—Li7xiv99.849 (19)Si2—Li6B—Li4v175.5 (4)
Li7viii—Li2—Li7xiv180.0Li4—Li6B—Li4v109.86 (19)
Si2xiii—Li2—Li7xv118.417 (16)Li5—Li6B—Si1178.7 (4)
Si2iv—Li2—Li7xv61.583 (16)Si2v—Li6B—Si1114.7 (2)
Li1xiii—Li2—Li7xv80.151 (19)Si2—Li6B—Si1114.7 (2)
Li1iv—Li2—Li7xv99.849 (19)Li4—Li6B—Si161.41 (11)
Li7viii—Li2—Li7xv76.94 (3)Li4v—Li6B—Si161.41 (11)
Li7xiv—Li2—Li7xv103.06 (3)Li5—Li6B—Li7125.1 (4)
Si2xiii—Li2—Li761.584 (16)Si2v—Li6B—Li7122.40 (15)
Si2iv—Li2—Li7118.417 (16)Si2—Li6B—Li7122.40 (15)
Li1xiii—Li2—Li799.850 (19)Li4—Li6B—Li757.95 (11)
Li1iv—Li2—Li780.151 (19)Li4v—Li6B—Li757.95 (11)
Li7viii—Li2—Li7103.06 (3)Si1—Li6B—Li756.18 (10)
Li7xiv—Li2—Li776.94 (3)Li5—Li6B—Li7ii57.68 (13)
Li7xv—Li2—Li7180.0Si2v—Li6B—Li7ii58.12 (12)
Si2xiii—Li2—Li4xv121.622 (16)Si2—Li6B—Li7ii58.12 (12)
Si2iv—Li2—Li4xv58.378 (16)Li4—Li6B—Li7ii121.27 (18)
Li1xiii—Li2—Li4xv55.76 (2)Li4v—Li6B—Li7ii121.27 (18)
Li1iv—Li2—Li4xv124.24 (2)Si1—Li6B—Li7ii121.0 (3)
Li7viii—Li2—Li4xv126.209 (14)Li7—Li6B—Li7ii177.2 (4)
Li7xiv—Li2—Li4xv53.791 (15)Li5—Li6B—Li365.94 (17)
Li7xv—Li2—Li4xv53.791 (15)Si2v—Li6B—Li3129.1 (3)
Li7—Li2—Li4xv126.210 (14)Si2—Li6B—Li353.69 (8)
Si2xiii—Li2—Li458.378 (16)Li4—Li6B—Li355.26 (9)
Si2iv—Li2—Li4121.622 (16)Li4v—Li6B—Li3129.3 (3)
Li1xiii—Li2—Li4124.24 (2)Si1—Li6B—Li3114.84 (14)
Li1iv—Li2—Li455.76 (2)Li7—Li6B—Li377.97 (19)
Li7viii—Li2—Li453.791 (14)Li7ii—Li6B—Li3103.89 (14)
Li7xiv—Li2—Li4126.210 (14)Li5—Li6B—Li3v65.94 (17)
Li7xv—Li2—Li4126.210 (14)Si2v—Li6B—Li3v53.69 (8)
Li7—Li2—Li453.790 (15)Si2—Li6B—Li3v129.1 (3)
Li4xv—Li2—Li4180.0Li4—Li6B—Li3v129.3 (3)
Si2xiii—Li2—Li5iii124.896 (15)Li4v—Li6B—Li3v55.26 (9)
Si2iv—Li2—Li5iii55.104 (15)Si1—Li6B—Li3v114.84 (14)
Li1xiii—Li2—Li5iii130.096 (14)Li7—Li6B—Li3v77.97 (19)
Li1iv—Li2—Li5iii49.904 (14)Li7ii—Li6B—Li3v103.89 (14)
Li7viii—Li2—Li5iii129.00 (2)Li3—Li6B—Li3v94.6 (3)
Li7xiv—Li2—Li5iii51.00 (2)Li5—Li6B—Li3vi114.65 (17)
Li7xv—Li2—Li5iii116.42 (2)Si2v—Li6B—Li3vi52.18 (10)
Li7—Li2—Li5iii63.58 (2)Si2—Li6B—Li3vi124.0 (3)
Li4xv—Li2—Li5iii94.745 (17)Li4—Li6B—Li3vi123.4 (3)
Li4—Li2—Li5iii85.255 (17)Li4v—Li6B—Li3vi52.90 (9)
Si2xiii—Li2—Li5iv124.896 (15)Si1—Li6B—Li3vi64.52 (16)
Si2iv—Li2—Li5iv55.104 (15)Li7—Li6B—Li3vi103.25 (14)
Li1xiii—Li2—Li5iv130.096 (14)Li7ii—Li6B—Li3vi74.81 (18)
Li1iv—Li2—Li5iv49.904 (14)Li3—Li6B—Li3vi177.4 (3)
