metal-organic compounds
Poly[μ-aqua-μ5-[2-(2,3,6-trichlorophenyl)acetato]-caesium]
aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au
In the structure of the title complex, [Cs(C8H4Cl3O2)(H2O)]n, the caesium salt of the commercial herbicide fenac [(2,3,6-trichlorophenyl)acetic acid], the irregular eight-coordination about Cs+ comprises a bidentate O:Cl-chelate interaction involving a carboxylate-O atom and an ortho-related ring-substituted Cl atom, which is also bridging, a triple-bridging carboxylate-O atom and a bridging water molecule. A two-dimensional polymer is generated, lying parallel to (100), within which there are water–carboxylate O—H⋯O hydrogen-bonding interactions.
CCDC reference: 968583
Related literature
For background information on the herbicide fenac, see: O'Neil (2001). For the structure of fenac, see: White et al. (1979). For examples of caesium complexes involving coordinating carbon-bound Cl, see: Levitskaia et al. (2000); Smith (2013).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
CCDC reference: 968583
10.1107/S1600536813029395/wm2781sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813029395/wm2781Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813029395/wm2781Isup3.cml
The title compound was synthesized by heating together under reflux for 10 minutes, 0.5 mmol of (2,3,6-trichlorophenyl)acetic acid and 0.5 mmol of CsOH in 15 ml of 10% ethanol–water. Partial room temperature evaporation of the solution gave thin colourless crystal plates of the title complex from which a specimen was cleaved for the X-ray analysis.
Carbon-bound hydrogen atoms were placed in calculated positions [aromatic C—H = 0.93 Å and methylene C—H = 0.97 Å] and allowed to ride in the
with Uiso(H) = 1.2Ueq(C). Hydrogen atoms of the coordinating water molecule were located in a difference-Fourier synthesis but were subsequently allowed to ride, with Uiso(H) = 1.5Ueq(O). A large maximum residual electron density peak was present (2.176 e- Å-3) located at 0.82 Å from Cs1. A short O1W···O1Wii non-bonding contact [2.804 (8) Å] across an inversion centre was also found.Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The molecular configuration and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids. [For symmetry codes, see Table 1.] | |
Fig. 2. A partial expansion of the Cs+ coordination in the polymer generated by cyclic links through carboxylate, chlorine and water bridges. Ligand H-atoms are omitted. [For symmetry code (vi): -x + 2, y + 1/2, -z + 3/2. For other codes, see Fig. 1 and Table 1.] | |