Li7viii—Li2—Li5iv63.58 (2)Li3v—Li6B—Li3vi87.879 (16)
Li7xiv—Li2—Li5iv116.42 (2)Li5—Li6B—Li3ii114.65 (17)
Li7xv—Li2—Li5iv51.00 (2)Si2v—Li6B—Li3ii124.0 (3)
Li7—Li2—Li5iv129.00 (2)Si2—Li6B—Li3ii52.18 (10)
Li4xv—Li2—Li5iv94.745 (17)Li4—Li6B—Li3ii52.90 (9)
Li4—Li2—Li5iv85.255 (17)Li4v—Li6B—Li3ii123.4 (3)
Li5iii—Li2—Li5iv86.65 (2)Si1—Li6B—Li3ii64.52 (16)
Li1—Li3—Si268.32 (3)Li7—Li6B—Li3ii103.25 (14)
Li1—Li3—Si2xiii156.96 (5)Li7ii—Li6B—Li3ii74.81 (18)
Si2—Li3—Si2xiii134.72 (4)Li3—Li6B—Li3ii87.879 (16)
Li1—Li3—Li4xiii86.20 (4)Li3v—Li6B—Li3ii177.4 (3)
Si2—Li3—Li4xiii154.51 (5)Li3vi—Li6B—Li3ii89.6 (3)
Si2xiii—Li3—Li4xiii70.77 (3)Li5xiii—Li7—Li6Axiii62.25 (5)
Li1—Li3—Li4138.67 (5)Li5xiii—Li7—Si1163.20 (4)
Si2—Li3—Li470.35 (3)Li6Axiii—Li7—Si1134.55 (6)
Si2xiii—Li3—Li464.37 (3)Li5xiii—Li7—Li4v122.31 (2)
Li4xiii—Li3—Li4135.14 (4)Li6Axiii—Li7—Li4v93.38 (4)
Li1—Li3—Li6Axii111.01 (3)Si1—Li7—Li4v63.27 (2)
Si2—Li3—Li6Axii124.37 (4)Li5xiii—Li7—Li4122.31 (2)
Si2xiii—Li3—Li6Axii59.21 (3)Li6Axiii—Li7—Li493.38 (4)
Li4xiii—Li3—Li6Axii63.89 (4)Si1—Li7—Li463.27 (2)
Li4—Li3—Li6Axii92.17 (4)Li4v—Li7—Li4109.66 (4)
Li1—Li3—Li6Axiii111.01 (3)Li5xiii—Li7—Si2xiii60.933 (17)
Si2—Li3—Li6Axiii124.37 (4)Li6Axiii—Li7—Si2xiii58.58 (2)
Si2xiii—Li3—Li6Axiii59.21 (3)Si1—Li7—Si2xiii124.156 (15)
Li4xiii—Li3—Li6Axiii63.89 (4)Li4v—Li7—Si2xiii148.06 (4)
Li4—Li3—Li6Axiii92.17 (4)Li4—Li7—Si2xiii61.815 (18)
Li6Axii—Li3—Li6Axiii108.10 (8)Li5xiii—Li7—Si2xvi60.933 (17)
Li1—Li3—Li554.48 (2)Li6Axiii—Li7—Si2xvi58.58 (2)
Si2—Li3—Li557.97 (2)Si1—Li7—Si2xvi124.156 (15)
Si2xiii—Li3—Li5131.88 (2)Li4v—Li7—Si2xvi61.815 (18)
Li4xiii—Li3—Li5107.49 (3)Li4—Li7—Si2xvi148.06 (4)
Li4—Li3—Li5102.23 (3)Si2xiii—Li7—Si2xvi107.79 (3)
Li6Axii—Li3—Li5164.79 (5)Li5xiii—Li7—Li2v72.37 (2)
Li6Axiii—Li3—Li576.55 (4)Li6Axiii—Li7—Li2v109.87 (3)
Li1—Li3—Li5viii54.48 (2)Si1—Li7—Li2v97.64 (2)
Si2—Li3—Li5viii57.97 (2)Li4v—Li7—Li2v68.809 (17)
Si2xiii—Li3—Li5viii131.88 (2)Li4—Li7—Li2v156.71 (4)
Li4xiii—Li3—Li5viii107.48 (3)Si2xiii—Li7—Li2v131.80 (3)
Li4—Li3—Li5viii102.23 (3)Si2xvi—Li7—Li2v53.233 (8)
Li6Axii—Li3—Li5viii76.55 (4)Li5xiii—Li7—Li272.37 (2)
Li6Axiii—Li3—Li5viii164.79 (5)Li6Axiii—Li7—Li2109.87 (3)
Li5—Li3—Li5viii95.40 (4)Si1—Li7—Li297.64 (2)
Li1—Li3—Li6B98.86 (11)Li4v—Li7—Li2156.71 (4)
Si2—Li3—Li6B56.17 (14)Li4—Li7—Li268.810 (17)