Fig. 3. The packing of the sheet structure in the unit cell viewed down b. |
[Cs(C8H4Cl3O2)(H2O)] | F(000) = 736 |
Mr = 389.39 | Dx = 2.206 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2248 reflections |
a = 17.0606 (12) Å | θ = 3.3–28.0° |
b = 4.9834 (3) Å | µ = 3.82 mm−1 |
c = 13.9283 (10) Å | T = 200 K |
β = 98.127 (6)° | Plate, colourless |
V = 1172.29 (14) Å3 | 0.20 × 0.15 × 0.07 mm |
Z = 4 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2284 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1873 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.4° |
ω scans | h = −20→21 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −6→6 |
Tmin = 0.582, Tmax = 0.980 | l = −17→12 |
7585 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0285P)2 + 9.056P] where P = (Fo2 + 2Fc2)/3 |
2284 reflections | (Δ/σ)max = 0.001 |
136 parameters | Δρmax = 2.18 e Å−3 |
0 restraints | Δρmin = −1.86 e Å−3 |
[Cs(C8H4Cl3O2)(H2O)] | V = 1172.29 (14) Å3 |
Mr = 389.39 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 17.0606 (12) Å | µ = 3.82 mm−1 |
b = 4.9834 (3) Å | T = 200 K |
c = 13.9283 (10) Å | 0.20 × 0.15 × 0.07 mm |
β = 98.127 (6)° |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2284 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 1873 reflections with I > 2σ(I) |
Tmin = 0.582, Tmax = 0.980 | Rint = 0.034 |
7585 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.09 | Δρmax = 2.18 e Å−3 |
2284 reflections | Δρmin = −1.86 e Å−3 |
136 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cs1 | 0.91683 (3) | 1.08611 (9) | 0.65098 (4) | 0.0524 (2) | |
Cl2 | 0.66412 (12) | 1.1809 (4) | 0.23490 (12) | 0.0501 (6) | |
Cl3 | 0.53476 (12) | 1.4225 (4) | 0.34892 (17) | 0.0616 (8) | |
Cl6 | 0.76993 (11) | 0.5765 (4) | 0.54801 (14) | 0.0508 (6) | |
O1W | 1.0140 (3) | 0.5882 (12) | 0.5977 (4) | 0.065 (2) | |
O12 | 0.8947 (3) | 0.8961 (12) | 0.2855 (4) | 0.0529 (19) | |
O13 | 0.8658 (3) | 1.0892 (13) | 0.4175 (5) | 0.072 (2) | |
C1 | 0.7124 (3) | 0.8850 (12) | 0.3931 (4) | 0.0274 (17) | |
C2 | 0.6586 (4) | 1.0773 (13) | 0.3521 (4) | 0.0326 (19) | |
C3 | 0.6013 (4) | 1.1852 (14) | 0.4022 (5) | 0.0367 (19) | |
C4 | 0.5961 (4) | 1.1051 (15) | 0.4948 (5) | 0.040 (2) | |
C5 | 0.6479 (4) | 0.9137 (15) | 0.5385 (5) | 0.039 (2) | |
C6 | 0.7052 (4) | 0.8101 (13) | 0.4877 (5) | 0.0322 (19) | |
C11 | 0.7748 (4) | 0.7685 (14) | 0.3401 (5) | 0.036 (2) | |
C12 | 0.8505 (4) | 0.9352 (12) | 0.3479 (4) | 0.0307 (19) | |
H4 | 0.55790 | 1.17900 | 0.52840 | 0.0480* | |
H5 | 0.64430 | 0.85520 | 0.60120 | 0.0470* | |
H11A | 0.75320 | 0.75000 | 0.27210 | 0.0430* | |
H11B | 0.78800 | 0.59030 | 0.36530 | 0.0430* | |
H11W | 1.06400 | 0.68180 | 0.60200 | 0.0970* | |
H12W | 1.02500 | 0.45100 | 0.63200 | 0.0970* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.0581 (3) | 0.0302 (3) | 0.0667 (4) | −0.0028 (2) | 0.0012 (2) | 0.0010 (2) |
Cl2 | 0.0655 (12) | 0.0500 (11) | 0.0322 (9) | −0.0108 (9) | −0.0020 (8) | 0.0071 (8) |
Cl3 | 0.0487 (12) | 0.0503 (12) | 0.0787 (15) | 0.0179 (9) | −0.0157 (10) | −0.0073 (11) |
Cl6 | 0.0477 (11) | 0.0492 (11) | 0.0530 (11) | 0.0041 (9) | −0.0016 (8) | 0.0152 (9) |
O1W | 0.067 (4) | 0.073 (4) | 0.061 (3) | −0.041 (3) | 0.031 (3) | −0.027 (3) |
O12 | 0.039 (3) | 0.075 (4) | 0.049 (3) | −0.016 (3) | 0.021 (2) | −0.026 (3) |
O13 | 0.061 (4) | 0.081 (4) | 0.083 (4) | −0.042 (3) | 0.041 (3) | −0.050 (4) |
C1 | 0.025 (3) | 0.026 (3) | 0.031 (3) | −0.006 (3) | 0.003 (2) | −0.004 (3) |
C2 | 0.035 (4) | 0.032 (3) | 0.029 (3) | −0.011 (3) | −0.002 (3) | −0.004 (3) |
C3 | 0.022 (3) | 0.034 (3) | 0.051 (4) | 0.003 (3) | −0.006 (3) | −0.011 (3) |
C4 | 0.032 (4) | 0.051 (4) | 0.039 (4) | −0.001 (3) | 0.011 (3) | −0.017 (3) |
C5 | 0.042 (4) | 0.047 (4) | 0.030 (3) | −0.009 (3) | 0.013 (3) | −0.005 (3) |
C6 | 0.025 (3) | 0.030 (3) | 0.039 (4) | −0.002 (3) | −0.004 (3) | −0.003 (3) |
C11 | 0.035 (4) | 0.035 (4) | 0.038 (4) | −0.003 (3) | 0.010 (3) | −0.010 (3) |
C12 | 0.038 (4) | 0.026 (3) | 0.029 (3) | 0.001 (3) | 0.008 (3) | −0.005 (3) |
Cs1—Cl6 | 3.711 (2) | O1W—H12W | 0.8400 |
Cs1—O1W | 3.131 (6) | C1—C2 | 1.392 (9) |
Cs1—O13 | 3.246 (7) | C1—C11 | 1.496 (9) |
Cs1—Cl6i | 3.646 (2) | C1—C6 | 1.392 (9) |
Cs1—O1Wi | 3.148 (6) | C2—C3 | 1.387 (9) |
Cs1—O12ii | 3.213 (5) | C3—C4 | 1.365 (10) |
Cs1—O12iii | 3.103 (6) | C4—C5 | 1.382 (10) |
Cs1—O12iv | 3.242 (6) | C5—C6 | 1.385 (10) |
Cl2—C2 | 1.727 (6) | C11—C12 | 1.527 (10) |
Cl3—C3 | 1.732 (7) | C4—H4 | 0.9300 |
Cl6—C6 | 1.737 (7) | C5—H5 | 0.9300 |
O12—C12 | 1.244 (8) | C11—H11A | 0.9700 |
O13—C12 | 1.235 (9) | C11—H11B | 0.9700 |
O1W—H11W | 0.9700 | ||
Cl6—Cs1—O1W | 73.58 (10) | Cs1ii—O12—Cs1vi | 89.15 (14) |
Cl6—Cs1—O13 | 62.95 (11) | Cs1ii—O12—Cs1vii | 86.76 (13) |
Cl6—Cs1—Cl6i | 85.27 (4) | Cs1vi—O12—Cs1vii | 103.50 (16) |
Cl6—Cs1—O1Wi | 143.35 (11) | Cs1—O13—C12 | 141.3 (5) |
Cl6—Cs1—O12ii | 136.07 (11) | Cs1—O1W—H12W | 126.00 |
Cl6—Cs1—O12iii | 64.54 (11) | H11W—O1W—H12W | 103.00 |
Cl6—Cs1—O12iv | 129.83 (10) | Cs1—O1W—H11W | 95.00 |
O1W—Cs1—O13 | 80.93 (15) | Cs1v—O1W—H11W | 149.00 |
Cl6i—Cs1—O1W | 142.70 (11) | C2—C1—C11 | 122.6 (5) |
O1W—Cs1—O1Wi | 105.07 (14) | C6—C1—C11 | 121.8 (5) |
O1W—Cs1—O12ii | 62.90 (14) | C2—C1—C6 | 115.6 (5) |
O1W—Cs1—O12iii | 69.09 (14) | Cl2—C2—C1 | 118.2 (5) |
O1W—Cs1—O12iv | 151.22 (14) | Cl2—C2—C3 | 119.7 (5) |
Cl6i—Cs1—O13 | 62.00 (11) | C1—C2—C3 | 122.1 (5) |
O1Wi—Cs1—O13 | 80.54 (15) | C2—C3—C4 | 120.4 (6) |
O12ii—Cs1—O13 | 113.08 (14) | Cl3—C3—C4 | 118.6 (5) |
O12iii—Cs1—O13 | 124.78 (15) | Cl3—C3—C2 | 121.0 (5) |
O12iv—Cs1—O13 | 122.59 (15) | C3—C4—C5 | 119.7 (6) |
Cl6i—Cs1—O1Wi | 74.34 (10) | C4—C5—C6 | 119.1 (6) |
Cl6i—Cs1—O12ii | 134.05 (11) | Cl6—C6—C5 | 116.7 (5) |
Cl6i—Cs1—O12iii | 128.39 (10) | C1—C6—C5 | 123.2 (6) |
Cl6i—Cs1—O12iv | 64.16 (10) | Cl6—C6—C1 | 120.2 (5) |
O1Wi—Cs1—O12ii | 60.21 (14) | C1—C11—C12 | 114.1 (5) |
O1Wi—Cs1—O12iii | 150.59 (14) | O12—C12—C11 | 117.1 (6) |
O1Wi—Cs1—O12iv | 67.16 (14) | O13—C12—C11 | 118.5 (6) |
O12ii—Cs1—O12iii | 93.30 (14) | O12—C12—O13 | 124.3 (7) |
O12ii—Cs1—O12iv | 90.73 (14) | C3—C4—H4 | 120.00 |
O12iii—Cs1—O12iv | 103.50 (15) | C5—C4—H4 | 120.00 |
Cs1—Cl6—C6 | 94.4 (2) | C4—C5—H5 | 120.00 |
Cs1—Cl6—Cs1v | 85.27 (4) | C6—C5—H5 | 120.00 |
Cs1v—Cl6—C6 | 173.7 (2) | C1—C11—H11A | 109.00 |
Cs1—O1W—Cs1v | 105.07 (15) | C1—C11—H11B | 109.00 |
Cs1ii—O12—C12 | 119.0 (4) | C12—C11—H11A | 109.00 |
Cs1vi—O12—C12 | 132.9 (4) | C12—C11—H11B | 109.00 |
Cs1vii—O12—C12 | 114.3 (4) | H11A—C11—H11B | 108.00 |
O1W—Cs1—Cl6—C6 | −142.6 (3) | O1W—Cs1—O12iii—C12iii | −172.3 (6) |
O1W—Cs1—Cl6—Cs1v | 31.08 (11) | O13—Cs1—O12iii—Cs1v | 32.8 (2) |
O13—Cs1—Cl6—C6 | −54.6 (3) | O13—Cs1—O12iii—C12iii | −110.4 (6) |
O13—Cs1—Cl6—Cs1v | 119.12 (12) | Cl6—Cs1—O12iv—Cs1i | −112.05 (13) |
Cl6i—Cs1—Cl6—C6 | 6.3 (2) | Cl6—Cs1—O12iv—Cs1viii | 159.60 (5) |
Cl6i—Cs1—Cl6—Cs1v | 180.00 (5) | Cl6—Cs1—O12iv—C12iv | 39.1 (5) |
O1Wi—Cs1—Cl6—C6 | −49.3 (3) | O1W—Cs1—O12iv—Cs1i | 109.0 (3) |
O1Wi—Cs1—Cl6—Cs1v | 124.40 (17) | O1W—Cs1—O12iv—Cs1viii | 20.7 (3) |
O12ii—Cs1—Cl6—C6 | −150.5 (3) | O1W—Cs1—O12iv—C12iv | −99.8 (5) |
O12ii—Cs1—Cl6—Cs1v | 23.13 (16) | O13—Cs1—O12iv—Cs1i | −31.8 (2) |
O12iii—Cs1—Cl6—C6 | 143.2 (3) | O13—Cs1—O12iv—Cs1viii | −120.17 (14) |
O12iii—Cs1—Cl6—Cs1v | −43.15 (11) | O13—Cs1—O12iv—C12iv | 119.3 (4) |
O12iv—Cs1—Cl6—C6 | 56.6 (3) | Cs1—Cl6—C6—C1 | 89.9 (5) |
O12iv—Cs1—Cl6—Cs1v | −129.68 (13) | Cs1—Cl6—C6—C5 | −90.0 (5) |
Cl6—Cs1—O1W—Cs1v | −38.11 (11) | Cs1vi—O12—C12—O13 | 153.4 (5) |
O13—Cs1—O1W—Cs1v | −102.44 (17) | Cs1vii—O12—C12—O13 | −66.4 (8) |
Cl6i—Cs1—O1W—Cs1v | −96.19 (19) | Cs1ii—O12—C12—C11 | −142.5 (5) |
O1Wi—Cs1—O1W—Cs1v | 180.00 (15) | Cs1vi—O12—C12—C11 | −23.0 (9) |
O12ii—Cs1—O1W—Cs1v | 135.7 (2) | Cs1vii—O12—C12—C11 | 117.2 (5) |
O12iii—Cs1—O1W—Cs1v | 30.36 (15) | Cs1ii—O12—C12—O13 | 33.9 (9) |
O12iv—Cs1—O1W—Cs1v | 110.2 (3) | Cs1—O13—C12—O12 | −107.6 (8) |
Cl6—Cs1—O13—C12 | −39.5 (7) | Cs1—O13—C12—C11 | 68.8 (9) |
O1W—Cs1—O13—C12 | 36.7 (7) | C6—C1—C2—C3 | −0.5 (9) |
Cl6i—Cs1—O13—C12 | −139.1 (7) | C11—C1—C2—Cl2 | 0.7 (8) |
O1Wi—Cs1—O13—C12 | 143.7 (7) | C6—C1—C2—Cl2 | 179.8 (5) |
O12ii—Cs1—O13—C12 | 92.0 (7) | C2—C1—C6—Cl6 | −178.8 (5) |
O12iii—Cs1—O13—C12 | −19.9 (8) | C2—C1—C6—C5 | 1.1 (9) |
O12iv—Cs1—O13—C12 | −161.3 (7) | C11—C1—C2—C3 | −179.6 (6) |
Cl6—Cs1—Cl6i—Cs1i | 180.00 (4) | C11—C1—C6—Cl6 | 0.3 (9) |
O1W—Cs1—Cl6i—Cs1i | −125.21 (17) | C11—C1—C6—C5 | −179.8 (6) |
O13—Cs1—Cl6i—Cs1i | −118.22 (12) | C2—C1—C11—C12 | 85.3 (7) |
Cl6—Cs1—O1Wi—Cs1i | 97.39 (19) | C6—C1—C11—C12 | −93.7 (7) |
O1W—Cs1—O1Wi—Cs1i | 179.98 (16) | Cl2—C2—C3—Cl3 | 0.2 (8) |
O13—Cs1—O1Wi—Cs1i | 102.15 (17) | Cl2—C2—C3—C4 | 179.9 (6) |
Cl6—Cs1—O12ii—Cs1viii | −157.48 (7) | C1—C2—C3—Cl3 | −179.6 (5) |
Cl6—Cs1—O12ii—C12ii | 62.1 (5) | C1—C2—C3—C4 | 0.2 (10) |
O1W—Cs1—O12ii—Cs1viii | −166.04 (19) | C2—C3—C4—C5 | −0.5 (11) |
O1W—Cs1—O12ii—C12ii | 53.6 (5) | Cl3—C3—C4—C5 | 179.2 (6) |
O13—Cs1—O12ii—Cs1viii | 128.20 (15) | C3—C4—C5—C6 | 1.1 (11) |
O13—Cs1—O12ii—C12ii | −12.2 (5) | C4—C5—C6—Cl6 | 178.4 (6) |
Cl6—Cs1—O12iii—Cs1v | 52.02 (11) | C4—C5—C6—C1 | −1.5 (11) |
Cl6—Cs1—O12iii—C12iii | −91.1 (6) | C1—C11—C12—O12 | −160.0 (6) |
O1W—Cs1—O12iii—Cs1v | −29.16 (14) | C1—C11—C12—O13 | 23.4 (9) |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+2, −z+1; (iii) x, −y+3/2, z+1/2; (iv) x, −y+5/2, z+1/2; (v) x, y−1, z; (vi) x, −y+3/2, z−1/2; (vii) x, −y+5/2, z−1/2; (viii) −x+2, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O13ii | 0.97 | 1.70 | 2.638 (8) | 161 |
O1W—H12W···O12ix | 0.84 | 2.40 | 3.191 (8) | 158 |
C11—H11A···Cl2 | 0.97 | 2.64 | 3.026 (7) | 104 |
C11—H11B···Cl6 | 0.97 | 2.61 | 3.062 (7) | 109 |
Symmetry codes: (ii) −x+2, −y+2, −z+1; (ix) −x+2, −y+1, −z+1. |
Cs1—Cl6 | 3.711 (2) | Cs1—O1Wi | 3.148 (6) |
Cs1—O1W | 3.131 (6) | Cs1—O12ii | 3.213 (5) |
Cs1—O13 | 3.246 (7) | Cs1—O12iii | 3.103 (6) |
Cs1—Cl6i | 3.646 (2) | Cs1—O12iv | 3.242 (6) |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+2, −z+1; (iii) x, −y+3/2, z+1/2; (iv) x, −y+5/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O13ii | 0.97 | 1.70 | 2.638 (8) | 161 |
O1W—H12W···O12v | 0.84 | 2.40 | 3.191 (8) | 158 |
Symmetry codes: (ii) −x+2, −y+2, −z+1; (v) −x+2, −y+1, −z+1. |
Acknowledgements
The author acknowledges financial support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Levitskaia, T. G., Bryan, J. C., Sachleben, R. A., Lamb, J. D. & Moyer, B. A. (2000). J. Am. Chem. Soc. 122, 554–562. Web of Science CSD CrossRef CAS Google Scholar
O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 360. Whitehouse Station, NJ, USA: Merck & Co. Inc. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. (2013). Acta Cryst. E69, m22–m23. CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
White, A. H., Raston, C. L., Kennard, C. H. L. & Smith, G. (1979). Cryst. Struct. Commun. 8, 63–67. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
(2,3,6-Trichlorophenyl)acetic acid (fenac) is a commercial herbicide (O'Neil, 2001) and its crystal structure (White et al., 1979) represents the only entry for this compound in the crystallographic literature. My interest in aromatic carboxylic acid herbicides and in polymeric coordination structures of the alkali metal complexes led to the preparation of the title compound, [Cs(C8H4Cl3O2)(H2O)]n, from the reaction of fenac with caesium hydroxide in aqueous ethanol, and the structure is reported herein.
In this structure (Fig. 1), the irregular eight-coordinate CsClO7 polyhedron comprises a bidentate O:Cl-chelate interaction involving a carboxylate O-atom (O13) and an ortho-related ring substituted Cl-atom (Cl6) which is also bridging, a triple-bridging carboxylate O-atom (O12) and a bridging water molecule O1W (Table 1). A partial expansion of the asymmetric unit in the polymer structure is shown in Fig. 2, forming 4-, 7- and 8-membered cyclic associations linking Cs+ ions (a triple bridge involving Cl6, O1W and O12iii, extending down b). The minimum Cs···Csvi bridging distance in the structure is 4.4336 (9) Å [for symmetry code (i), see Table 1. For code (vi): -x + 2, y + 1/2, -z + 3/2]. In the Cl bridge, the Cs—Cl bond lengths [3.646 (2) and 3.711 (2) Å] are long compared to those commonly present in the few known examples of caesium complexes having coordinating carbon-bound Cl atoms, e.g. 3.46–3.56 Å for a complex in which 1,2-dichloroethane acts as a bidentate chelate ligand (Levitskaia et al., 2000). However, I have previously reported values similar to those in the title complex in the analogous polymeric structure of caesium 4-amino-3,5,6-trichloropyridine-2-carboxylate monohydrate [3.6052 (11)– 3.7151 (11) Å], in which all three ring-substituted Cl-atoms are coordinated (Smith, 2013).
In the crystal structure of the title complex, a polymer with a sheet structure is generated which lies parallel to (100) (Fig. 3), and within which there are waterO—H···Ocarboxylate hydrogen-bonding interactions (Table 2).