Si2xiii—Li3—Li6B96.70 (11)Si2xiii—Li7—Li253.233 (8)
Li4xiii—Li3—Li6B132.00 (14)Si2xvi—Li7—Li2131.80 (3)
Li4—Li3—Li6B56.51 (11)Li2v—Li7—Li2103.06 (3)
Li6Axii—Li3—Li6B147.86 (12)Li5xiii—Li7—Li6B135.66 (19)
Li6Axiii—Li3—Li6B69.93 (11)Li6Axiii—Li7—Li6B73.41 (15)
Li5—Li3—Li6B47.28 (10)Si1—Li7—Li6B61.14 (18)
Li5viii—Li3—Li6B114.13 (14)Li4v—Li7—Li6B57.84 (5)
Li1—Li3—Li6Bviii98.86 (11)Li4—Li7—Li6B57.84 (5)
Si2—Li3—Li6Bviii56.17 (14)Si2xiii—Li7—Li6B96.57 (11)
Si2xiii—Li3—Li6Bviii96.70 (11)Si2xvi—Li7—Li6B96.57 (11)
Li4xiii—Li3—Li6Bviii132.00 (14)Li2v—Li7—Li6B126.62 (4)
Li4—Li3—Li6Bviii56.51 (11)Li2—Li7—Li6B126.62 (4)
Li6Axii—Li3—Li6Bviii69.93 (11)Li5xiii—Li7—Li6Bxiii50.66 (18)
Li6Axiii—Li3—Li6Bviii147.86 (12)Li6Axiii—Li7—Li6Bxiii11.59 (14)
Li5—Li3—Li6Bviii114.13 (14)Si1—Li7—Li6Bxiii146.14 (18)
Li5viii—Li3—Li6Bviii47.28 (10)Li4v—Li7—Li6Bxiii99.96 (10)
Li6B—Li3—Li6Bviii94.6 (3)Li4—Li7—Li6Bxiii99.96 (10)
Li1—Li3—Li6Bxii112.27 (10)Si2xiii—Li7—Li6Bxiii55.54 (4)
Si2—Li3—Li6Bxii134.21 (13)Si2xvi—Li7—Li6Bxiii55.54 (4)
Si2xiii—Li3—Li6Bxii54.31 (10)Li2v—Li7—Li6Bxiii103.19 (11)
Li4xiii—Li3—Li6Bxii55.03 (13)Li2—Li7—Li6Bxiii103.19 (11)
Li4—Li3—Li6Bxii96.40 (11)Li6B—Li7—Li6Bxiii85.00 (3)
Li6Axii—Li3—Li6Bxii9.86 (10)Li5xiii—Li7—Li5iii106.63 (4)
Li6Axiii—Li3—Li6Bxii98.97 (16)Li6Axiii—Li7—Li5iii168.88 (6)
Li5—Li3—Li6Bxii160.95 (12)Si1—Li7—Li5iii56.57 (2)
Li5viii—Li3—Li6Bxii84.41 (12)Li4v—Li7—Li5iii93.01 (3)
Li6B—Li3—Li6Bxii148.83 (4)Li4—Li7—Li5iii93.02 (3)
Li6Bviii—Li3—Li6Bxii79.609 (14)Si2xiii—Li7—Li5iii117.29 (2)
Li3ii—Li4—Li3107.43 (3)Si2xvi—Li7—Li5iii117.29 (2)
Li3ii—Li4—Li6B72.1 (2)Li2v—Li7—Li5iii64.282 (19)
Li3—Li4—Li6B68.24 (17)Li2—Li7—Li5iii64.281 (19)
Li3ii—Li4—Li6Bviii72.1 (2)Li6B—Li7—Li5iii117.71 (18)
Li3—Li4—Li6Bviii68.24 (17)Li6Bxiii—Li7—Li5iii157.29 (18)
Li6B—Li4—Li6Bviii109.86 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z; (v) x, y, z+1; (vi) x+1/2, y+1/2, z+1; (vii) x+1/2, y1/2, z; (viii) x, y, z1; (ix) x+1/2, y+1/2, z1; (x) x, y, z; (xi) x+1/2, y1/2, z+1; (xii) x1/2, y+1/2, z1; (xiii) x1/2, y+1/2, z; (xiv) x, y+1, z+1; (xv) x, y+1, z; (xvi) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaLi13Si4
Mr202.58
Crystal system, space groupOrthorhombic, Pbam
Temperature (K)100
a, b, c (Å)7.9488 (4), 15.1248 (8), 4.4661 (2)
V3)536.93 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.781, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
25938, 2429, 2333
Rint0.033
(sin θ/λ)max1)1.000
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.044, 1.08
No. of reflections2429
No. of parameters60
Δρmax, Δρmin (e Å3)0.68, 0.40

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

This work has been funded by the Fonds der Chemischen Industrie and the SolTech (Solar Technologies go Hybrid) program of the State of Bavaria.

References

First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChevrier, V. L., Zwanziger, J. W. & Dahn, J. R. (2010). J. Alloys Compd, 496, 25–36.  Web of Science CrossRef CAS Google Scholar
First citationFrank, U., Müller, W. & Schäfer, H. (1975). Z. Naturforsch. Teil B, 30, 10–13.  Google Scholar
First citationKey, B., Bhattacharyya, R., Morcrette, M., Seznec, V., Tarascon, J. M. & Grey, C. P. (2009). J. Am. Chem. Soc. 131, 9239–9249.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKey, B., Morcrette, M., Tarascon, J. M. & Grey, C. P. (2011). J. Am. Chem. Soc. 133, 503–512.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLimthongkul, P., Jang, Y. I., Dudney, N. J. & Chiang, Y. M. (2003). Acta Mater. 51, 1103–1113.  Web of Science CrossRef CAS Google Scholar
First citationObrovac, M. N. & Christensen, L. (2004). Electrochem. Solid State Lett. 7, A93–A96.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, D., Abdel-Hafiez, M., Gruber, T., Huttl, R., Seidel, J., Wolter, A. U. B., Buchner, B., Kortus, J. & Mertens, F. J. (2013). J. Chem. Thermodyn. 64, 205–225.  Web of Science CrossRef CAS Google Scholar
First citationWang, P., Kozlov, A., Thomas, D., Mertens, F. & Schmid-Fetzer, R. (2013). Intermetallics, 42, 137–145.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeilinger, M., Baran, V., Häussermann, U. & Fässler, T. F. (2013). Chem. Mater. 25, 4113–4121.  Web of Science CrossRef CAS Google Scholar
First citationZeilinger, M., Benson, D., Häussermann, U. & Fässler, T. F. (2013). Chem. Mater. 25, 1960–1967.  Web of Science CrossRef CAS Google Scholar
First citationZeilinger, M., Kurylyshyn, I. M., Häussermann, U. & Fässler, T. F. (2013). Chem. Mater. doi:10.1021/cm4029885.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds